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ABSTRACT An approach to automaUc theorem proving using matmgs of arbitrary sentences is discussed 
No use is made of conjunctive normal form (clauses) or prenex normal form, since these forms tend to 
introduce superfluous redundancy, complicate the search for a proof, and impede analysis of the essential 
logical structure of the proposed theorem. A complete exposition of the logical foundations of theorem 
proving via general matmgs is given, starting with proofs of appropriate versions of Herbrand's Theorem. 
It is shown that one may restrict quantifier duphcat,on to outermost quanUfiers without loss of complete- 
ness, though with possible loss of efficmncy. 

General matmgs could be used as the basis for a variety of theorem-proving procedures, and there are 
many opportunmes for research m this area. A procedure using the criterion of path acceptability for 
mattngs is discussed. This criterion ~s easily VlSUahzed m terms of a two-dimensional format for formulas. 
An implementation by Eve Cohen has yielded encouraging preliminary results. Some implementation 
issues are discussed. 
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1. Introduction 

M u c h  o f  the research in au toma t i c  theorem proving  has been  focused on  deve lop ing  
efficient  me thods  for  der iv ing  cont rad ic t ions  f rom sets o f  clauses, which  represent  
the  conjuncts  (d is junct ions  o f  l i terals)  o f  a wf f  (wel l - fo rmed formula)  whose  ma t r ix  
is in conjunct ive  n o r m a l  form. The  advan tages  o f  conjunct ive  n o r m a l  fo rm were 
po in ted  out  in [13] and  inco rpora t ed  into the wide ly  s tud ied  resolu t ion  m e t h o d  [26]. 
M a n y  theorems  o f  ma thema t i c s  and  o ther  d isc ipl ines  l end  themselves  na tu ra l ly  to 
represen ta t ion  as sets o f  clauses.  However ,  exper ience  wi th  a wide  var ie ty  o f  theorems  
[2] has  shown that  in m a n y  o the r  cases, the use o f  c lausa l  fo rm has serious 
d isadvantages ,  since the r epea ted  use o f  the d is t r ibut ive  law [ P  ~/ (Q A R)] ~- 
[ (P  V Q) A (P  V R)] involved  in the  reduc t ion  to conjunc t ive  n o r m a l  fo rm of ten 
causes wild pro l i fe ra t ion  o f  l i terals.  

These  diff icul t ies  arise both  wi th  respect  to theorems  o f  f i r s t -order  logic and  
theorems o f  h igher  o rde r  logic. Indeed ,  m a n y  theorems  o f  h igher  o rde r  logic requi re  
only  the  me thods  o f  f i rs t -order  logic for thei r  proofs  and  can  easi ly  be t r ans la ted  in to  
theorems  o f  f i r s t -order  logic. T h e o r e m  A (see ( l )  o f  F igure  l )  is such a theorem,  and  
we use it to i l lustrate  our  point .  The  theorem is expressed in the  no ta t ion  o f  Church ' s  
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THEOREM A: 

(l)  [#F~a. Roa U Soa] m .[#F~aRoa] U .#F.aSoa 

Negate, eliminate definitions, skolemize, and delete quantlfiers: 
(2) ~ 6 ~ 6 ~ ~ ~ [[[~P.~c~x~ A ~SoCA v .P~xa x~ A ~P~axa . F ~ A  

7 7 7 1 7 7 7 V • [ ~ R o , x a  V • Po~xa~ A ~Po'~x, • F~ax~] 
8 8 1 8 8 8 A • ~SoBx ~ V • Po,~XpX. A ~Po,~cx~ • F~x~] 

A.ttRo~x~ V Sopx~] A. ~VLx~ V eL. F~x~] 
V [1LBx~ ° A. 1o ~ 1o ,o • ~Po~x~ V Po~. F~xp ] 
V "Sopx~ 1A l~ 1 V " 11 • ~Po~xh P~-  F~ax~ 

Eliminate conjuncUons and form clauses (wah type symbols omitted). 

(cl) ~Rx  6 V PGx6x' V ~Rx  7 V p7x7x* 
(c2) ~ R x °  V P6x6x I V ~ R x r V ~ P r x T F x  7 
(c3) ~Rx 6 V p6x6xl V ~Sx 8 V PSxSx 1 
(¢4) - R x  6 V P6x6xl V ~Sx 8 V ~pSxSFxS 

(e5) ~Rx 6 V ~pGX6FxG V ~Rx  7 V p7xrxl 
(c6) ~ R x  G V ~P6x6Fx6 V ~Rx  7 V ~PTxVFx7 
(c7) ~Rx 6 V ~p6x6Fx6 V ~Sx s V PSxSxl 
(c8) - R x  6 V ~p6x6Fx6 V ~Sx s V ~PSxaFxS 
(c9) ~Sx 6 V p6x6x1 V ~ S x  7 V prxTxI 
(cl0) ~Sx 6 V P6x%l V ~Rx 7 V ~p7x7Fx7 
(cl 1) ~Sx 6 V P6x%l V ~Sx 8 V PSxSxl 
(c12) ~Sx 6 V P6x6xl V ~Sx s V ~psx8FxS 
(c13) ~Sx 6 V ~PSx6Fx 6 V ~Rx  7 V p7xgxl 
(c14) ~Sx 6 V ~p6x6Fx6 V ~Rx  7 V ~pTx7Fx7 
(c15) ~Sx 6 V ~P6x6Fx6 V ~Sx s V PSxSxl 
(c16) ~Sx 6 V ~P~x6Fx ~ V ~Sx s V ~pSxSFx8 
(c17) Rx 9 V S x  9 V R x  l ° V S x "  
(c18) Rx ~ V Sx 9 V Rx 1° V ~PHxl V PnFxll  
(c19) Rx 9 V Sx ~ V ~Pl°xl V Pl°Fxl° V Sx H 
(c20) Rx ° V Sx 9 V ~Pl°xl V Pl°Fxl° V ~Pnx~ V PHFxn 
(C21) ~P~x ' V P~Fx ~ V Rx ~° V Sx ~ 
(c22) ~Pgx1 V POFx9 V Rx 10 V ~Pnx t  V PnFxH 

(c23) ~Pgx~ V PgFX9 k/~P~°x~ V P~°Fx~° V Sx '~ 
(c24) ~p9x~ V p9Fx 9 V ~P~°x~ V P~°Fx~° V ~Pnx~ V PHFxn 

FIGURE I 

formulation of  type theory [10] and says that if F is a function and R and S are 
subsets o f  the domain of  F, then the image under F of  the union of  R and S is the 
union of  the images of  R and S under F. (We use # F  to denote the function which 
maps sets to their images under F.) After negating Theorem A, eliminating definitions, 
Skolemizing, and deleting universal quantifiers, one obtains (2). (The details of  this 
reduction may be found in Appendix A.) Roman letters are constants, and italicized 
letters are variables. Lines (cl ) - (c24)  are the clauses o f  the conjunctive normal form 
of  (2). Line (2) contains 20 literals, but there are 104 literal-occurrences in clauses 
(cl)-(c24).  Thus this simple mathematical statement has been transformed into a 
highly redundant form in which the basic logical structure of  the theorem is no longer 
apparent• 

One approach to automatic theorem proving which does not involve clauses is to 
seek directly to construct a proof in "natural deduction" format. Well-structured 
logical arguments are commonly presented in such a format, and natural deduction 
is certainly one of  the important frontiers of  research in automatic theorem proving. 
Of  course, the fact that natural deduction provides a congenial format for commu- 
nicating proofs does not necessarily mean that it provides the best context for 
discovering them. One can envtsion theorem-proving systems which use a variety of  
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Theorem B' 

(B) 3xVytPx -- Py] ~ [3xPx -- VyPy] 

Negate, and ehmmate m and D. 

