
Theorem Proving via General Matings

PETER B. ANDREWS

Carnegie-Mellon Umverslty, Pittsburgh, Pennsylvama

ABSTRACT An approach to automaUc theorem proving using matmgs of arbitrary sentences is discussed
No use is made of conjunctive normal form (clauses) or prenex normal form, since these forms tend to
introduce superfluous redundancy, complicate the search for a proof, and impede analysis of the essential
logical structure of the proposed theorem. A complete exposition of the logical foundations of theorem
proving via general matmgs is given, starting with proofs of appropriate versions of Herbrand's Theorem.
It is shown that one may restrict quantifier duphcat,on to outermost quanUfiers without loss of complete-
ness, though with possible loss of efficmncy.

General matmgs could be used as the basis for a variety of theorem-proving procedures, and there are
many opportunmes for research m this area. A procedure using the criterion of path acceptability for
mattngs is discussed. This criterion ~s easily VlSUahzed m terms of a two-dimensional format for formulas.
An implementation by Eve Cohen has yielded encouraging preliminary results. Some implementation
issues are discussed.

KEY WORDS AND PHRASES. a u t o m a t i c theorem proving, matmgs

CR CATEGORIES 3.69, 5 21

1. Introduction

M u c h o f the research in au toma t i c theorem proving has been focused on deve lop ing
efficient me thods for der iv ing cont rad ic t ions f rom sets o f clauses, which represent
the conjuncts (d is junct ions o f l i terals) o f a wf f (wel l - fo rmed formula) whose ma t r ix
is in conjunct ive n o r m a l form. The advan tages o f conjunct ive n o r m a l fo rm were
po in ted out in [13] and inco rpora t ed into the wide ly s tud ied resolu t ion m e t h o d [26].
M a n y theorems o f ma thema t i c s and o ther d isc ipl ines l end themselves na tu ra l ly to
represen ta t ion as sets o f clauses. However , exper ience wi th a wide var ie ty o f theorems
[2] has shown that in m a n y o the r cases, the use o f c lausa l fo rm has serious
d isadvantages , since the r epea ted use o f the d is t r ibut ive law [P ~/ (Q A R)] ~-
[(P V Q) A (P V R)] involved in the reduc t ion to conjunc t ive n o r m a l fo rm of ten
causes wild pro l i fe ra t ion o f l i terals.

These diff icul t ies arise both wi th respect to theorems o f f i r s t -order logic and
theorems o f h igher o rde r logic. Indeed , m a n y theorems o f h igher o rde r logic requi re
only the me thods o f f i rs t -order logic for thei r proofs and can easi ly be t r ans la ted in to
theorems o f f i r s t -order logic. T h e o r e m A (see (l) o f F igure l) is such a theorem, and
we use it to i l lustrate our point . The theorem is expressed in the no ta t ion o f Church ' s

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery To copy otherwise, or to republish, requires a fee and/or specific permission.
This material ~s based on work supported by the National Science Foundation under Grant MCS
78-01462
A preliminary version of this paper was presented to the Fourth Workshop on Automated Deduction in
Austin, Texas, on February 1, 1979
Author's address Department of Mathematics, Carnegie-Mellon Umversity, Pmsburgh, PA 15213
© 1981 ACM 0004-5411/81/0400-0193 $00 75

Journal of the Assoclauon for Computing Machinery Vol 28, No 2, April 1981 pp 193-214

194 PETER B. ANDREWS

THEOREM A:

(l) [#F~a. Roa U Soa] m .[#F~aRoa] U .#F.aSoa

Negate, eliminate definitions, skolemize, and delete quantlfiers:
(2) ~ 6 ~ 6 ~ ~ ~ [[[~P.~c~x~ A ~SoCA v .P~xa x~ A ~P~axa . F ~ A

7 7 7 1 7 7 7 V • [~ R o , x a V • Po~xa~ A ~Po'~x, • F~ax~]
8 8 1 8 8 8 A • ~SoBx ~ V • Po,~XpX. A ~Po,~cx~ • F~x~]

A.ttRo~x~ V Sopx~] A. ~VLx~ V eL. F~x~]
V [1LBx~ ° A. 1o ~ 1o ,o • ~Po~x~ V Po~. F~xp]
V "Sopx~ 1A l~ 1 V " 11 • ~Po~xh P~- F~ax~

Eliminate conjuncUons and form clauses (wah type symbols omitted).

(cl) ~Rx 6 V PGx6x' V ~Rx 7 V p7x7x*
(c2) ~ R x ° V P6x6x I V ~ R x r V ~ P r x T F x 7
(c3) ~Rx 6 V p6x6xl V ~Sx 8 V PSxSx 1
(¢4) - R x 6 V P6x6xl V ~Sx 8 V ~pSxSFxS

(e5) ~Rx 6 V ~pGX6FxG V ~Rx 7 V p7xrxl
(c6) ~ R x G V ~P6x6Fx6 V ~Rx 7 V ~PTxVFx7
(c7) ~Rx 6 V ~p6x6Fx6 V ~Sx s V PSxSxl
(c8) - R x 6 V ~p6x6Fx6 V ~Sx s V ~PSxaFxS
(c9) ~Sx 6 V p6x6x1 V ~ S x 7 V prxTxI
(cl0) ~Sx 6 V P6x%l V ~Rx 7 V ~p7x7Fx7
(cl 1) ~Sx 6 V P6x%l V ~Sx 8 V PSxSxl
(c12) ~Sx 6 V P6x6xl V ~Sx s V ~psx8FxS
(c13) ~Sx 6 V ~PSx6Fx 6 V ~Rx 7 V p7xgxl
(c14) ~Sx 6 V ~p6x6Fx6 V ~Rx 7 V ~pTx7Fx7
(c15) ~Sx 6 V ~P6x6Fx6 V ~Sx s V PSxSxl
(c16) ~Sx 6 V ~P~x6Fx ~ V ~Sx s V ~pSxSFx8
(c17) Rx 9 V S x 9 V R x l ° V S x "
(c18) Rx ~ V Sx 9 V Rx 1° V ~PHxl V PnFxll
(c19) Rx 9 V Sx ~ V ~Pl°xl V Pl°Fxl° V Sx H
(c20) Rx ° V Sx 9 V ~Pl°xl V Pl°Fxl° V ~Pnx~ V PHFxn
(C21) ~P~x ' V P~Fx ~ V Rx ~° V Sx ~
(c22) ~Pgx1 V POFx9 V Rx 10 V ~Pnx t V PnFxH

(c23) ~Pgx~ V PgFX9 k/~P~°x~ V P~°Fx~° V Sx '~
(c24) ~p9x~ V p9Fx 9 V ~P~°x~ V P~°Fx~° V ~Pnx~ V PHFxn

FIGURE I

formulation of type theory [10] and says that if F is a function and R and S are
subsets o f the domain of F, then the image under F of the union of R and S is the
union of the images of R and S under F. (We use # F to denote the function which
maps sets to their images under F.) After negating Theorem A, eliminating definitions,
Skolemizing, and deleting universal quantifiers, one obtains (2). (The details of this
reduction may be found in Appendix A.) Roman letters are constants, and italicized
letters are variables. Lines (cl) - (c24) are the clauses o f the conjunctive normal form
of (2). Line (2) contains 20 literals, but there are 104 literal-occurrences in clauses
(cl)-(c24). Thus this simple mathematical statement has been transformed into a
highly redundant form in which the basic logical structure of the theorem is no longer
apparent•

One approach to automatic theorem proving which does not involve clauses is to
seek directly to construct a proof in "natural deduction" format. Well-structured
logical arguments are commonly presented in such a format, and natural deduction
is certainly one of the important frontiers of research in automatic theorem proving.
Of course, the fact that natural deduction provides a congenial format for commu-
nicating proofs does not necessarily mean that it provides the best context for
discovering them. One can envtsion theorem-proving systems which use a variety of

Theorem Proving via General Matings 195

Theorem B'

(B) 3xVytPx -- Py] ~ [3xPx -- VyPy]

Negate, and ehmmate m and D.

(c) 3xVy[(-Px v Py) A (~Py v Px)]
A ([3x Px A 3y ~Py] V [VyVy A Vx ~Px])

Skolemlze:

(D) Vyt(~Pc V Py) A (~Py V Pc)]
A ([Pd A ~Pe] V [VzPz A Vx -Px])

D~splay m two-&mens~onal format:

(D') [Vy[~Pc V Py
L ~PY v Pc]

~ae V [Vx~PxJ

Instantmte ¢ uantdiers

(H) ~Pc V Pd "~] ~Pd V Pc
~Pc V Pe

~Pe V ~Pd

FIGURE 2

methods to discover the essential ingredients of a proof and then construct proofs in
whatever style is most congenial to the reader.