(c) 3xVy[(-Px v Py) A (~Py v Px)] 
A ([3x Px A 3y ~Py] V [VyVy A Vx ~Px]) 

Skolemlze: 

(D) Vyt(~Pc V Py) A (~Py V Pc)] 
A ([Pd A ~Pe] V [VzPz A Vx -Px]) 

D~splay m two-&mens~onal format: 

(D') [ Vy[ ~Pc V Py 
L ~PY v Pc] 

~ae V [ Vx~PxJ 

Instantmte ¢ uantdiers 

(H) ~Pc V Pd "~ ] ~Pd V Pc 
~Pc V Pe 

~Pe V ~Pd 

FIGURE 2 

methods to discover the essential ingredients of a proof and then construct proofs in 
whatever style is most congenial to the reader. 

While people generally find it easier to grasp the ideas of  a proof when it is 
presented in natural deduction style rather than resolution style, both of these proof 
methods involve breaking the wff into parts. For purposes of  analyzing the logical 
structure of a theorem, such methods have the disadvantage that they tend to focus 
one's attention, and methods, on isolated parts of a wff and may encourage one to 
overlook certain aspects of its global structure. 

Thus we are led to consider how one might prove a theorem without breaking it 
into parts. One such method is illustrated in Figure 2 with a proof of  Theorem B. 
(The converse of Theorem B is also valid, and together these theorems justify 
distributing quantifiers over ~ in certain circumstances.) We negate Theorem B, 
eliminate =- and D, and Skolemize to obtain (D). We often find it convenient to 
display wffs (especially if they are complex) in a two-dimensional format, with 
disjunctions being displayed horizontally but with conjunctions being displayed 
vertically. Line (D') of Figure 2 displays (D) in such a format. Next we instantiate 
the quantifiers of (D') to obtain (H). (The reason for this lettering of  the wffs will 
become clear.) Note that Vy is instantiated with two'terms, so that the subformula of 
(D') having the form VyR(y)  is replaced by R(d) A R(e). (H) is a contradiction (as 
we shall see), so Theorem B is established. 

Naturally, we could dualize this approach to get a proof rather than a refutation. 
This would involve starting with a tautology and using existential generalization to 
derive the theorem. 

Obviously, the basic problem is to proceed automatically from (D') to (H) in 
Figure 2; one needs methods to decide which instantiations of the quantirlers to make 
so that the instantiated wff will be contradictory. This is the same problem that had 
to be faced when resolution was invented, and we use the same solution. The purpose 
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of the instantiations is to make certain literal-occurrences complementary, so we use 
a unification algorithm to find the substitution terms which will do this. The problem 
of  deciding which literals should be made complementary remains. As when dealing 
with clauses, we can analyze this problem in terms of  matings [1] of literal-occur- 
rences. However, we now completely avoid the use of  conjunctive normal form. 

It was shown in [1] that matings are naturally induced by resolution-style refuta- 
tions. Actually, it appears that all refutation and proof procedures for first-order logic 
tacitly involve the construction of matings, which embody much of the essential 
logical structure of  the final refutations or proofs. It is our hope that procedures 
which focus directly on constructing matings for wffs in their natural form can avoid 
some of the redundancies and irrelevancies involved in constructing proofs and 
refutations, and that investigation of such procedures will yield new ideas and 
avenues for progress. 

So much of the literature on automatic theorem proving has concentrated on wffs 
in prenex normal form and conjunctive normal form, in spite of  the substantial 
practical disadvantages of  these forms for many nontrivial problems, that a complete 
exposition of  the logical foundations for dealing with more general classes of wffs of 
first-order logic seems to be needed. We here present such an exposition, assuming 
only that the reader has had a basic introduction to first-order logic. We also present 
an example of a refutation procedure based on matings of arbitrary wffs. 

The basic logical ideas underlying this approach to theorem proving go back to 
Herbrand [20] (translated in [21]), whose proof of  the fundamental theorem contained 
errors [15]. The ideas we use are closely related to those of  Quine [25] and Prawitz 
[24], except that Quine restricts his attention to conjunctions of wffs in prenex normal 
form, and in [24] matrices are kept in conjunctive normal form and the scopes of 
quantifiers are not minimized. 

A concise outline of  the procedure we discuss below can be found in [9, Sec. 4], 
and related issues are discussed in other papers of  Bibel. Another approach to 
theorem proving without clauses has been developed by Wilkins [30]. 

2. Logical Preliminaries 

2.1 TERMINOLOGY. In our formal development we shall be concerned with wffs 
of a system of first-order logic whose primitive connectives and quantifiers are ~ 
(not), A (and), V (or), V (for all), and ~ (there ex i s t s . . ,  such that); D (implication) 
and ~ (equivalence) are to be regarded as abbreviations. We could easily extend our 
treatment to a system in which D is also primitive, but the details are straightforward 
and would merely clutter our exposition. Of course, it may be useful to include D 
among the primitive connectives of computerized systems, and this should cause no 
difficulty. ~A means that A is valid. When A is quantifier-free, ~A means that A is 
tautological. 

We write 8A for the result of  applying a substitution 8 to an expression A. As an 
alternative substitution notation, we may write a wff A as A(xl, . . . ,  xn) to indicate 
that xl . . . . .  xn occur as free variables in A and then use A(ti . . . .  , in) as a notation 
for the result of simultaneously substituting t, for the free occurrences of x, in A for 
i T  1 . . . . .  n. 

A wff C is in negation normal form (nnf)  and is a negation normal formula (nnf)  iff 
the scope of each occurrence of ~ in C is atomic. A negation normal sentence (nns) is 
a sentence (wff without free variables) in nnf. A wff can easily be transformed into 
an equivalent nnf  by using the laws 

- - M  ~ M, ~ [M A N] -~ [ - M  V ~N], - [ M  V N] ~ [~M A -N] ,  
~Vx M -~ 3x ~M, and ~3x  M ~- Vx ~M. 
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In general, the use of  normal  forms (such as negation, conjunctive, disjunctive, and 
prenex normal  forms) provides conceptual simplicity which facilitates theoretical 
discussions, but it may  make particular examples more cumbersome. (Figure 1 
illustrated this phenomenon for the case of  conjunctive normal  form. Another 
example is provided by increases in the degrees of  Skolem functions which may be 
caused by putting a wff  into prenex normal  form before Skolemizing.) However, 
when one puts a wff  into nnf, one can obtain a wff  with no more literal-occurrences 
than the original one, and having the same essential logical structure. Therefore, 
without any real loss of  generality we may often confine our attention to wffs in nnf. 

An occurrence of a quantifier or a well-formed (wf) part  of  a wff  C is positive 
(negative) in C iff it is in the scope of  an even (odd) number  of  occurrences of  ~. A 
wff  is universal iff all its universal quantifiers occur positively and all its existential 
quantifiers occur negatively in it. It is well known how to introduce Skolem functions 
into a wff  C so as to obtain a universal w f f D  (called the Skolemizedform of  C) such 
that C has a model if  and only if D has a model. (We say that a wff  has a model iff  
its umversal  closure is satisfiable; for wffs with free variables, this is not quite the 
same as satisfiability, though the two phrases are sometimes confused in the literature 
of  theorem proving.) 

Given a wff  B which we wish to show is valid, we let C be a negation normal  form 
of  -J~ (where J~ is the universal closure of  B), and let D be the Skolemized form of  
C (as in Figure 2). Then D is a universal nns which has no model if  and only if B is 
valid. Thus we shall concentrate on the problem of  refuting universal negation 
normal sentences. 

2.2 COMPOUND INSTANCES. We now give a complete proof  of  a fundamental  
theorem (Theorem IA below) which may be regarded as a form of  Herbrand 's  
Theorem. 

We first define a compound instance (c-instance) of a universal nnf  D to be the 
result o f  replacing each wf  part  of  D of  the form Vx B(x) by B(tl) A . . .  A B(tn), 
where n _> 1, and for each i _< n, t, is a closed (variable-free) term; different terms 
tl . . . . .  tn may be chosen for different occurrences of  quantifiers in D. 

To avoid any ambiguities, we define the c-instances of  D inductively as follows: 

(a) I f  D is a literal, D is the only c-instance of  D. 
(b) I f  D is [D1 * D2], where • is V or A, and H, is a c-instance of  D~ for i ~ 1, 2, then 

[H~ * H2] is a c-instance of  D. 
(c) I f D  is Vx C(x), n _> 1, and for each i(1 _< i _< n), t~ is a closed term and H~ is a c- 

instance of  C(t,), then [H~ A . . .  A H,,] is a c-instance of  D. 

LEMMA 1. Let G and H be c-instances of a umversal nnf D. Then there is a c- 
instance K of D such that ~ K D [ G A HI. 

The proof  is by induction on the number  of  occurrences of  A, V, and V PROOF. 
in D. 

Case 1. 

Case 2. 

D is a literal. Then G = D = H, and we let K = D also. 

D has the form Dx * D2, where * is A or V. Then G has the form G~ * G2 
and H has the form H~ * H2, where G, and H, are c-instances of  D, for i = 1, 2. By 
the inductive hypothesis, for each t there is a c-instance K, of  D~ such that m K, D 
[G, A H,]. Let K = K~ * K2. K is a c-instance of  D, and ~ K D [G A HI.  

Case 3. D has the form Vx C(x). Then G has the form El A . . .  A En and H has 
the form En+l A • . .  A Era, where for each i there is a closed term t~ such that E, is a 
c-instance of  C(t O. Clearly we can let K be G A H. [] 
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A truth assignment is an assignment of  truth values (t or f) to atomic wffs. If  G is 
a quantifier-free wff and ~ is a truth assignment which assigns truth values to all 
atomic wf parts of  G, we let egG denote the truth value of  G with respect to ~; this 
is computed in the usual way using the truth tables for the propositional connectives. 
We call G a truth-functional contradiction (t-f contradiction) iff  ~ G  -- f for all such 
truth assignments ~. We say that ¢b verifies G iff  ~e~G -- t. I f  6eis a set of  quantifier- 
free wffs and • is a truth assignment which verifies each member of  ~, we say that 
dp truth-functionally satisfies (t-f satisfies) ~. 

LEMMA 2. Let D be a universal nnf. I f  no c-instance of  D is a t-f  contradiction, then 
there is a truth assignment which verifies every c-instance of  D. 

PROOF. This is just an application of  the Compactness Theorem for propositional 
calculus [ 16, p. 59], which says that if  6eis a set o f  wffs o f  propositional calculus and 
every finite subset of  6eis satisfiable, then 6Zis satisfiable too. Let 6abe the set of  all 
c-instances of  D, and let {Hi . . . . .  H,~} be a finite subset of  ~. Using Lemma 1 we 
obtain a c-instance K of  D such that ~ K D [H1 A - . .  A Hn]. Since K is not a t-f  
contradiction, there is a truth assignment g, which verifies K, so xI' t-f  satisfies 
(H1 . . . . .  Hn}. Thus every finite subset o f  S'~is t-f  satisfiable, and so is 6aalso. []  

THEOREM IA. Let D be a universal nns of  first-order logic, D has no model iff  D 
has a c-instance which is t-f contradictory. 

PROOF. It is easy to see by induction on the number of  occurrences of  A, V, and 
V in D that if  D is a universal nns and G is any c-instance of  D, then ~ D D G. Hence 
if G is t-f  contradictory, it is false in any model, so D is also, so D has no model. 

For  the proof  in the other direction, suppose D is a universal nns which has no 
t-f contradictory c-instance. Then by Lemma 2 there is an assignment • of  truth 
values to the atoms that occur in c-instances of  D which verifies every c-instance 
of  D. 

We next construct a model for D. We let the domain of  individuals of  our model 
be the set of  closed terms of  our language. (We assume that the language contains at 
least one individual constant; apart from this requirement, it need contain no 
constants other than the individual, function, and predicate constants which occur in 
D.) As in Henkin's completeness proof, we interpret the individual constants and 
function symbols so that each term (regarded as an expression of  the language) 
denotes itself (regarded as an element of  the domain of  individuals). Also, we 
interpret the predicate symbols so that if P is any n-ary predicate and h . . . . .  tn are 
individuals, then Pt~ . . . . .  tn is true in the interpretation iff #p(Ptl , . . . ,  tn) = t. This 
specifies an interpretation ~ for our system of  first-order logic. For any sentence B 
we let ~/'~B be the truth value of  B in this interpretation, and we let ~ ~ B mean 
that B is true in Jg. 

Next we show, by induction on the number of  occurrences of  A, V, and V in B, 
that if B is any universal nns such that ~ verifies every c-instance of  B, then . 5 / ~  B. 

Case 1. B is a literal. Then B is the only c-instance of  B, and ~¢/"B = ~ B  by the 
interpretation of  predicates. 

Case 2. B has the form [B1 A B2]. For 1 = 1, 2, let G, be any c-instance of  B,. 
Then [G1 A G2] is a c-instance of  B, so 3¢~[G1 A G2] -~ t, so ~ G ,  = t. Therefore 

~ B~ by inductive hypothesis; so J / / ~  B. 

Case 3. B has the form [B~ V B2]. Suppose there are c-instances G~ of  B1 and G2 
of  B2 such that "1/~G1 = f and "¢/~Gz = f. Then ~[G~ V G2] = f, which contradicts our 
assumption about B, since [G~ V G2] is a c-instance of  B. Therefore for i = 1 or i = 
2, • verifies every c-instance of B,, so ~ ~ B~ by inductive hypothesis, so ~ ~ B. 
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Case 4. B has the form Vx C(x). Let t be any closed term. Every c-instance of  
C(t) is a c-instance of B and so is verified by ~, so J~ ~ C(t) by inductive hypothesis. 
Therefore ~ ~ Vx C(x), since every individual of J / i s  the denotation of some dosed 
term. 

This completes the inductive argument and establishes that d,¢ ~ D, so D has a 
model. [] 

2.3 AMPLIFICATIONS, MATINGS, AND ACCEPTABILITY. Since we will find terms 
with which to instantiate quantifiers by applying a unification algorithm, we now 
wish to shift our attention to those aspects of the problem concerning which actual 
decisions must be made during the search for a refutation. These decisions concern 
how many instantiations of each quantifier should be performed, and which literal- 
occurrences should be made complementary. 

We say that a wff F is normal iff no variable occurs both free and bound In F, and 
distinct quantifier-occurrences of  Fhave  distinct variables. By appropriate alphabetic 
changes of bound variables, any wff E can be transformed (or normalized) into a 
normal wff F (called a normal form of E) such that ~ [ E  ~ F]. 

Let D be a universal nns. We next define the set of amplifications of D. We say that 
a wff R '  is obtained from a wff R by quantifier duplication iff R '  is the result of 
replacing some wf part of R of  the form Vx M by Vx M A Vx M. If  there is a sequence 
D1 . . . . .  Dn of wffs (where n _> 1) such that Dt+l is obtained from D, by quantifier 
duplication for each i < n, we say that Dn is obtained from D1 by a sequence of 
quantifier duplications. Now suppose that E is obtained from D by some sequence of  
quantifier duplications, F is a normal form of E, and G is the result of deleting all 
quantifiers of F. Then G is called an amplification of D (see Figure 3). 

Let G be a quantifier-free wff. We let Lq~(G) be the set of occurrences of literals in 
G and LeO(G) 2 be the set of ordered pairs of elements of .le(G). A mating ~ of G is a 
binary relation on LqO(G) such that there is a substitution 0 such that OK = -OL 
whenever L ~ K  (i.e., whenever L and K are mated literal-occurrences). In first-order 
logic, whenever such a substitution 0 exists, there is an essentially unique most 
general such substitution 0~, which we call the substitution associated with J¢. We 
say that ~,¢ is a refutation mating of G iff G is false with respect to every assignment 
of truth values to atoms that gives opposite truth values to literals which have mated 
literal-occurrences. 