While people generally find it easier to grasp the ideas of a proof when it is
presented in natural deduction style rather than resolution style, both of these proof
methods involve breaking the wff into parts. For purposes of analyzing the logical
structure of a theorem, such methods have the disadvantage that they tend to focus
one's attention, and methods, on isolated parts of a wff and may encourage one to
overlook certain aspects of its global structure.

Thus we are led to consider how one might prove a theorem without breaking it
into parts. One such method is illustrated in Figure 2 with a proof of Theorem B.
(The converse of Theorem B is also valid, and together these theorems justify
distributing quantifiers over ~ in certain circumstances.) We negate Theorem B,
eliminate =- and D, and Skolemize to obtain (D). We often find it convenient to
display wffs (especially if they are complex) in a two-dimensional format, with
disjunctions being displayed horizontally but with conjunctions being displayed
vertically. Line (D') of Figure 2 displays (D) in such a format. Next we instantiate
the quantifiers of (D') to obtain (H). (The reason for this lettering of the wffs will
become clear.) Note that Vy is instantiated with two'terms, so that the subformula of
(D') having the form VyR(y) is replaced by R(d) A R(e). (H) is a contradiction (as
we shall see), so Theorem B is established.

Naturally, we could dualize this approach to get a proof rather than a refutation.
This would involve starting with a tautology and using existential generalization to
derive the theorem.

Obviously, the basic problem is to proceed automatically from (D') to (H) in
Figure 2; one needs methods to decide which instantiations of the quantirlers to make
so that the instantiated wff will be contradictory. This is the same problem that had
to be faced when resolution was invented, and we use the same solution. The purpose

196 PETER B. ANDREWS

of the instantiations is to make certain literal-occurrences complementary, so we use
a unification algorithm to find the substitution terms which will do this. The problem
of deciding which literals should be made complementary remains. As when dealing
with clauses, we can analyze this problem in terms of matings [1] of literal-occur-
rences. However, we now completely avoid the use of conjunctive normal form.

It was shown in [1] that matings are naturally induced by resolution-style refuta-
tions. Actually, it appears that all refutation and proof procedures for first-order logic
tacitly involve the construction of matings, which embody much of the essential
logical structure of the final refutations or proofs. It is our hope that procedures
which focus directly on constructing matings for wffs in their natural form can avoid
some of the redundancies and irrelevancies involved in constructing proofs and
refutations, and that investigation of such procedures will yield new ideas and
avenues for progress.

So much of the literature on automatic theorem proving has concentrated on wffs
in prenex normal form and conjunctive normal form, in spite of the substantial
practical disadvantages of these forms for many nontrivial problems, that a complete
exposition of the logical foundations for dealing with more general classes of wffs of
first-order logic seems to be needed. We here present such an exposition, assuming
only that the reader has had a basic introduction to first-order logic. We also present
an example of a refutation procedure based on matings of arbitrary wffs.

The basic logical ideas underlying this approach to theorem proving go back to
Herbrand [20] (translated in [21]), whose proof of the fundamental theorem contained
errors [15]. The ideas we use are closely related to those of Quine [25] and Prawitz
[24], except that Quine restricts his attention to conjunctions of wffs in prenex normal
form, and in [24] matrices are kept in conjunctive normal form and the scopes of
quantifiers are not minimized.

A concise outline of the procedure we discuss below can be found in [9, Sec. 4],
and related issues are discussed in other papers of Bibel. Another approach to
theorem proving without clauses has been developed by Wilkins [30].

2. Logical Preliminaries

2.1 TERMINOLOGY. In our formal development we shall be concerned with wffs
of a system of first-order logic whose primitive connectives and quantifiers are ~
(not), A (and), V (or), V (for all), and ~ (there ex i s t s . . , such that); D (implication)
and ~ (equivalence) are to be regarded as abbreviations. We could easily extend our
treatment to a system in which D is also primitive, but the details are straightforward
and would merely clutter our exposition. Of course, it may be useful to include D
among the primitive connectives of computerized systems, and this should cause no
difficulty. ~A means that A is valid. When A is quantifier-free, ~A means that A is
tautological.

We write 8A for the result of applying a substitution 8 to an expression A. As an
alternative substitution notation, we may write a wff A as A(xl, . . . , xn) to indicate
that xl xn occur as free variables in A and then use A(ti , in) as a notation
for the result of simultaneously substituting t, for the free occurrences of x, in A for
i T 1 n.

A wff C is in negation normal form (nnf) and is a negation normal formula (nnf) iff
the scope of each occurrence of ~ in C is atomic. A negation normal sentence (nns) is
a sentence (wff without free variables) in nnf. A wff can easily be transformed into
an equivalent nnf by using the laws

- - M ~ M, ~ [M A N] -~ [- M V ~N], - [M V N] ~ [~M A -N] ,
~Vx M -~ 3x ~M, and ~3x M ~- Vx ~M.

Theorem Proving via General Matings 197

In general, the use of normal forms (such as negation, conjunctive, disjunctive, and
prenex normal forms) provides conceptual simplicity which facilitates theoretical
discussions, but it may make particular examples more cumbersome. (Figure 1
illustrated this phenomenon for the case of conjunctive normal form. Another
example is provided by increases in the degrees of Skolem functions which may be
caused by putting a wff into prenex normal form before Skolemizing.) However,
when one puts a wff into nnf, one can obtain a wff with no more literal-occurrences
than the original one, and having the same essential logical structure. Therefore,
without any real loss of generality we may often confine our attention to wffs in nnf.

An occurrence of a quantifier or a well-formed (wf) part of a wff C is positive
(negative) in C iff it is in the scope of an even (odd) number of occurrences of ~. A
wff is universal iff all its universal quantifiers occur positively and all its existential
quantifiers occur negatively in it. It is well known how to introduce Skolem functions
into a wff C so as to obtain a universal w f f D (called the Skolemizedform of C) such
that C has a model if and only if D has a model. (We say that a wff has a model iff
its umversal closure is satisfiable; for wffs with free variables, this is not quite the
same as satisfiability, though the two phrases are sometimes confused in the literature
of theorem proving.)

Given a wff B which we wish to show is valid, we let C be a negation normal form
of -J~ (where J~ is the universal closure of B), and let D be the Skolemized form of
C (as in Figure 2). Then D is a universal nns which has no model if and only if B is
valid. Thus we shall concentrate on the problem of refuting universal negation
normal sentences.

2.2 COMPOUND INSTANCES. We now give a complete proof of a fundamental
theorem (Theorem IA below) which may be regarded as a form of Herbrand 's
Theorem.

We first define a compound instance (c-instance) of a universal nnf D to be the
result o f replacing each wf part of D of the form Vx B(x) by B(tl) A . . . A B(tn),
where n _> 1, and for each i _< n, t, is a closed (variable-free) term; different terms
tl tn may be chosen for different occurrences of quantifiers in D.

To avoid any ambiguities, we define the c-instances of D inductively as follows:

(a) I f D is a literal, D is the only c-instance of D.
(b) I f D is [D1 * D2], where • is V or A, and H, is a c-instance of D~ for i ~ 1, 2, then

[H~ * H2] is a c-instance of D.
(c) I f D is Vx C(x), n _> 1, and for each i(1 _< i _< n), t~ is a closed term and H~ is a c-

instance of C(t,), then [H~ A . . . A H,,] is a c-instance of D.

LEMMA 1. Let G and H be c-instances of a umversal nnf D. Then there is a c-
instance K of D such that ~ K D [G A HI.

The proof is by induction on the number of occurrences of A, V, and V PROOF.
in D.

Case 1.

Case 2.

D is a literal. Then G = D = H, and we let K = D also.

D has the form Dx * D2, where * is A or V. Then G has the form G~ * G2
and H has the form H~ * H2, where G, and H, are c-instances of D, for i = 1, 2. By
the inductive hypothesis, for each t there is a c-instance K, of D~ such that m K, D
[G, A H,]. Let K = K~ * K2. K is a c-instance of D, and ~ K D [G A HI.