In Figure 4 we present a mating of line G of Figure 3, which is displayed in two- 
dimensional format, by drawing lines between mated literal-occurrences. That this is 
a mating can be verified by comparison with line (H) of  Figure 2, where the 
substitution associated with this mating has been applied. We shall see that it is a 
refutation mating. 

Constructing a mating involves two processes: (a) thepairing process, which decides 
which pairs of literal-occurrences to mate, and (b) the unification process, which 
determines whether there is a substitution which makes mated pairs complementary. 
The pairing process will need criteria, which we shall call acceptability criteria, to 
decide whether a given mating is a refutation mating. We discuss one acceptability 
criterion below, but it is clear that the problem of devising new and better accepta- 
bility criteria provides a rich field for future research. It is useful for acceptability 
criteria to have the following properties: 

(1) When a matmg fails the criteria, they should suggest ways in which the mating 
might profitably be altered. 

(2) The criteria should be compatible with a step-by-step construction of  a mating, 
so that information acquired in checking the criteria at one step can be used at 
the next step. 
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(D) Vy[(~Pc v vy) A (~Pp v Pc)] 
A ([Pd A ~Pe] V [Vz Pz A Vx ~Px]) 

Duplicate quantifier: 

(E) Vy[(~Pc V Py) A (~Py V Pc)] 
A Vy[(~Pc V Py) A (~Py V Pc)] 
A ([Pd A ~Pc) V [Vz Pz A Vx ~Px]) 

Normahze. 

(F) Vy[(~Pc V Py) A (~Py V Pc)] 
A Vw[(~Pc V Pw) A (~Pw V Pc)] 
A ([Pd A ~Pe] V [Vz Pz A Vx ~Px]) 

Delete quanUfiers. 

(G) [(-Pc V Py) A (-Py V Pc)] 
A [(~Pc V Pw) A (~Pw V Pc)] 
A ([Pd A ~Pc) V [ez A ~Px]) 

FIGURE 3 

~Pc,,. V Py \ ]  
/~Py V~Pc\I 
~Pc/%Xx,/Pw ~1 
~Pw V A PC II 
~, Pdq / f XPzy I 

L- ej-v L-'dJ 
FIGURE 4 

(3) The criteria should be compatible with a process in which the construction of a 
refutation mating is combined with choosing an appropriate amplification of the 
sentence to be refuted. 

We next describe an acceptability criterion which is related to disjunctive normal 
form, and which is discussed, in slightly different terminology, by Bibel [5] and 
Prawitz [24]. 

Motivated by the two-dimensional representation of nnfs discussed earlier, we 
define a verticalpath through a quantifier-free nnf G to be a sequence of members of 
~(G)  which corresponds to one of the disjuncts (conjunctions of literals) in the 
disjunctive normal form of G. Intuitively, one chooses a vertical path through G by 
choosing one disjunct (M or N) from each disjunction [M V N] of G and deleting all 
parts of G which are not chosen. One vertical path through Figure 4 contains literals 
~Pc, ~Py, -Pc,  -Pw, Pd, and -Pc,  and another contains literals Py, ~Py, Pw, -Pw, 
Pz, and -Px.  

More formally, we can define the vertical paths through G inductively as follows: 

(1) If G is a literal L, then the one-term sequence (L),  whose only term is the given 
occurrence of L in G, is the only vertical path through G. 

(2) If G has the form [G1 V G2], then every vertical path through G1, as well as every 
vertical path through G2, is a vertical path through G. 

(3) If G has the form [G1 A G2] and P, is any vertical path through G, for i = 1, 2, 
then the concatenation PiP2 of these sequences is a vertical path through G. 

LEMMA 3. Let G be a quantifier-free nnf, and let @ be a truth assignment to the 
atoms of  G. Then ~ verifies G iff there is a vertical path through G, all o f  whose literals 
are verified by ~. 

PROOF. This is easdy established by inducuon, considering the cases where G is 
a literal or is of the form [Gi V Gz] or [Gi A G2]. [] 

Let .5/be a mating of a quantifier-free nnf G. We say that Jg is path-acceptable (p- 
acceptable) iff every vertical path through G contains a mated pair of hteral- 
occurrences. 

LEMMA 4. Let G be a quantifier-free nnf  and let, tt  be a matmg o f  G. 

(a) I f  there ts a substitution 0 such that OG is t-f  contradictory, then G has a p-acceptable 
mating. 
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(b) I f  ~ is p-acceptable, then ~ is a refutation mating. 
(c) l f  ~ is a refutation mating, then 0 ~,G is t-f contradictory. 

COROLLARY. Let G be a quantifier-free nnf  The following are equivalent: 

(1) There is a substitution 0 such that OG is t-f  contradictory. 
(2) G has a p-acceptable mating. 
(3) G has a refutation mating. 

Notice that Figure 5 shows that the converse of  (b) is false, and Figure 6 shows 
that the converse of  (c) is false. 

PROOF OF LEMMA 4 

(a) Suppose OG is t-f contradictory. Let ~ = ((L, K) ~ ~(G)~ I OK = ~OL }. Clearly 
J / i s  a mating of G. To show that ~ is p-acceptable, let P be any vertical path through 
G. P corresponds to a vertical path, which we may call OP, through OG. OP must 
contain a pair (OL, OK) of complementary literals (which correspond to literals L and 
K of  G which are on P); otherwise we could assign truth values to atoms of  OG so 
that all literals on OP would be verified, thus verifying OG (by Lemma 3), which is 
contradictory. Since L and K are mated by ~ ,  we see that J / i s  p-acceptable. 

(b) Let J / b e  p-acceptable. Suppose there is a truth assignment • to the atoms in 
G which verifies G and gives opposite values to mated literals. By Lemma 3 there is 
a vertical path through G, all of whose literals are verified by 4. But since every 
vertical path through G contains a mated pair, this is a contradiction. Therefore no 
such assignment • exists, so ~//is a refutation mating. 

(c) Follows from the definition of  a refutation mating. [] 

We can now prove two alternative forms of Theorem IA which establish the 
completeness and soundness of refutation procedures based on matings. 

THEOREM lB. Let D be a universal nns of  first-order logic. D has no model iff 
some amplification of  D has a refutation mating. 

PROOF. Suppose some amplification of D has a refutation mating. Indeed, let 
E, F, and G be as in the definition of  amplification, and let ~ be a refutation mating 
for G. Let Vx~ . . . . .  Vxn be the quantifiers of  F, in the left-to-right order in which 
they occur in F. It is easy to see that ~ D --- E, ~ E --- F, ~ F ~ Vxl • • • VxnG, and 

VXl • • • VxnG D On, G, so ~ D ~ O~G. Since O~G is contradictory, ~ ~D, so D has 
no model. 

Suppose D has no model. Then by Theorem IA, D has a c-instance H which is t- 
fcontradictory. It can be seen that there is an amplification G of  D and a substitution 
9 such that H = OG. By Lemma 4, G has a refutation mating. [] 

THEOREM IC. Let D be a universal nns of  first-order logic. D has no model iff  
some amplification of  D has a p-acceptable mating. 

PROOF. By Theorem IB and the corollary to Lemma 4. [] 

Figure 4 exhibits a p-acceptable mating of (G) of Figure 3. Thus (D) of  Figure 3 
has no model, and we see again that Theorem B is valid. 
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3. A Refutation Procedure 

We now provide a general outline of a refutation procedure based on p-acceptability. 
For the sake of generality and expository simplicity, the basic procedure described 
here is rather naive, although we offer a few suggestions about ways in which it 
could be made more sophisticated in an actual implementation. Our main purpose 
here is to provide a framework for discussion of ideas and a starting point for future 
research. 

In particular, we speak as though unifying substitutions are always to be directly 
computed and applied to the appropriate wffs. In an actual implementation one 
should consider more sophisticated ways of handling substitutions, as discussed in 
Ill], [27], and [28]. In constructing a mating, both the pairing process and the 
unification process involve computational effort, and each generates information 
which can be useful to the other. If the unification process determines that there is no 
substitution which unifies the atoms of a pair of literals and is compatible with the 
mating as constructed so far, then the pairing process need not consider adding that 
pair of literals to the mating. On the other hand, if the pairing process decides directly 
that it would not be useful to add a given pair of literals to the mating, then the 
unification algorithm need not consider whether an appropriate substitution exists. 
Thus it may often be desirable for these processes to work in parallel and to interact 
with each other, with the balance of effort being determined by the relative efficiencies 
of the algorithms and the complexities of their tasks. This seems essential when one 
deals with wffs of higher order logic, where unifying substitutions may not be unique 
and the unification algorithm may not terminate. However, we regard these matters 
as implementation details beyond the scope of the present discussion. 

When pairing and unification are done in parallel, the pairing process may work 
with a set of pairs of literal-occurrences which is not known to be a mating, since it 
is not yet known whether an associated substitution exists. Such a set of pairs is 
called apotenttal mating. Sometimes, speaking loosely, we refer to a potential mating 
as a mating. 

Choices must be made at various points in the procedure described below, and 
appropriate heuristics must be used to make these choices. Although the success of 
a working program will depend crucially on these heuristics, we say little about them 
here, since more experience with various heuristics is needed. 

The fundamental data structures involved in the refutation procedure are the 
following: 

(l) The wff B to be proved, 
(2) A universal nns D which is produced from B by step 1 below and thereafter 

remains fixed. D is called the initial wffof the refutation process. 
(3) A universal nns F obtained from D by quantifier duplications and alphabetic 

changes of bound variables. F changes as the procedure progresses. The quanti- 
tiers of F simply serve as markers to facilitate additional quantifier duplications 
and will be ignored much of the time. Thus we regard F as an amplification of  
D. In an obvious sense, each literal-occurrence of F. corresponds to a literal- 
occurrence of D. 

(4) A mating ~ of F, and the associated substitution 0.a. 
(5) A connection graph ~¢(D) of D. 
(6) A connection graph ~ , ( F )  of F relative to J#. 

The connection graphs are defined as follows. Let F be an nnf, and let M and N 
be in L&O(F). M and N are potential mates with respect to a mating ~ of F iff 
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(Given a wff B to prove) 

Preprocess. Create D 
Create the connection graph ~(D) 
Let F be D 

Let .A/= ~. Create the connection graph rg't~(F), I 
I 

p aco0p,ab,o  I--  ALT proved) 

Choose a path P through F with no mated pare I 

4, 
Does P contain 
potential mates9 
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Mate a pa~r of 
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Update .//and 
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no 9 Save useful information 
about act'. 
Have all matmgs of F 
been explored9 

l ) c ~  ~¢no 

(Backtrack') 

I !0 Duplicate some quantifier, 
enlarging F. 

FIG 7. The refutation procedure 

some vertical pa th  contains both  M and N and there is a subst i tut ion o such that  
o(O~N) = ~o(O~M). We define 

~,~(F) = {(M, N) ~ .g'(F)21M and N are potential mates with respect to ~ ) .  

This is a binary relation, which can be represented as a graph, as in [23]. We define 
rg(D) to be the connection graph of D with respect to the empty mating. 

TriE REFUTATION PROCEDURE. The refutation procedure is summarized in Figure 
7. We are given a wff B which we wish to show is valid. Let C be a negation normal 
form of  ~B, where B is the universal closure of  B. 

Step 1. Preprocessing 

( la )  Simplify and  normal ize  C, so as to obta in  a nns C1 which is p rovab ly  
equivalent  to C, while minimizing the n u m b e r  of  l i teral-occurrences in C1 and also 
minimiz ing  the degrees o f  the Skolem functions to be in t roduced in step 1 b. Choose  
between al ternat ive simplified forms. 

Thus  a w f  par t  o f  C of  the fo rm 

VwVx 3y 3z  [Pwy A Qxz]  
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should be replaced by 

Vw Yx [3y Pwy A 3z Qxz]. 

However, it serves no purpose to replace Vw3y3z[Pwy A Qyz] by Yw3y[Pwy A 
3zQvz], since in each case the Skolemized form is Vw[Pw(fw) A Q(fw)(gw)]. 

(lb) Skolemize to eliminate existential quantifiers. To do this, proceeding se- 
quentially from left to right, replace each wf part 3yM(x~ . . . . .  xn,y) of C~ by 
M(xl . . . .  , xn ,  f g l  ' ' '  Xn), where xl . . . . .  xn are the free variables of  3yM, and f is a 
new n-ary function constant. (If n = 0, f is a new individual constant.) 

(lc) Push in universal quantifiers so as to obtain a provably equivalent nns in 
which the scopes of universal quantifiers are as small as possible. For example, 
replace Vx Vy [Pxy V Qy] by Vy [Vx Pxy V Qy]. Thus, if  C contains a wf part of  the 
form Vx3y[Pxy A Qxy], this is replaced by Vx[Px(fx) A Qx (fx)] in step lb, and by 
VxPx(fx) A VzQz(fz) in step lc. 

(ld) Let the sentence obtained by step 1 be called D. 

Further discussion of preprocessing can be found in | 14]. 

Step 2. Create the connection graph ~(D). 

In an actual implementation of  this procedure, it might be useful not to create 
~(D)  all at once, but to compute and store parts of  it as the information is needed. 
The important point is to avoid the necessity of  computing this information more 
than once. A similar comment applies to ~ , ( F )  below. 

Step 3. Let F be D. 

Step 4. Let .5/be the empty mating of F. Create ~ ( F ) ,  using C~(D). 

Step 5. Test J#. Is J//p-acceptable? If  so, the refutation is complete. Otherwise, 
continue to step 6. 

We remark that since the number of  vertical paths in a wff can be quite large, 
considerable attention should be paid to the efficiency with which this test is carried 
out. Of course, one need not examine the vertical paths separately and completely. 
As soon as one has found a pair of  mated literals on a subpath of  a vertical path, one 
can exclude from further consideration all extensions of that subpath. Also, since .Ag 
is tested and constructed in stages, information about which vertical paths contain 
mated pairs can be saved from one stage to the next. At each stage, all one really 
does is search for one new vertical path which does not contain any mated pair, 
starting where one left off  at the last stage. 

Various methods from propositional calculus can be used to simplify F temporarily 
as the construction of .5/progresses, and we digress briefly to discuss two of  these. 
Let M be the wff 

(ILl A P~] V " . .  V [Ln A Phi) A ([L~ A . . .  A L~ A Q] V R), 

where n _> 1, the L, and L~ are literals, and the P,, Q, and R are arbitrary wffs; in 
particular, they may be the empty conjunction A (which is true) or the empty 
disjunction E3 (which is false). Let N be the wff ([L1 A Psi X/ . . -  V [L,~ A Pn]) A R. 
Suppose F contains an occurrence of M, and F* is obtained from F by replacing that 
occurrence of  M by an occurrence of N. (See Figure 8. Note that ifL~ = ~L, for each 
t, then ~ F m F*. Also note what the reduction from F to F* looks like when n = 1 
or R is IS].) Let J / b e  a mating of  F such that for each i <_ n, L,/#L; or L ~ L , .  There 
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FIGURE 8 

is a natural correspondence between ~¢(0~,F*) and a subset of..W(F). Let ~ '*  be the 
mating of O~F* induced by ~ under this correspondence. It is easy to see that there 
is a p-acceptable mating of F which is an extension (superset) o f .S / i f  and only if 
there is a p-acceptable mating of On, F* which is an extension of J[*.  Thus we may 
reduce F and ./g to ~ ,F*  and ~¢/* in our search for a p-acceptable mating (though F 
and ~ may have to be restored later if no p-acceptable extension of.///* is found). 