Case 3. D has the form Vx C(x). Then G has the form El A . . . A En and H has
the form En+l A • . . A Era, where for each i there is a closed term t~ such that E, is a
c-instance of C(t O. Clearly we can let K be G A H. []

198 PETER B. ANDREWS

A truth assignment is an assignment of truth values (t or f) to atomic wffs. If G is
a quantifier-free wff and ~ is a truth assignment which assigns truth values to all
atomic wf parts of G, we let egG denote the truth value of G with respect to ~; this
is computed in the usual way using the truth tables for the propositional connectives.
We call G a truth-functional contradiction (t-f contradiction) iff ~ G -- f for all such
truth assignments ~. We say that ¢b verifies G iff ~e~G -- t. I f 6eis a set of quantifier-
free wffs and • is a truth assignment which verifies each member of ~, we say that
dp truth-functionally satisfies (t-f satisfies) ~.

LEMMA 2. Let D be a universal nnf. I f no c-instance of D is a t-f contradiction, then
there is a truth assignment which verifies every c-instance of D.

PROOF. This is just an application of the Compactness Theorem for propositional
calculus [16, p. 59], which says that if 6eis a set o f wffs o f propositional calculus and
every finite subset of 6eis satisfiable, then 6Zis satisfiable too. Let 6abe the set of all
c-instances of D, and let {Hi H,~} be a finite subset of ~. Using Lemma 1 we
obtain a c-instance K of D such that ~ K D [H1 A - . . A Hn]. Since K is not a t-f
contradiction, there is a truth assignment g, which verifies K, so xI' t-f satisfies
(H1 Hn}. Thus every finite subset o f S'~is t-f satisfiable, and so is 6aalso. []

THEOREM IA. Let D be a universal nns of first-order logic, D has no model iff D
has a c-instance which is t-f contradictory.

PROOF. It is easy to see by induction on the number of occurrences of A, V, and
V in D that if D is a universal nns and G is any c-instance of D, then ~ D D G. Hence
if G is t-f contradictory, it is false in any model, so D is also, so D has no model.

For the proof in the other direction, suppose D is a universal nns which has no
t-f contradictory c-instance. Then by Lemma 2 there is an assignment • of truth
values to the atoms that occur in c-instances of D which verifies every c-instance
of D.

We next construct a model for D. We let the domain of individuals of our model
be the set of closed terms of our language. (We assume that the language contains at
least one individual constant; apart from this requirement, it need contain no
constants other than the individual, function, and predicate constants which occur in
D.) As in Henkin's completeness proof, we interpret the individual constants and
function symbols so that each term (regarded as an expression of the language)
denotes itself (regarded as an element of the domain of individuals). Also, we
interpret the predicate symbols so that if P is any n-ary predicate and h tn are
individuals, then Pt~ tn is true in the interpretation iff #p(Ptl , . . . , tn) = t. This
specifies an interpretation ~ for our system of first-order logic. For any sentence B
we let ~/'~B be the truth value of B in this interpretation, and we let ~ ~ B mean
that B is true in Jg.

Next we show, by induction on the number of occurrences of A, V, and V in B,
that if B is any universal nns such that ~ verifies every c-instance of B, then . 5 / ~ B.

Case 1. B is a literal. Then B is the only c-instance of B, and ~¢/"B = ~ B by the
interpretation of predicates.

Case 2. B has the form [B1 A B2]. For 1 = 1, 2, let G, be any c-instance of B,.
Then [G1 A G2] is a c-instance of B, so 3¢~[G1 A G2] -~ t, so ~ G , = t. Therefore

~ B~ by inductive hypothesis; so J / / ~ B.

Case 3. B has the form [B~ V B2]. Suppose there are c-instances G~ of B1 and G2
of B2 such that "1/~G1 = f and "¢/~Gz = f. Then ~[G~ V G2] = f, which contradicts our
assumption about B, since [G~ V G2] is a c-instance of B. Therefore for i = 1 or i =
2, • verifies every c-instance of B,, so ~ ~ B~ by inductive hypothesis, so ~ ~ B.

Theorem Proving via General Matings 199

Case 4. B has the form Vx C(x). Let t be any closed term. Every c-instance of
C(t) is a c-instance of B and so is verified by ~, so J~ ~ C(t) by inductive hypothesis.
Therefore ~ ~ Vx C(x), since every individual of J / i s the denotation of some dosed
term.

This completes the inductive argument and establishes that d,¢ ~ D, so D has a
model. []

2.3 AMPLIFICATIONS, MATINGS, AND ACCEPTABILITY. Since we will find terms
with which to instantiate quantifiers by applying a unification algorithm, we now
wish to shift our attention to those aspects of the problem concerning which actual
decisions must be made during the search for a refutation. These decisions concern
how many instantiations of each quantifier should be performed, and which literal-
occurrences should be made complementary.

We say that a wff F is normal iff no variable occurs both free and bound In F, and
distinct quantifier-occurrences of Fhave distinct variables. By appropriate alphabetic
changes of bound variables, any wff E can be transformed (or normalized) into a
normal wff F (called a normal form of E) such that ~ [E ~ F].

Let D be a universal nns. We next define the set of amplifications of D. We say that
a wff R ' is obtained from a wff R by quantifier duplication iff R ' is the result of
replacing some wf part of R of the form Vx M by Vx M A Vx M. If there is a sequence
D1 Dn of wffs (where n _> 1) such that Dt+l is obtained from D, by quantifier
duplication for each i < n, we say that Dn is obtained from D1 by a sequence of
quantifier duplications. Now suppose that E is obtained from D by some sequence of
quantifier duplications, F is a normal form of E, and G is the result of deleting all
quantifiers of F. Then G is called an amplification of D (see Figure 3).

Let G be a quantifier-free wff. We let Lq~(G) be the set of occurrences of literals in
G and LeO(G) 2 be the set of ordered pairs of elements of .le(G). A mating ~ of G is a
binary relation on LqO(G) such that there is a substitution 0 such that OK = -OL
whenever L ~ K (i.e., whenever L and K are mated literal-occurrences). In first-order
logic, whenever such a substitution 0 exists, there is an essentially unique most
general such substitution 0~, which we call the substitution associated with J¢. We
say that ~,¢ is a refutation mating of G iff G is false with respect to every assignment
of truth values to atoms that gives opposite truth values to literals which have mated
literal-occurrences.

In Figure 4 we present a mating of line G of Figure 3, which is displayed in two-
dimensional format, by drawing lines between mated literal-occurrences. That this is
a mating can be verified by comparison with line (H) of Figure 2, where the
substitution associated with this mating has been applied. We shall see that it is a
refutation mating.

Constructing a mating involves two processes: (a) thepairing process, which decides
which pairs of literal-occurrences to mate, and (b) the unification process, which
determines whether there is a substitution which makes mated pairs complementary.
The pairing process will need criteria, which we shall call acceptability criteria, to
decide whether a given mating is a refutation mating. We discuss one acceptability
criterion below, but it is clear that the problem of devising new and better accepta-
bility criteria provides a rich field for future research. It is useful for acceptability
criteria to have the following properties:

(1) When a matmg fails the criteria, they should suggest ways in which the mating
might profitably be altered.

(2) The criteria should be compatible with a step-by-step construction of a mating,
so that information acquired in checking the criteria at one step can be used at
the next step.

200 PETER B. ANDREWS

(D) Vy[(~Pc v vy) A (~Pp v Pc)]
A ([Pd A ~Pe] V [Vz Pz A Vx ~Px])

Duplicate quantifier:

(E) Vy[(~Pc V Py) A (~Py V Pc)]
A Vy[(~Pc V Py) A (~Py V Pc)]
A ([Pd A ~Pc) V [Vz Pz A Vx ~Px])

Normahze.

(F) Vy[(~Pc V Py) A (~Py V Pc)]
A Vw[(~Pc V Pw) A (~Pw V Pc)]
A ([Pd A ~Pe] V [Vz Pz A Vx ~Px])

Delete quanUfiers.

(G) [(-Pc V Py) A (-Py V Pc)]
A [(~Pc V Pw) A (~Pw V Pc)]
A ([Pd A ~Pc) V [ez A ~Px])

FIGURE 3

~Pc,,. V Py \]
/~Py V~Pc\I
~Pc/%Xx,/Pw ~1
~Pw V A PC II
~, Pdq / f XPzy I

L- ej-v L-'dJ
FIGURE 4

(3) The criteria should be compatible with a process in which the construction of a
refutation mating is combined with choosing an appropriate amplification of the
sentence to be refuted.

We next describe an acceptability criterion which is related to disjunctive normal
form, and which is discussed, in slightly different terminology, by Bibel [5] and
Prawitz [24].