Of course, we shall feel free to use elementary laws of conjunction and disjunction, 
such as commutativity, associativity, the idempotent laws, M V [] -= M, M A [] 
D, and M A A ~ M. Using these laws and reductions of the sort just discussed, we 
can often drastically simplify F, or even reduce it to [], which has a p-acceptable 
mating since it has no vertical paths. This is illustrated in Figures 9 and 10, where we 
assume complementary literals are mated. In both figures, (a') is obtained from (a) 
by elementary laws, (b) is obtained from (a') by a reduction, etc. The dotted lines 
surround the parts of the wff involved in the reduction steps. Figure 9 represents the 
mating for Theorem B in Figure 4. 

Another reduction of the same general type, which was introduced by Prawitz [24] 
for reducing matrices in conjunctive normal form, is to replace (L V Q) A (L' V R) 
by [L A R] V [L' A Q], where L and L'  are mated literals. See Figure 11. 

Both of these reductions reduce the number of vertical paths in the nnf, and 
together they can be used to establish that many nnfs of propositional calculus are 
contradictory. Note, however, that neither reduction is applicable to the contradictory 
nnfin Figure 12. 

Step 6. Choose a vertical path P through F with no mated pair. 

Presumably at least one such path can be found in step 5. However, it may be 
worthwhile to choose this path carefully. For example, with the aid of the connection 
graph ~ ( F )  one can seek such a path with a minimum number of pairs of potential 
mates. 

Step 7. Is there at least one pmr of potential mates on P? If so, go to step 8. If not, 
go to step 9. It may be a useful heuristic to give P high priority for consideration by 
step 6 at later stages of the procedure. 

Step 8. Choose a pair (M, N) of potential mates on P, and replace ./t/by Jr /U 
{(M, N)}. (We call this process mating M and N.) Adjust ~ and c~(F)  appropriately. 
Return to step 5. 

We remark that in steps 5-8 we simply check whether ~ is acceptable and change 
it if it is not. The particular way we change it is guided by our criterion of 
acceptability. We add a pair of literals to ~ because it makes Jg closer to being 
acceptable. 
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FIGURE 10 

Of course, if an inappropriate choice is made at step 8, the system will eventually 
have to backtrack. To alleviate this problem, more sophisticated methods of deciding 
how to alter ~ than those implicit in steps 6-8 may be needed. We briefly mention 
one such method, which was suggested by Eve Cohen. 

Let us say that we f ix a vertical path P by mating a pair of literal-occurrences on 
P. While there may be many ways of fixing a given path, some of these may not be 
compatible with any way of fixing another path (because the associated substitutions 
are not compatible) and so should not be used. By considering all possible ways of 
simultaneously fixing all paths in a set of vertical paths, starting with a unit set and 
progressively enlarging it, one can eliminate many inappropriate ways of fixing paths. 
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If, within the computational resources allocated, one can eliminate all but one way 
of simultaneously fixing all paths in the set, one can fix all those paths simultaneously 
without fear of error. 

We can also apply to steps 8 and 6 a heuristic which is analogous to the set-of- 
support strategy [31] for resolution. Not all literal-occurrences need have mates in a 
p-acceptable mating (particularly if inappropriate quantifier duplications have oc- 
curred), but it is sometimes clear from the statement of a theorem that certain literal- 
occurrences must have mates, or that most literal-occurrences in a certain set must 
have mates. In such cases, high priority should be given to mating such literal- 
occurrences. 

Step 9. Have all matings of F been explored? If  so, go to step 10. If  not, backtrack 
and try another mating. In either case, record information about the current mating 
which may eventually be useful in choosing a quantifier to duplicate or in recon- 
structing this mating after a quantifier has been duplicated. 

Step 10. Choose a quantifier of  F, duplicate it, normalize the resulting wff, and call 
it F. Go to step 4. 

The choice of a quantifier to duplicate should be made as intelligently as possible, 
since every quantifier duplication enlarges the wff with which the mating program 
must deal. Nevertheless, an inappropriate quantifier duplication does not prevent an 
acceptable mating from eventually being found, so we never backtrack past this 
point. Of course, the heuristic used to choose quantifiers to duplicate should be 
designed so that the procedure will be complete. 

Sometimes it may be desirable to go from step 9 to step 10 even if  further matings 
of F remain to be explored, or to go from step 10 directly to step 7 and continue work 
on the current mating in the enlarged wff. Of course, such acts may complicate 
backtracking and necessitate special measures to ensure the completeness of the 
procedure. 

4. Quantifier Duphcatton 

Since the complexity of the search for an acceptable mating grows drastically as the 
number of literal-occurrences in the wff F increases, it is worthwhile to devote 
considerable effort to keeping this number small. Thus we make the scopes of 
universal quantifiers as small as possible so that duplications of  these quantifiers will 
not create more new literal-occurrences than necessary. 

I f  the refutation procedure is to be complete, one must duplicate quantifiers in a 
systematic way as the search progresses. One would really like a way to know just 
how many times each quantifier needs to be duplicated, but such knowledge could 
be used to construct a decision procedure for first-order logic and is therefore not 
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attainable in general. Nevertheless, some procedures for duplicating quantifiers are 
better than others. 

To ensure completeness of  the refutation procedure, one could proceed by stages 
and at each stage duplicate each quantifier in the current wff (working from right to 
left through the wff). However, if a literal-occurrence is in the scope of n universal 
quantifiers, this would produce 2 n copies of it at the next stage, which might be 
excessive. A scheme which would produce just one additional copy of each literal- 
occurrence (which is in the scope of some quantifier) is to duplicate only those 
quantifiers (called outermost quantifiers) which are not in the scopes of other 
quantifiers. The question naturally arises whether such a procedure is complete. 
We shall show that it is, but first we need some more information about instances 
of  a wff. 

We define a simple instance of a universal nnf  D to be the result of  replacing each 
wf part of D of the form Vx B(x) by B(t) for some closed term t. (Thus simple 
instances are c-instances where n (in the definition of  c-instances) is always 1.) 

LEMMA 5. Let D be a universal nns, and let H be any c-instance of D. Then H is 
equivalent to some conjunction of simple instances of  D. 

PROOF. By induction on the number of occurrences of A, V, and V in D. 

Case 1. D is a literal. Then H is D, and a simple instance of D. 

Case 2. D is [D1 * D2], where * is A or V, and H is [H1 * H2], where H~ is a c- 
instance of D, for i -- 1, 2. By inductive hypothesis, ~ H1 -= A~ll Jj and ~ H2 --- 
A~s~ Kk, where each ~ is a simple instance of D1 and each Kk is a simple instance of 
D2. It can be seen that A ~ i  A gel [~  * gk] is a conjunction of  simple instances of  D 
which is equivalent to H. 

Case 3. D is Vx C(x). Then H is A~,~H,, where H, is a c-instance of C(t,) and t, 
is a closed term for 1 ~ i .~ n. By the inductive hypothesis, ~ H, ~ A ~  J~j, where J,v 
is some simple instance of C(t,) for each ~ and/ .  Thus A,%~ A~V~ J,~ is a conjunction 
of simple instances of  D which is equivalent to H. [] 

TSEOREM 2. Let D be a umversal nns of  first-order logic. D has no model iff there 
is a refutation mating for some amplification G o l d  such that informing G from D only 
outermost quantifiers are duplicated. 

PROOF. Suppose D has no model. Then by Theorem I A, D has a c-instance H 
which is t-f contradictory. Let us designate as molecules of D those wf  parts of  D 
which are in the scope of  no quantifier or negation of D and properly contain no 
other such wf parts. (For example, if  D is YxPx  V [Yy[Qy V Pa] A ~Pb], the 
molecules of D are ¥x  Px, Vy [Qy V Pa], and ~Pb.) Let Mi . . . . .  Mk, where k _> 1, be 
the occurrences of  molecules of  D. D can be built up from the M~ using A and V, 
so there is a wff B(p~ . . . . .  PD of propositional calculus, containing only the connect- 
ives A and V and only the propositional variables pl . . . . .  pk, such that D is 
B(Mi . . . .  , MD. Thus H Is B(H~ . . . . .  HD, where H, is a c-instance of M~ for each i. 
By Lemma 5 each H, is equivalent to A~'-i g~j, where K,j is some simple instance of 
M~ for each j  _< n, and each i _< k. Hence B(A~L~ K~ . . . . .  A ~  Kkj), which we call J, 
is contradictory. Let E be obtained from D by duplicating the outermost quantifier 
of  M, enough times to create n, copies of M~ for each i <_ k. Let G be obtained from 
E by normalizing and deleting quantifiers. It can be seen that there is a subsutution 
0 such that J -- OG. By Lemma 4, G has a refutation mating. 

The proof in the other direction follows by Theorem lB. [] 
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Whale the procedure outlined above is complete, it is rather primitive, since no 
information obtained in the search for an acceptable mating is used to choose the 
quantifier to duplicate. The following very simple example illustrates a possible 
disadvantage of duplicating only outermost quantifiers. Suppose the wff contains the 
molecule Vx (Px V Vy Qxy) and to obtain an acceptable mating this molecule must 
be expanded to Vx (Px V [Vy Qxy A Vz Qxz]). Duplicating the outermost quantifier 
will instead yield 

Vx (Px V Vy Qxy) A Vw(Pw V Vz Qwz). 

This will also permit an acceptable mating to be found (since Px and Pw can be 
given the same mates), but the search for the mating will be more complicated in this 
case. 

One would like to develop a set of heuristics for duplicating quantifiers. An 
example of such a heuristic for first-order logic is the following: Suppose L is a 
literal-occurrence and P~ . . . . .  P,  are vertical paths such that for each i <_ n, L occurs 
in every pair of potential mates which fix P,, but no mating simultaneously fixes 
P1 . . . . .  and Pn. Then duplicate some quantifier with L in its scope. 

5. Implementation 

A computer program based on these ideas has been constructed by Eve Cohen, with 
assistance from Harry Porta and Dale Miller. The program handles sentences of type 
theory as well as those of first-order logic, and uses Huet's unification algorithm [22] 
for type theory. Of course, it is not logically complete for type theory. 

Experimentation with and development of the program are continuing, but the 
program has already been able to prove a number of theorems, such as Theorem A, 
which seemed quite intractable (within reasonable restrictions on time and memory) 
for an earlier program [2] (based on [1]) which reduced wffs to clauses. Appendix B 
gives a sampling of theorems proved by the program. 

It has been found that if the theorem to be proved contains m as an abbreviation, 
the way this abbreviation is eliminated can significantly affect the time required 
to prove the theorem. Every wf part of the form [M ~ N] may be replaced by 
[(~M V N) A (M V ~N)] or by ([M A N] V [~M A ~N]). As can be seen from 
Figure 13, which choice is made can affect the number of vertical paths in the wff. 
(Note that if M is a complex formula which initially contains quantifiers, a naive 
system may spend considerable time fixing all vertical paths which go through both 
M and -M.)  One can minimize the number of vertical paths by treating each 
occurrence of m appropriately. (Positive and negative occurrences should be handled 
differently.) We illustrate this (in a rather naive way, since the example is really too 
simple) in Figure 14, where we find an amplification for Theorem B slightly different 
from that obtained in Figures 2-4. Figure 4 has 32 vertical paths, but G in Figure 14 
has only 8. 

Let Theorem C be 3x Vy [Px =- Py] -= [3x Px ~ Vy Py]. Treating ~- naively 
(uniformly), the computer produced a complete automatic proof of Theorem C in 37 
seconds. With the same heuristics but with ~ handled so as to minimize the number 
of vertical paths, the computer required only 21 seconds to prove the theorem. 

Similar considerations govern the production of clauses. Let Theorem D be 

(ax Vy [Px m py] ~ [3x Qx ~- Vy Py]) 
m (3x Vy [Qx ~ Qy] -= [3x Px ~ vy  Qy]) 

(which is indeed valid). If one eliminates ~ from the negation of Theorem D naively, 
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[-SvV_;] 
FIG, 13. 

[;]v[:;] 
Two ways of treating [M -ffi N] 
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Theorem B. 

(B) 3x Vy [Px m Py] D [3x ex -i Vy Py] 

Negate, and eliminate ~ and D" 

(C) 3x Vy ([Px A Py] V [~Px A ~Py]) 
A [3x Px A 3y ~Py] V [Vy Py A Vx ~Px]) 

Skolemize. 

(D) Vy ([Pc A Py] V [~Pc A ~Py]) 
A ([Pd A ~Pc] V [Vz Pz A Vx ~Px]) 

Duplicate quantifier and normahze. 

(F) Vy ([Pc A Py] V [~Pc A ~Py]) 
A Vw ([Pc A Pw] V [~Pc A ~Pw]) 
A ([Pd A ~Pc] V [Vz Pz A Vx ~Px]) 

Delete quanUfiers: 

(G) 

r[ F;] v r ~ °iL 
l[ ;:]vr-P:l L ~pwj [[_Sd] v[_;:] 

FIGURE 14 

one gets 2704 clauses; if one does it so as to minimize the number of  clauses, one gets 
128 clauses; if one does it so as to minimize the number of  vertical paths (and thereby 
maximize the number of  clauses), one gets 16,384 clauses! Of course, in propositional 
calculus the extra clauses would all be tautologies, but this is not the case for first- 
order logic. 

Experience with the program has revealed certain problems which must be dealt 
with to obtain an efficient implementation, which we mention briefly. 

A mating can be built up in a multitude of  ways, differing in the orders in which 
pairs of  literal-occurrences are put in. It is nnportant to have a redundancy check, so 
that a mating is not constructed if it, or a subset of  it, has previously been rejected. 

Symmetries in the wff  under consideration also produce redundant matings. 
Symmetries may occur in the original statement of  the theorem, and they are created 
whenever quantifiers are duplicated. Symmetries [29] can be regarded as automorph- 
isms of  ~ ( F )  under which the wff  F is carried into an alphabetic variant of  itself. For 
example, suppose a wf part VxA(x) has been duplicated to form VxA(x) A VyA(y). 
Let ¢:£q~(F) ~ Aa(F) be defined so that eL = the copy of  L in A(y) (respectively, 
A(x)) if  L is in A(x) (respectively, A(y)), and eL = L if L is not in A(x) or A(y). 
Given any such symmetry ~- and a mating J / ,  there is a mating 

~.,//= ((~-L, I-K) I (L, K) ~ J¢} 

which is symmetrical to JL  Clearly 'rJg is acceptable iff Jg  is. Thus a mating should 
be rejected if a mating symmetrical to it, or a subset of it, has already been rejected. 

Updating the connection graph as the mating is constructed is very beneficial in 
limiting the search. However, to facilitate backtracking, one must keep track of the 
connection graph for each step of  the mating process to which one might backtrack, 
and this might cause storage problems. One way to keep track of the information can 
be roughly described as follows. The original connection graph can be represented as 
a list of  pairs, which can be rearranged at will. Suppose the current mating has been 
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constructed in n stages, with a pair having been added at each stage, and let Oi be the 
substitution associated with the mating at the / th  stage, for i = 1 . . . . .  n. Let S~ be a 
list of  the pairs which have been found to be incompatible with O, (i.e., pairs (M, N)  
such that O,N and ~O,M are not unifiable), but not with 0j for a n y j  < i, and let T b e  
a list of  the pairs in the connection graph which are not in IJ,~a S,. Store the 
connection graph in the order T, S,, Sn-~ . . . . .  $2, S~, with markers to separate the 
sublists. Then when one backtracks from stage n to stage n - 1, one simply removes 
the marker between T and S,. Of  course, one need not update the entire connection 
graph at each stage; one can simply keep pairs in Tunti l  one has occasion to examine 
them. 