Motivated by the two-dimensional representation of nnfs discussed earlier, we
define a verticalpath through a quantifier-free nnf G to be a sequence of members of
~(G) which corresponds to one of the disjuncts (conjunctions of literals) in the
disjunctive normal form of G. Intuitively, one chooses a vertical path through G by
choosing one disjunct (M or N) from each disjunction [M V N] of G and deleting all
parts of G which are not chosen. One vertical path through Figure 4 contains literals
~Pc, ~Py, -Pc, -Pw, Pd, and -Pc, and another contains literals Py, ~Py, Pw, -Pw,
Pz, and -Px.

More formally, we can define the vertical paths through G inductively as follows:

(1) If G is a literal L, then the one-term sequence (L), whose only term is the given
occurrence of L in G, is the only vertical path through G.

(2) If G has the form [G1 V G2], then every vertical path through G1, as well as every
vertical path through G2, is a vertical path through G.

(3) If G has the form [G1 A G2] and P, is any vertical path through G, for i = 1, 2,
then the concatenation PiP2 of these sequences is a vertical path through G.

LEMMA 3. Let G be a quantifier-free nnf, and let @ be a truth assignment to the
atoms of G. Then ~ verifies G iff there is a vertical path through G, all o f whose literals
are verified by ~.

PROOF. This is easdy established by inducuon, considering the cases where G is
a literal or is of the form [Gi V Gz] or [Gi A G2]. []

Let .5/be a mating of a quantifier-free nnf G. We say that Jg is path-acceptable (p-
acceptable) iff every vertical path through G contains a mated pair of hteral-
occurrences.

LEMMA 4. Let G be a quantifier-free nnf and let, tt be a matmg o f G.

(a) I f there ts a substitution 0 such that OG is t-f contradictory, then G has a p-acceptable
mating.

Theorem Proving via General Matings

~Py V ~PxJ ~Pyy V ~Pyx.J

201

FIGURE 5 FIGURE 6

(b) I f ~ is p-acceptable, then ~ is a refutation mating.
(c) l f ~ is a refutation mating, then 0 ~,G is t-f contradictory.

COROLLARY. Let G be a quantifier-free nnf The following are equivalent:

(1) There is a substitution 0 such that OG is t-f contradictory.
(2) G has a p-acceptable mating.
(3) G has a refutation mating.

Notice that Figure 5 shows that the converse of (b) is false, and Figure 6 shows
that the converse of (c) is false.

PROOF OF LEMMA 4

(a) Suppose OG is t-f contradictory. Let ~ = ((L, K) ~ ~(G)~ I OK = ~OL }. Clearly
J / i s a mating of G. To show that ~ is p-acceptable, let P be any vertical path through
G. P corresponds to a vertical path, which we may call OP, through OG. OP must
contain a pair (OL, OK) of complementary literals (which correspond to literals L and
K of G which are on P); otherwise we could assign truth values to atoms of OG so
that all literals on OP would be verified, thus verifying OG (by Lemma 3), which is
contradictory. Since L and K are mated by ~ , we see that J / i s p-acceptable.

(b) Let J / b e p-acceptable. Suppose there is a truth assignment • to the atoms in
G which verifies G and gives opposite values to mated literals. By Lemma 3 there is
a vertical path through G, all of whose literals are verified by 4. But since every
vertical path through G contains a mated pair, this is a contradiction. Therefore no
such assignment • exists, so ~//is a refutation mating.

(c) Follows from the definition of a refutation mating. []

We can now prove two alternative forms of Theorem IA which establish the
completeness and soundness of refutation procedures based on matings.

THEOREM lB. Let D be a universal nns of first-order logic. D has no model iff
some amplification of D has a refutation mating.

PROOF. Suppose some amplification of D has a refutation mating. Indeed, let
E, F, and G be as in the definition of amplification, and let ~ be a refutation mating
for G. Let Vx~ Vxn be the quantifiers of F, in the left-to-right order in which
they occur in F. It is easy to see that ~ D --- E, ~ E --- F, ~ F ~ Vxl • • • VxnG, and

VXl • • • VxnG D On, G, so ~ D ~ O~G. Since O~G is contradictory, ~ ~D, so D has
no model.

Suppose D has no model. Then by Theorem IA, D has a c-instance H which is t-
fcontradictory. It can be seen that there is an amplification G of D and a substitution
9 such that H = OG. By Lemma 4, G has a refutation mating. []

THEOREM IC. Let D be a universal nns of first-order logic. D has no model iff
some amplification of D has a p-acceptable mating.

PROOF. By Theorem IB and the corollary to Lemma 4. []

Figure 4 exhibits a p-acceptable mating of (G) of Figure 3. Thus (D) of Figure 3
has no model, and we see again that Theorem B is valid.

\

202 PETER B. ANDREWS

3. A Refutation Procedure

We now provide a general outline of a refutation procedure based on p-acceptability.
For the sake of generality and expository simplicity, the basic procedure described
here is rather naive, although we offer a few suggestions about ways in which it
could be made more sophisticated in an actual implementation. Our main purpose
here is to provide a framework for discussion of ideas and a starting point for future
research.

In particular, we speak as though unifying substitutions are always to be directly
computed and applied to the appropriate wffs. In an actual implementation one
should consider more sophisticated ways of handling substitutions, as discussed in
Ill], [27], and [28]. In constructing a mating, both the pairing process and the
unification process involve computational effort, and each generates information
which can be useful to the other. If the unification process determines that there is no
substitution which unifies the atoms of a pair of literals and is compatible with the
mating as constructed so far, then the pairing process need not consider adding that
pair of literals to the mating. On the other hand, if the pairing process decides directly
that it would not be useful to add a given pair of literals to the mating, then the
unification algorithm need not consider whether an appropriate substitution exists.
Thus it may often be desirable for these processes to work in parallel and to interact
with each other, with the balance of effort being determined by the relative efficiencies
of the algorithms and the complexities of their tasks. This seems essential when one
deals with wffs of higher order logic, where unifying substitutions may not be unique
and the unification algorithm may not terminate. However, we regard these matters
as implementation details beyond the scope of the present discussion.

When pairing and unification are done in parallel, the pairing process may work
with a set of pairs of literal-occurrences which is not known to be a mating, since it
is not yet known whether an associated substitution exists. Such a set of pairs is
called apotenttal mating. Sometimes, speaking loosely, we refer to a potential mating
as a mating.

Choices must be made at various points in the procedure described below, and
appropriate heuristics must be used to make these choices. Although the success of
a working program will depend crucially on these heuristics, we say little about them
here, since more experience with various heuristics is needed.

The fundamental data structures involved in the refutation procedure are the
following:

(l) The wff B to be proved,
(2) A universal nns D which is produced from B by step 1 below and thereafter

remains fixed. D is called the initial wffof the refutation process.
(3) A universal nns F obtained from D by quantifier duplications and alphabetic

changes of bound variables. F changes as the procedure progresses. The quanti-
tiers of F simply serve as markers to facilitate additional quantifier duplications
and will be ignored much of the time. Thus we regard F as an amplification of
D. In an obvious sense, each literal-occurrence of F. corresponds to a literal-
occurrence of D.

(4) A mating ~ of F, and the associated substitution 0.a.
(5) A connection graph ~¢(D) of D.
(6) A connection graph ~ , (F) of F relative to J#.

The connection graphs are defined as follows. Let F be an nnf, and let M and N
be in L&O(F). M and N are potential mates with respect to a mating ~ of F iff

Theorem Proving via General Matings 203

,I 5

6,

7

(Given a wff B to prove)

Preprocess. Create D
Create the connection graph ~(D)
Let F be D

Let .A/= ~. Create the connection graph rg't~(F), I
I

p aco0p,ab,o I-- ALT proved)

Choose a path P through F with no mated pare I

4,
Does P contain
potential mates9

lees
Mate a pa~r of
hterals on P
Update .//and
~,,(F)

no 9 Save useful information
about act'.
Have all matmgs of F
been explored9

l) c ~ ~¢no

(Backtrack')

I !0 Duplicate some quantifier,
enlarging F.

FIG 7. The refutation procedure

some vertical pa th contains both M and N and there is a subst i tut ion o such that
o(O~N) = ~o(O~M). We define

~,~(F) = {(M, N) ~ .g'(F)21M and N are potential mates with respect to ~) .

This is a binary relation, which can be represented as a graph, as in [23]. We define
rg(D) to be the connection graph of D with respect to the empty mating.

TriE REFUTATION PROCEDURE. The refutation procedure is summarized in Figure
7. We are given a wff B which we wish to show is valid. Let C be a negation normal
form of ~B, where B is the universal closure of B.

Step 1. Preprocessing

(la) Simplify and normal ize C, so as to obta in a nns C1 which is p rovab ly
equivalent to C, while minimizing the n u m b e r of l i teral-occurrences in C1 and also
minimiz ing the degrees o f the Skolem functions to be in t roduced in step 1 b. Choose
between al ternat ive simplified forms.

Thus a w f par t o f C of the fo rm

VwVx 3y 3z [Pwy A Qxz]

204 PETER B. ANDREWS

should be replaced by

Vw Yx [3y Pwy A 3z Qxz].

However, it serves no purpose to replace Vw3y3z[Pwy A Qyz] by Yw3y[Pwy A
3zQvz], since in each case the Skolemized form is Vw[Pw(fw) A Q(fw)(gw)].

(lb) Skolemize to eliminate existential quantifiers. To do this, proceeding se-
quentially from left to right, replace each wf part 3yM(x~ xn,y) of C~ by
M(xl , xn , f g l ' ' ' Xn), where xl xn are the free variables of 3yM, and f is a
new n-ary function constant. (If n = 0, f is a new individual constant.)

(lc) Push in universal quantifiers so as to obtain a provably equivalent nns in
which the scopes of universal quantifiers are as small as possible. For example,
replace Vx Vy [Pxy V Qy] by Vy [Vx Pxy V Qy]. Thus, if C contains a wf part of the
form Vx3y[Pxy A Qxy], this is replaced by Vx[Px(fx) A Qx (fx)] in step lb, and by
VxPx(fx) A VzQz(fz) in step lc.

(ld) Let the sentence obtained by step 1 be called D.

Further discussion of preprocessing can be found in | 14].

Step 2. Create the connection graph ~(D).

In an actual implementation of this procedure, it might be useful not to create
~(D) all at once, but to compute and store parts of it as the information is needed.
The important point is to avoid the necessity of computing this information more
than once. A similar comment applies to ~ , (F) below.

Step 3. Let F be D.

Step 4. Let .5/be the empty mating of F. Create ~ (F) , using C~(D).

Step 5. Test J#. Is J//p-acceptable? If so, the refutation is complete. Otherwise,
continue to step 6.

We remark that since the number of vertical paths in a wff can be quite large,
considerable attention should be paid to the efficiency with which this test is carried
out. Of course, one need not examine the vertical paths separately and completely.
As soon as one has found a pair of mated literals on a subpath of a vertical path, one
can exclude from further consideration all extensions of that subpath. Also, since .Ag
is tested and constructed in stages, information about which vertical paths contain
mated pairs can be saved from one stage to the next. At each stage, all one really
does is search for one new vertical path which does not contain any mated pair,
starting where one left off at the last stage.

Various methods from propositional calculus can be used to simplify F temporarily
as the construction of .5/progresses, and we digress briefly to discuss two of these.
Let M be the wff

(ILl A P~] V " . . V [Ln A Phi) A ([L~ A . . . A L~ A Q] V R),

where n _> 1, the L, and L~ are literals, and the P,, Q, and R are arbitrary wffs; in
particular, they may be the empty conjunction A (which is true) or the empty
disjunction E3 (which is false). Let N be the wff ([L1 A Psi X/ . . - V [L,~ A Pn]) A R.
Suppose F contains an occurrence of M, and F* is obtained from F by replacing that
occurrence of M by an occurrence of N. (See Figure 8. Note that ifL~ = ~L, for each
t, then ~ F m F*. Also note what the reduction from F to F* looks like when n = 1
or R is IS].) Let J / b e a mating of F such that for each i <_ n, L,/#L; or L ~ L , . There

Theorem Proving via General Matings

F contams F* contains

L :I
R

205

FIGURE 8

is a natural correspondence between ~¢(0~,F*) and a subset of..W(F). Let ~ '* be the
mating of O~F* induced by ~ under this correspondence. It is easy to see that there
is a p-acceptable mating of F which is an extension (superset) o f .S / i f and only if
there is a p-acceptable mating of On, F* which is an extension of J[*. Thus we may
reduce F and ./g to ~ ,F* and ~¢/* in our search for a p-acceptable mating (though F
and ~ may have to be restored later if no p-acceptable extension of.///* is found).

Of course, we shall feel free to use elementary laws of conjunction and disjunction,
such as commutativity, associativity, the idempotent laws, M V [] -= M, M A []
D, and M A A ~ M. Using these laws and reductions of the sort just discussed, we
can often drastically simplify F, or even reduce it to [], which has a p-acceptable
mating since it has no vertical paths. This is illustrated in Figures 9 and 10, where we
assume complementary literals are mated. In both figures, (a') is obtained from (a)
by elementary laws, (b) is obtained from (a') by a reduction, etc. The dotted lines
surround the parts of the wff involved in the reduction steps. Figure 9 represents the
mating for Theorem B in Figure 4.

Another reduction of the same general type, which was introduced by Prawitz [24]
for reducing matrices in conjunctive normal form, is to replace (L V Q) A (L' V R)
by [L A R] V [L' A Q], where L and L' are mated literals. See Figure 11.

Both of these reductions reduce the number of vertical paths in the nnf, and
together they can be used to establish that many nnfs of propositional calculus are
contradictory. Note, however, that neither reduction is applicable to the contradictory
nnfin Figure 12.

Step 6. Choose a vertical path P through F with no mated pair.

Presumably at least one such path can be found in step 5. However, it may be
worthwhile to choose this path carefully. For example, with the aid of the connection
graph ~ (F) one can seek such a path with a minimum number of pairs of potential
mates.

Step 7. Is there at least one pmr of potential mates on P? If so, go to step 8. If not,
go to step 9. It may be a useful heuristic to give P high priority for consideration by
step 6 at later stages of the procedure.

Step 8. Choose a pair (M, N) of potential mates on P, and replace ./t/by Jr /U
{(M, N)}. (We call this process mating M and N.) Adjust ~ and c~(F) appropriately.
Return to step 5.

We remark that in steps 5-8 we simply check whether ~ is acceptable and change
it if it is not. The particular way we change it is guided by our criterion of
acceptability. We add a pair of literals to ~ because it makes Jg closer to being
acceptable.

206 PETER B. ANDREWS

I ~ r V
~S V

v v

I [41 ~u V

(a)

I[~L [Z~] 1 -~ r'~

/ ~ ' v ~/
/ ~ ~ v " /
L u v wj

(a')

v V w

(b)

[-PZ q]

/~ ' v " /
L v V W d

(b')

I
v q -i

?_,_v__~_
L V V ~

(c)

L v V

(d)

~e..v q l
", u / '

v V W

(d ')

L u V
(e)

[]

(e')

FIGURE 9

(a)

tl - . v Iwl;4
I: ~vJII

~Tw '

(b')

Fi!]
: e v "i

[--v I:lj
(a')

[1 ~ u v v

[] []

(b)

(c) (c')

FIGURE 10

Of course, if an inappropriate choice is made at step 8, the system will eventually
have to backtrack. To alleviate this problem, more sophisticated methods of deciding
how to alter ~ than those implicit in steps 6-8 may be needed. We briefly mention
one such method, which was suggested by Eve Cohen.

Let us say that we f ix a vertical path P by mating a pair of literal-occurrences on
P. While there may be many ways of fixing a given path, some of these may not be
compatible with any way of fixing another path (because the associated substitutions
are not compatible) and so should not be used. By considering all possible ways of
simultaneously fixing all paths in a set of vertical paths, starting with a unit set and
progressively enlarging it, one can eliminate many inappropriate ways of fixing paths.

Theorem Proving via General Matings

F contains F* contains

[LvQ]

FIGURE 11

207

~r V V q

FIGURE 12

If, within the computational resources allocated, one can eliminate all but one way
of simultaneously fixing all paths in the set, one can fix all those paths simultaneously
without fear of error.

We can also apply to steps 8 and 6 a heuristic which is analogous to the set-of-
support strategy [31] for resolution. Not all literal-occurrences need have mates in a
p-acceptable mating (particularly if inappropriate quantifier duplications have oc-
curred), but it is sometimes clear from the statement of a theorem that certain literal-
occurrences must have mates, or that most literal-occurrences in a certain set must
have mates. In such cases, high priority should be given to mating such literal-
occurrences.