Good ways of  handling wffs containing = must still be devised. I f  the system is not 
restricted to first-order logic, one can define [.4 = B] as Vp [~pA V pB], where p is 
a predicate variable. Literals whose atoms start with predicate variables can be mated 
with arbitrary literals, so the large number of  potential mates for literals such as -pA 
and pB produces an enormous number of  matings which must be explored when 
seeking a proof of  a theorem in which = occurs frequently. However, once one 
chooses a substitution for p which mates ~pA with some literal, the possible mates 
for pB become quite limited. Therefore, mates for ~pA and pB should be chosen 
simultaneously. This heuristic for handling = has proved quite helpful, though 
additional heuristics are needed. 

Appendix A 

Here we show how Theorem A is processed. Theorem A is 

[#FEB" RoB U SoB] ~ • [#F~BR~B] U • #F, BSo a 

NEGATE:  

(1) [ - .  [[#F.B] • RoB U SM --- • [ [ # F M  RoB] U • [#F,M SM 

~, or equality between sets, is defined as [~Po, Qo~ Vx, [Po~x,~ ~ Qo,~X,~]]. 
INSTANTIATE -~, and eliminate the propositional connective ~- in a way which 
will minimize the number of  clauses to be produced: 

(2) 3x~ .  I-It#Fan] • RoB U SoB] x~ V -[[[#F,M RoB] U • [#F.B] SoB] x,~] 
A [[[#F,B] • RoB O Son] x~ V [[[#F,fl] RoB] O • [#F,B] Son] x~] 

U is defined as [XPo~Qo~)~x~ [Po,x~ V Qo~x,]]. 
INSTANTIATE U: 

2 1 (3) 3xX~.[-U#F~I .~x~.RoBx~ V .So~xa]xo 
V • -[[#F~B] RoB] x~ m -[[#F.B] SoB] xl~] 

4 1 A • [#F~B][~x ~ • Roax~ V • SoBxa] x,~ 
V .  [[#FM Roal x~ V I[#FM SoB] x~ 

# is defined as [XF,,aXDoaXy,. 3xa[Doax B A .y, = F,~xflll. 
INSTANTIATE #: 

(4) 3x~ .[[Vx~ .[~ROBx~ A ~Soaxg] V . - . x ~  = .V,~#x~] 
v .  [Vx~. -RoBx~ v - .  x ~ = • Fopx ~] 
A .  Vx~. ~SoBx~ V ~.xl~ = • F,Bx~] 
A .[3xaB. [RO~x~ V SoBxa,] A .x~ = • F,~x~] 

1 "F,ax t °] V • [3x~ °.  Ro~x~ ° A .x~ = 
1 . F,~B x ~1 V . 3 x ~  ~ .SoBx~ ~ A . x~  = 

= is defined as [Xx. )~y,. VP~ [~Po,x~ V Po~y~]]. 
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INSTANTIATE =: 

(5) 3x~.[[Vx~.I~Ropx~ A • ~.Sopx~] 
v . :~ro5 . r L x ~  A ° ~Po,~ . F~axa] 
V" [Vx~. ~Roax~ V " 3 P ~  "Poc~Xa7 1 A ~Po~r . F,~/~x~] 
A .Vx~ .~Sol3X~ V .3po8 .eooe3Ca8 1 A- -eoa8  .F~ax~] 
A [:Ix~ lRopx~ V So~x~] A .VPgo, o 1 9 9 . . . .  Po~x,~ V • Poe. F,,Bxt~] 
v . [ 3 x ~  ° RoBx~°A u . . , 0  -~0 ~ . - ~ 0  ~ ,o. • • V / ' o ~  • ~1"%,~X,~ V Fo~ • l~aBX B ] 
V "3X~  1 .SoBx~ 1 A ~ - - H  ~ l l  1 I I  • v r ~ . - r o ~ x ~  V Po~ .  F~px~ ~ 

S K O L E M I Z E :  

(6) [Wx~ .[~Ropx~ A ~So~x~] 
r~6 6 1 6 6 6 V • r~x~x,~ A ~ .  Po~Xfl. F~x~] 

~ 7  7 1 A 7 7 7 V [Vx~ ~Ro~x~ V .ro~X~X,, • • ~ P o ~ X ~  • F ~ x ~ ]  
"r'.8 8 1 8 8 A .Vx~ .~Soax~ V .ro,aXaX~ A ~Vo~aX a .F,,ax~l 

A .  [[Ro~x~ V So~x~] A • VPo~,, • - e o ~ x ~  V Po°~ • F,~ax~] 
v .[Roax~ ° A . V P L  ° .  ~ , o  ~ lO ~ro,~X~ V Po~. F~ax~°] 
V ° So~Xfl 1 A - V p o I ~  1.° ~Vol~lx~ 1 

Deleting the quantifiers yields (2) of Figure 1. 

P E T E R  B.  A N D R E W S  

Appendix B 

Here we list some theorems of first-order and higher order logic which have been 
proven in automatic mode by the program mentioned in Section 5 using the naive 
scheme of duplicating outermost quantifiers which was discussed in Section 4. No 
heuristic for dealing with symmetries was used. The times given for the proofs are 
not of great significance, since the theorems were proven with various heuristics at 
various stages in the refinement of the program. 
Some of the definitions which appear in these theorems were explained in Appendix 
A. Explanations of the others are as follows: 

COMMUTATIVE is defmed as [)~H~ • VX B V YB" [[Ha~pXp] YB] = • [H~BBYB]XP]- 
o (composition of functions) is defined as [AF~phGavXXv. F~p. GpyXv]. 
#( the  powerset operation) is defined as [hPo~hQo~. Qo~ c_ Po~]. 
c is defined as [APo~hQo~. V X , .  [ - .  Po~X~] V • Qo,X~]. 
N is defined as [APo~XQo~hX~. [Po~X~] A • Qo~X~]. 

Theorems Proved by the System 

THM5 (Cantor's Theorem for Sets. The power set of a set has more members than 
the set.) 

~3Go,,VFo,3J, .[Go,J,] -- Fo, (11 seconds) 

THM24 (The computer must find a noncommutative operator.) 

~[U, = V,] D 3G,,(,,)(,,). ~COMMUTATIVE G,,(,,)(,,) (11 seconds) 

THM25 (This is Quine's modification of Russell's paradox; let Rxy mean x ~ y.) 

~3Y, VX, .[Ro,,X,Y,] ~- ~3Z,.[Ro,X,Z,] A [Ro, Z,X,] (10 seconds) 

THM29 

[#F~#.#G#vSo d --- .#[F~a o GpdSo v (26 seconds) 
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THM34 (Theorem A) 

[#F~B. RoB U Sos] ~ • [ # F ,  BRoB] t_J • #F~BSo B (243 seconds) 
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THM36 

[Ro, = So,] D • Ro, C So, (5 seconds) 

THM44 (Useful in eliminating a quantifier on a second-order variable) 

3So, VX, [[[So,X,] V • Po,X,] A • I-So,X,] V -  Qo,X,] 
~- v Y,. [Po, Y,] V • Qo, Y, (12 seconds) 

THM45 

[[Po,,D,E,] A VX, VY,[[Po,,X,Y,] D .[Po,,Y,X,] A .Qo,X,Y,] A VU,VV, 
[[Qo, U,V,] ~ .Qo,,U,U,]] ~ .[Qo,,O,O,] A .Qo,,E,E, (21 seconds) 

THM46A 

[~  [Do, n Eo,]] m • [#Do,] n • ~Eo, (23 seconds) 

THM53 (Distributes a quantifier over an equivalence) 

VX,[[Po,X,] ~- 3Y, .Po, Y,] ~ .VX,[Po, X,] ~. 3Y,.Po, Y, (23 seconds) 

THM55 (Theorem C) (Distributes quantifiers over an equivalence) 

3x,  vY,[[Po, X,] -= .Po, Y,] -= .3x,[Po, X,] -= .vY,  .Po, Y, 

THM56 

vx,[[eo, X,] -= vY,  .Po, Y,] =- .3x,[eo, x,] -= vY,  .Po, Y, 

THM58 

[[Xo~ n Yoo] u zo~] =- • [Xo~ u Zoo] n • Yo~ u zo~ 

(21 seconds) 

(16 seconds) 

(9 seconds) 
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