Step 9. Have all matings of F been explored? If so, go to step 10. If not, backtrack
and try another mating. In either case, record information about the current mating
which may eventually be useful in choosing a quantifier to duplicate or in recon-
structing this mating after a quantifier has been duplicated.

Step 10. Choose a quantifier of F, duplicate it, normalize the resulting wff, and call
it F. Go to step 4.

The choice of a quantifier to duplicate should be made as intelligently as possible,
since every quantifier duplication enlarges the wff with which the mating program
must deal. Nevertheless, an inappropriate quantifier duplication does not prevent an
acceptable mating from eventually being found, so we never backtrack past this
point. Of course, the heuristic used to choose quantifiers to duplicate should be
designed so that the procedure will be complete.

Sometimes it may be desirable to go from step 9 to step 10 even if further matings
of F remain to be explored, or to go from step 10 directly to step 7 and continue work
on the current mating in the enlarged wff. Of course, such acts may complicate
backtracking and necessitate special measures to ensure the completeness of the
procedure.

4. Quantifier Duphcatton

Since the complexity of the search for an acceptable mating grows drastically as the
number of literal-occurrences in the wff F increases, it is worthwhile to devote
considerable effort to keeping this number small. Thus we make the scopes of
universal quantifiers as small as possible so that duplications of these quantifiers will
not create more new literal-occurrences than necessary.

I f the refutation procedure is to be complete, one must duplicate quantifiers in a
systematic way as the search progresses. One would really like a way to know just
how many times each quantifier needs to be duplicated, but such knowledge could
be used to construct a decision procedure for first-order logic and is therefore not

208 PETER B. ANDREWS

attainable in general. Nevertheless, some procedures for duplicating quantifiers are
better than others.

To ensure completeness of the refutation procedure, one could proceed by stages
and at each stage duplicate each quantifier in the current wff (working from right to
left through the wff). However, if a literal-occurrence is in the scope of n universal
quantifiers, this would produce 2 n copies of it at the next stage, which might be
excessive. A scheme which would produce just one additional copy of each literal-
occurrence (which is in the scope of some quantifier) is to duplicate only those
quantifiers (called outermost quantifiers) which are not in the scopes of other
quantifiers. The question naturally arises whether such a procedure is complete.
We shall show that it is, but first we need some more information about instances
of a wff.

We define a simple instance of a universal nnf D to be the result of replacing each
wf part of D of the form Vx B(x) by B(t) for some closed term t. (Thus simple
instances are c-instances where n (in the definition of c-instances) is always 1.)

LEMMA 5. Let D be a universal nns, and let H be any c-instance of D. Then H is
equivalent to some conjunction of simple instances of D.

PROOF. By induction on the number of occurrences of A, V, and V in D.

Case 1. D is a literal. Then H is D, and a simple instance of D.

Case 2. D is [D1 * D2], where * is A or V, and H is [H1 * H2], where H~ is a c-
instance of D, for i -- 1, 2. By inductive hypothesis, ~ H1 -= A~ll Jj and ~ H2 ---
A~s~ Kk, where each ~ is a simple instance of D1 and each Kk is a simple instance of
D2. It can be seen that A ~ i A gel [~ * gk] is a conjunction of simple instances of D
which is equivalent to H.

Case 3. D is Vx C(x). Then H is A~,~H,, where H, is a c-instance of C(t,) and t,
is a closed term for 1 ~ i .~ n. By the inductive hypothesis, ~ H, ~ A ~ J~j, where J,v
is some simple instance of C(t,) for each ~ and/ . Thus A,%~ A~V~ J,~ is a conjunction
of simple instances of D which is equivalent to H. []

TSEOREM 2. Let D be a umversal nns of first-order logic. D has no model iff there
is a refutation mating for some amplification G o l d such that informing G from D only
outermost quantifiers are duplicated.

PROOF. Suppose D has no model. Then by Theorem I A, D has a c-instance H
which is t-f contradictory. Let us designate as molecules of D those wf parts of D
which are in the scope of no quantifier or negation of D and properly contain no
other such wf parts. (For example, if D is YxPx V [Yy[Qy V Pa] A ~Pb], the
molecules of D are ¥x Px, Vy [Qy V Pa], and ~Pb.) Let Mi Mk, where k _> 1, be
the occurrences of molecules of D. D can be built up from the M~ using A and V,
so there is a wff B(p~ PD of propositional calculus, containing only the connect-
ives A and V and only the propositional variables pl pk, such that D is
B(Mi , MD. Thus H Is B(H~ HD, where H, is a c-instance of M~ for each i.
By Lemma 5 each H, is equivalent to A~'-i g~j, where K,j is some simple instance of
M~ for each j _< n, and each i _< k. Hence B(A~L~ K~ A ~ Kkj), which we call J,
is contradictory. Let E be obtained from D by duplicating the outermost quantifier
of M, enough times to create n, copies of M~ for each i <_ k. Let G be obtained from
E by normalizing and deleting quantifiers. It can be seen that there is a subsutution
0 such that J -- OG. By Lemma 4, G has a refutation mating.

The proof in the other direction follows by Theorem lB. []

Theorem Proving via General Matings 209

Whale the procedure outlined above is complete, it is rather primitive, since no
information obtained in the search for an acceptable mating is used to choose the
quantifier to duplicate. The following very simple example illustrates a possible
disadvantage of duplicating only outermost quantifiers. Suppose the wff contains the
molecule Vx (Px V Vy Qxy) and to obtain an acceptable mating this molecule must
be expanded to Vx (Px V [Vy Qxy A Vz Qxz]). Duplicating the outermost quantifier
will instead yield

Vx (Px V Vy Qxy) A Vw(Pw V Vz Qwz).

This will also permit an acceptable mating to be found (since Px and Pw can be
given the same mates), but the search for the mating will be more complicated in this
case.

One would like to develop a set of heuristics for duplicating quantifiers. An
example of such a heuristic for first-order logic is the following: Suppose L is a
literal-occurrence and P~ P, are vertical paths such that for each i <_ n, L occurs
in every pair of potential mates which fix P,, but no mating simultaneously fixes
P1 and Pn. Then duplicate some quantifier with L in its scope.

5. Implementation

A computer program based on these ideas has been constructed by Eve Cohen, with
assistance from Harry Porta and Dale Miller. The program handles sentences of type
theory as well as those of first-order logic, and uses Huet's unification algorithm [22]
for type theory. Of course, it is not logically complete for type theory.

Experimentation with and development of the program are continuing, but the
program has already been able to prove a number of theorems, such as Theorem A,
which seemed quite intractable (within reasonable restrictions on time and memory)
for an earlier program [2] (based on [1]) which reduced wffs to clauses. Appendix B
gives a sampling of theorems proved by the program.

It has been found that if the theorem to be proved contains m as an abbreviation,
the way this abbreviation is eliminated can significantly affect the time required
to prove the theorem. Every wf part of the form [M ~ N] may be replaced by
[(~M V N) A (M V ~N)] or by ([M A N] V [~M A ~N]). As can be seen from
Figure 13, which choice is made can affect the number of vertical paths in the wff.
(Note that if M is a complex formula which initially contains quantifiers, a naive
system may spend considerable time fixing all vertical paths which go through both
M and -M.) One can minimize the number of vertical paths by treating each
occurrence of m appropriately. (Positive and negative occurrences should be handled
differently.) We illustrate this (in a rather naive way, since the example is really too
simple) in Figure 14, where we find an amplification for Theorem B slightly different
from that obtained in Figures 2-4. Figure 4 has 32 vertical paths, but G in Figure 14
has only 8.

Let Theorem C be 3x Vy [Px =- Py] -= [3x Px ~ Vy Py]. Treating ~- naively
(uniformly), the computer produced a complete automatic proof of Theorem C in 37
seconds. With the same heuristics but with ~ handled so as to minimize the number
of vertical paths, the computer required only 21 seconds to prove the theorem.

Similar considerations govern the production of clauses. Let Theorem D be

(ax Vy [Px m py] ~ [3x Qx ~- Vy Py])
m (3x Vy [Qx ~ Qy] -= [3x Px ~ vy Qy])

(which is indeed valid). If one eliminates ~ from the negation of Theorem D naively,

210

[-SvV_;]
FIG, 13.

[;]v[:;]
Two ways of treating [M -ffi N]

PETER B. ANDREWS

Theorem B.

(B) 3x Vy [Px m Py] D [3x ex -i Vy Py]

Negate, and eliminate ~ and D"

(C) 3x Vy ([Px A Py] V [~Px A ~Py])
A [3x Px A 3y ~Py] V [Vy Py A Vx ~Px])

Skolemize.

(D) Vy ([Pc A Py] V [~Pc A ~Py])
A ([Pd A ~Pc] V [Vz Pz A Vx ~Px])

Duplicate quantifier and normahze.

(F) Vy ([Pc A Py] V [~Pc A ~Py])
A Vw ([Pc A Pw] V [~Pc A ~Pw])
A ([Pd A ~Pc] V [Vz Pz A Vx ~Px])

Delete quanUfiers:

(G)

r[F;] v r ~ °iL
l[;:]vr-P:l L ~pwj [[_Sd] v[_;:]

FIGURE 14

one gets 2704 clauses; if one does it so as to minimize the number of clauses, one gets
128 clauses; if one does it so as to minimize the number of vertical paths (and thereby
maximize the number of clauses), one gets 16,384 clauses! Of course, in propositional
calculus the extra clauses would all be tautologies, but this is not the case for first-
order logic.

Experience with the program has revealed certain problems which must be dealt
with to obtain an efficient implementation, which we mention briefly.

A mating can be built up in a multitude of ways, differing in the orders in which
pairs of literal-occurrences are put in. It is nnportant to have a redundancy check, so
that a mating is not constructed if it, or a subset of it, has previously been rejected.

Symmetries in the wff under consideration also produce redundant matings.
Symmetries may occur in the original statement of the theorem, and they are created
whenever quantifiers are duplicated. Symmetries [29] can be regarded as automorph-
isms of ~ (F) under which the wff F is carried into an alphabetic variant of itself. For
example, suppose a wf part VxA(x) has been duplicated to form VxA(x) A VyA(y).
Let ¢:£q~(F) ~ Aa(F) be defined so that eL = the copy of L in A(y) (respectively,
A(x)) if L is in A(x) (respectively, A(y)), and eL = L if L is not in A(x) or A(y).
Given any such symmetry ~- and a mating J / , there is a mating

~.,//= ((~-L, I-K) I (L, K) ~ J¢}

which is symmetrical to JL Clearly 'rJg is acceptable iff Jg is. Thus a mating should
be rejected if a mating symmetrical to it, or a subset of it, has already been rejected.

Updating the connection graph as the mating is constructed is very beneficial in
limiting the search. However, to facilitate backtracking, one must keep track of the
connection graph for each step of the mating process to which one might backtrack,
and this might cause storage problems. One way to keep track of the information can
be roughly described as follows. The original connection graph can be represented as
a list of pairs, which can be rearranged at will. Suppose the current mating has been

Theorem Proving via General Matings 211

constructed in n stages, with a pair having been added at each stage, and let Oi be the
substitution associated with the mating at the / th stage, for i = 1 n. Let S~ be a
list of the pairs which have been found to be incompatible with O, (i.e., pairs (M, N)
such that O,N and ~O,M are not unifiable), but not with 0j for a n y j < i, and let T b e
a list of the pairs in the connection graph which are not in IJ,~a S,. Store the
connection graph in the order T, S,, Sn-~ $2, S~, with markers to separate the
sublists. Then when one backtracks from stage n to stage n - 1, one simply removes
the marker between T and S,. Of course, one need not update the entire connection
graph at each stage; one can simply keep pairs in Tunti l one has occasion to examine
them.

Good ways of handling wffs containing = must still be devised. I f the system is not
restricted to first-order logic, one can define [.4 = B] as Vp [~pA V pB], where p is
a predicate variable. Literals whose atoms start with predicate variables can be mated
with arbitrary literals, so the large number of potential mates for literals such as -pA
and pB produces an enormous number of matings which must be explored when
seeking a proof of a theorem in which = occurs frequently. However, once one
chooses a substitution for p which mates ~pA with some literal, the possible mates
for pB become quite limited. Therefore, mates for ~pA and pB should be chosen
simultaneously. This heuristic for handling = has proved quite helpful, though
additional heuristics are needed.

Appendix A

Here we show how Theorem A is processed. Theorem A is

[#FEB" RoB U SoB] ~ • [#F~BR~B] U • #F, BSo a

NEGATE:

(1) [- . [[#F.B] • RoB U SM --- • [[# F M RoB] U • [#F,M SM

~, or equality between sets, is defined as [~Po, Qo~ Vx, [Po~x,~ ~ Qo,~X,~]].
INSTANTIATE -~, and eliminate the propositional connective ~- in a way which
will minimize the number of clauses to be produced:

(2) 3x~ . I-It#Fan] • RoB U SoB] x~ V -[[[#F,M RoB] U • [#F.B] SoB] x,~]
A [[[#F,B] • RoB O Son] x~ V [[[#F,fl] RoB] O • [#F,B] Son] x~]

U is defined as [XPo~Qo~)~x~ [Po,x~ V Qo~x,]].
INSTANTIATE U:

2 1 (3) 3xX~.[-U#F~I .~x~.RoBx~ V .So~xa]xo
V • -[[#F~B] RoB] x~ m -[[#F.B] SoB] xl~]

4 1 A • [#F~B][~x ~ • Roax~ V • SoBxa] x,~
V . [[#FM Roal x~ V I[#FM SoB] x~

is defined as [XF,,aXDoaXy,. 3xa[Doax B A .y, = F,~xflll.
INSTANTIATE #:

(4) 3x~ .[[Vx~ .[~ROBx~ A ~Soaxg] V . - . x ~ = .V,~#x~]
v . [Vx~. -RoBx~ v - . x ~ = • Fopx ~]
A . Vx~. ~SoBx~ V ~.xl~ = • F,Bx~]
A .[3xaB. [RO~x~ V SoBxa,] A .x~ = • F,~x~]

1 "F,ax t °] V • [3x~ °. Ro~x~ ° A .x~ =
1 . F,~B x ~1 V . 3 x ~ ~ .SoBx~ ~ A . x~ =

= is defined as [Xx.)~y,. VP~ [~Po,x~ V Po~y~]].

212

INSTANTIATE =:

(5) 3x~.[[Vx~.I~Ropx~ A • ~.Sopx~]
v . :~ro5 . r L x ~ A ° ~Po,~ . F~axa]
V" [Vx~. ~Roax~ V " 3 P ~ "Poc~Xa7 1 A ~Po~r . F,~/~x~]
A .Vx~ .~Sol3X~ V .3po8 .eooe3Ca8 1 A- -eoa8 .F~ax~]
A [:Ix~ lRopx~ V So~x~] A .VPgo, o 1 9 9 Po~x,~ V • Poe. F,,Bxt~]
v . [3 x ~ ° RoBx~°A u . . , 0 -~0 ~ . - ~ 0 ~ ,o. • • V / ' o ~ • ~1"%,~X,~ V Fo~ • l~aBX B]
V "3X~ 1 .SoBx~ 1 A ~ - - H ~ l l 1 I I • v r ~ . - r o ~ x ~ V Po~ . F~px~ ~

S K O L E M I Z E :

(6) [Wx~ .[~Ropx~ A ~So~x~]
r~6 6 1 6 6 6 V • r~x~x,~ A ~ . Po~Xfl. F~x~]

~ 7 7 1 A 7 7 7 V [Vx~ ~Ro~x~ V .ro~X~X,, • • ~ P o ~ X ~ • F ~ x ~]
"r'.8 8 1 8 8 A .Vx~ .~Soax~ V .ro,aXaX~ A ~Vo~aX a .F,,ax~l

A . [[Ro~x~ V So~x~] A • VPo~,, • - e o ~ x ~ V Po°~ • F,~ax~]
v .[Roax~ ° A . V P L ° . ~ , o ~ lO ~ro,~X~ V Po~. F~ax~°]
V ° So~Xfl 1 A - V p o I ~ 1.° ~Vol~lx~ 1

Deleting the quantifiers yields (2) of Figure 1.

P E T E R B. A N D R E W S

Appendix B

Here we list some theorems of first-order and higher order logic which have been
proven in automatic mode by the program mentioned in Section 5 using the naive
scheme of duplicating outermost quantifiers which was discussed in Section 4. No
heuristic for dealing with symmetries was used. The times given for the proofs are
not of great significance, since the theorems were proven with various heuristics at
various stages in the refinement of the program.
Some of the definitions which appear in these theorems were explained in Appendix
A. Explanations of the others are as follows:

COMMUTATIVE is defmed as [)~H~ • VX B V YB" [[Ha~pXp] YB] = • [H~BBYB]XP]-
o (composition of functions) is defined as [AF~phGavXXv. F~p. GpyXv].
#(the powerset operation) is defined as [hPo~hQo~. Qo~ c_ Po~].
c is defined as [APo~hQo~. V X , . [- . Po~X~] V • Qo,X~].
N is defined as [APo~XQo~hX~. [Po~X~] A • Qo~X~].

Theorems Proved by the System

THM5 (Cantor's Theorem for Sets. The power set of a set has more members than
the set.)

~3Go,,VFo,3J, .[Go,J,] -- Fo, (11 seconds)

THM24 (The computer must find a noncommutative operator.)

~[U, = V,] D 3G,,(,,)(,,). ~COMMUTATIVE G,,(,,)(,,) (11 seconds)

THM25 (This is Quine's modification of Russell's paradox; let Rxy mean x ~ y.)

~3Y, VX, .[Ro,,X,Y,] ~- ~3Z,.[Ro,X,Z,] A [Ro, Z,X,] (10 seconds)

THM29

[#F~#.#G#vSo d --- .#[F~a o GpdSo v (26 seconds)

Theorem Proving via General Matings

THM34 (Theorem A)

[#F~B. RoB U Sos] ~ • [# F , BRoB] t_J • #F~BSo B (243 seconds)

213

THM36

[Ro, = So,] D • Ro, C So, (5 seconds)

THM44 (Useful in eliminating a quantifier on a second-order variable)

3So, VX, [[[So,X,] V • Po,X,] A • I-So,X,] V - Qo,X,]
~- v Y,. [Po, Y,] V • Qo, Y, (12 seconds)

THM45

[[Po,,D,E,] A VX, VY,[[Po,,X,Y,] D .[Po,,Y,X,] A .Qo,X,Y,] A VU,VV,
[[Qo, U,V,] ~ .Qo,,U,U,]] ~ .[Qo,,O,O,] A .Qo,,E,E, (21 seconds)

THM46A

[~ [Do, n Eo,]] m • [#Do,] n • ~Eo, (23 seconds)

THM53 (Distributes a quantifier over an equivalence)

VX,[[Po,X,] ~- 3Y, .Po, Y,] ~ .VX,[Po, X,] ~. 3Y,.Po, Y, (23 seconds)

THM55 (Theorem C) (Distributes quantifiers over an equivalence)

3x, vY,[[Po, X,] -= .Po, Y,] -= .3x,[Po, X,] -= .vY, .Po, Y,

THM56

vx,[[eo, X,] -= vY, .Po, Y,] =- .3x,[eo, x,] -= vY, .Po, Y,

THM58

[[Xo~ n Yoo] u zo~] =- • [Xo~ u Zoo] n • Yo~ u zo~

(21 seconds)

(16 seconds)

(9 seconds)

ACKNOWLEDGMENTS. I would like to thank Eve Cohen for her many vital contri-
butions to this research project. I would also like to thank Wolfgang Bibel and J6rg
Siekmann for helpful comments.

REFERENCES

(Note. References [3, 4, 6-8, 12, 17-19] are not cited m the text)
! ANDREWS, P B. Refutations by matmgs IEEE Trans. Comput. C-25 (1976), 801-807.
2 ANDREWS, P.B., AND COHEN, E L Theorem provmg m type theory. 5th Int. Joint Conf on Artificial

Imelhgence, Cambridge, Mass., Aug 1977, p 566
3. BmVL, W An approach to a systemaUc theorem proving procedure m first-order logic. Comput 12

(1974), 43-55.
4. BmEL, W. A syntactic connecUon between proof procedures and refutation procedures. In Lecture

Notes tn Computer Sctence 48, H Tzschach, H Waldschmldt, and H K -G. Walter, Eds., Springer-
Verlag, New York, Berhn, Heidelberg, 1978, pp. 215-224

5 BIBEL, W. Tautology testing with a generahzed matnx reduction method. Theor. Comput. Sct 8
(1979), 31-44

6 BmEL, W On matrices with connections J ACM (to appear)
7. BmEL, W A comparatwe study of several proof procedures. In Proc. AISB-80 Conference, S Hardy,

Ed, Umv. of Sussex, Sussex, England, 1980, pp 11-18.
8 BIBEL, W A theoretical basis for the systematic proof method Proc 9th Symposium on Mathemattcal

Foundations of Computer Science, Lecture Notes m Computer Science 88, P Dembmskl, Ed, Sprmger-
Verlag, Berhn, Heidelberg, New York, 1980, pp 154-167

9. BIBEL, W., AND SCHREIBER, J Proof search m a Gentzen-like system of first order logtc. Proc. Int.

214 PETER B. ANDREWS

Computing Symp. 1975, E. Gelenbe and D. Pouer, Eds., North-Holland, Amsterdam, 1975, pp 205-
212.

10. CHURCH, A. A formulation of the simple theory of types. J. Symbolic Logic 5 (1940), 56-68
11. Cox, P.T Locating the source of unification failure. Proc. 2nd Nat. Conf. of the Canadian Society

for Computational Studies of Intelligence, Toronto, Ontario, Canada, July 1978, pp. 20-29.
12. DAVXS, M. Eliminating the irrelevant from mechanical proofs. In Experimental Arithmetw, High

Speed Computing and Mathematics, Proc. Syrup. in Applied Mathematics XV, American Mathematical
Society, Providence, R.I., 1963, pp. 15-30.

13. DAVIS, M., AND PUTNAM, H. A computing procedure for quamification theory J ACM 7, 3 (July
1960), 201-215.

14. DE CHAMPEAUX, D. Sub-problem fmder and instance checker--two cooperating processors for
theorem provers. Proc. 4th Workshop on Automated Deduction, Austm, Texas, Feb. 1979, pp. 110-
114

15. DREBEN, B, ANDREWS, P., AND AANDERAA, S. False lemmas in Herbrand. Bull. Amer. Math. Soc.
69 (1963), 699-706.

16. ENDERTON, H.B. A Mathematwal Introductwn to Logic. Academic Press, New York, 1972, 295 pp
17. GILMORE, P.C. A proof method for quantification theory: Its jusufication and realmation IBM £

Res. Dev. 4 (1960), 28-35
18. HAILPERIN, T. A form of Herbrand's theorem. Z. Math Logik GrundL Math. I5 (1969), 107-120.
19. HENSCHEN, L J Theorem proving by covering expressions. £ ,4 CM 26, 3 (July 1979), 385-400.
20. HERBRAND, J. Recherches surla th6one de la d6monstratton. Travaux de la Soctdtd des Sciences et

des Lettres de Varsovie, Classe I I I Sciences Mathematiques et Physiques 33 (1930)
21. HERBRAND, J Logwal Writings Harvard University Press, Cambridge, Mass., 1972.
22. HUET, G.P. A unificauon algorithm for typed A-calculus. Theor. Comput. Sci 1 (1975), 27-57
23. KOWALSKI, R A proof procedure using connection graphs. £ ACM 22, 4 (Oct. 1975), 572-595.
24 PRAWITZ, D A proof procedure with matrix reducuon In Lecture Notes m Mathematics 12~, M

Laudet, D. Lacombe, L Nohn, and M Schutzenberger, Eds., Sprmger-Verlag, New York, Berhn,
Heidelberg, 1970, pp. 207-213.

25 QUINE, W.V. A proof procedure for quantification theory. ,I Symbolic Logic 20 (1955), 141-149.
26. ROBINSON, J.A. A machine-oriented logic based on the resolution principle. £ A C M 12, 1 (Jan

1965), 23-41.
27. SICr~L,S Asearchtechmqueforclauseinterconnectivttygraphs 1EEE Trans Comput C-25(1976),

823-835
28. VAN VAALEN, J An extension of unification to subsUtuttons with an apphcauon to automauc

theorem provmg 4th Int. Joint Conf on Artificial Intelligence, Tbthsi, USSR, 1975, 77-81.
29. WEYL, H. Symmetry. Prmceton UniversRy Press, Prmceton, N.J, 1952, 168 pp.
30. W1LraNS, D.E QUEST: A non-clausal theorem proving system Master's Th., Umv of Essex,

Colchester, Essex, England, 1973.
31 Wos, L, ROBINSON, G.A, AND CARSON, D F Efficiency and completeness of the set of support

strategy m theorem proving 3". ACM 12, 4 (Oct. 1965), 536-541

RECEIVED JUNE 1979, REVISED FEBRUARY 1980, ACCEPTED FEBRUARY 1980

Journal of the Assooatton for Computing Machmery Vol 28. No 2. April 1981

