Verifying Safety Properties of Lustre Models by Temporal Induction
A Lustre program is in essence a set of constraints between its input streams and output streams.

These constraints operate in an algebra of streams.

But they can also seen as Boolean and arithmetic constraints over instantaneous configurations of the program.

Important observation: A stream x containing values of type T is essentially a function $x : \mathbb{N} \rightarrow T$.

For each $n \in \mathbb{N}$,

$$x(n)$$

is the value of x at position (or, *instant*) n.
Instantaneous Configuration

Let L be a Lustre program. Let

- x_1, \ldots, x_p be streams given in input to L, and
- x_{p+1}, \ldots, x_{p+q} be the non-input (i.e., local and output) streams computed by P.

For each $n \in \mathbb{N}$, the tuple of values

$$\langle x_1(n), x_2(n), \ldots, x_{p+q}(n) \rangle$$

is a **configuration (of L at instant n)**.
Instantaneous Configuration: Example

node counter (R:bool, X:int) returns (Y:bool);
var C: int;
let
 C = X -> if R then X else pre(C) + 1;
 Y = (C = 5);
tel;

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>false, false, false, true, false, false, …</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>0, 4, 5, 1, 0, 11, …</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0, 1, 2, 1, 2, 3, …</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>false, false, false, false, false, false, …</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration at instant 3:

\[\langle R(3), X(3), C(3), Y(3) \rangle = \langle true, 1, 1, false \rangle \]
node counter \((R: \text{bool}, X: \text{int}) \rightarrow (Y: \text{bool})\);
var \(C: \text{int}\);

let
\[
C = X \rightarrow \text{if } R \text{ then } X \text{ else } \text{pre}(C) + 1;
Y = (C = 5);
\]
tel;

The program above can be seen as the following set of constraints for all \(n \in \mathbb{N}\).

\[
C(n) = \begin{cases}
X(n) & \text{if } n = 0 \\
\text{if } R(n) \text{ then } X(n) & \text{else if } R(n) \text{ then } X(n) \\
C(n - 1) + 1 & \text{else}
\end{cases}
\]

\[
Y(n) = C(n) = 5
\]
node test(X: bool) returns (P : bool);
var A, B : bool;
let
 A = X -> pre A;
 B = not (not X -> pre (not B));
-- A and B are identical streams
 P = A = B;
tel;

Conjecture: test always returns that constantly true stream.

How do we prove that?
Mathematically, the program \texttt{test} expresses, for all \(n \in \mathbb{N} \), the constraints set \(\Delta_n \):

\[
A(n) = \begin{cases}
\text{if } n = 0 \text{ then } X(n) \text{ else } A(n - 1) \\
\text{else}
\end{cases}
\]

\[
B(n) = \neg (\text{if } n = 0 \text{ then } \neg X(n) \text{ else } \neg B(n - 1))
\]

\[
P(n) = A(n) = B(n)
\]

We want to show that \(P(n) = \text{true} \) for all \(n \in \mathbb{N} \).

To do that, we can reason by induction on \(n \):

1. First, we prove that \(P(0) \)'s value is always \text{true}.
2. Then, we prove that whenever \(P(n) \) is \text{true} for an arbitrary \(n \) then \(P(n + 1) \) is also \text{true}.
Proving Properties by Induction

Induction proof:

Base case) Prove that $\Delta_0 \Rightarrow P(n)$

Induction Step) Prove that $\Delta_n \land \Delta_{n+1} \land P(n) \Rightarrow P(n + 1)$

We have 3 possibilities.

1. Both the base case and the induction step hold. Then, we can conclude that P is always true.

2. The base case does not hold. Then, clearly, P is sometimes false.

3. The base case holds but the induction step does not. Then, we cannot conclude anything about P.

Induction Proof: Example

\[
\begin{align*}
A(n) & \quad = \quad \text{if } n = 0 \text{ then } X(n) \text{ else } A(n - 1) \\
\Delta_n: \quad B(n) & \quad = \quad \text{not (if } n = 0 \text{ then not } X(n) \text{ else not } B(n - 1)) \\
P(n) & \quad = \quad A(n) = B(n)
\end{align*}
\]

Base case \(\Delta_0 \) is equivalent to:

\[
\begin{align*}
A(0) & \quad = \quad X(0) \\
B(0) & \quad = \quad \text{not (not } X(0)) \\
P(0) & \quad = \quad A(0) = B(0)
\end{align*}
\]

Clearly, \(P(0) = true \)
Induction Proof: Example

\[A(n) = \begin{cases}
 X(n) & \text{if } n = 0 \\
 A(n-1) & \text{else}
\end{cases} \]

\[\Delta_n: \quad B(n) = \neg (\begin{cases}
 \neg X(n) & \text{if } n = 0 \\
 \neg B(n-1) & \text{else}
\end{cases}) \]

\[P(n) = \begin{cases}
 A(n) & \text{if } n = 0 \\
 B(n) & \text{else}
\end{cases} \]

Induction Step Assume that \(A(n), B(n), C(n) \) are defined as in \(\Delta_n \). \(\Delta_{n+1} \) is equivalent to:

\[A(n+1) = A(n) \]
\[B(n+1) = \neg (\neg B(n)) \]
\[P(n+1) = A(n+1) = B(n+1) \]

If we assume that \(P(n) \) is true, it must be that \(A(n) = B(n) \).

But then, we can conclude that \(P(n+1) \) is true.
Limits of Simple Induction

node counter (R: bool) returns (P: bool);
var C: int;
let
 C = 0 -> if (R or pre(C) = 2) then 0
 else pre(C) + 1;

 P = C <= 4;
tel;

Observe:

- C is never more than 2, so P is constantly true.
- However, simple induction is unable to prove that.
- The problem is that the induction step does not hold.
Limits of Simple Induction

\[C(n) = \begin{cases} 0 & \text{if } n = 0 \\ \text{if } R(n) \text{ or } C(n - 1) = 2 \text{ then } 0 \\ \text{else } C(n - 1) + 1 \end{cases} \]

\[\Delta_n: \]

\[P(n) = C(n) \leq 4 \]

\[C(n + 1) = \begin{cases} 0 & \text{if } R(n + 1) \text{ or } C(n) = 2 \text{ then } 0 \\ \text{else } C(n) + 1 \end{cases} \]

\[\Delta_{n+1}: \]

\[P(n + 1) = C(n + 1) \leq 4 \]

We need to show that the following implication holds:

\[\Delta_n \wedge \Delta_{n+1} \wedge P(n) \Rightarrow P(n + 1) \quad (\ast) \]

but is does not.
Why the induction step does not hold

Observe: Intuitively, the *counter* node should behave as this finite state machine

![Finite State Machine Diagram]

where

- each state stores the (integer) value of \(C \) and
- each transition is controlled by the (Boolean) value of \(R \).
Why the induction step does not hold

\[P(n) \overset{\text{def}}{=} C(n) \leq 4 \]
Why the induction step does not hold

\[P(n) \overset{\text{def}}{=} C(n) \leq 4 \]

Doesn't every state here satisfy \(P \)!!
Why the induction step does not hold

\[P(n) \overset{\text{def}}{=} C(n) \leq 4 \]

Yes, but we were forgetting there are more possible states!
Why the induction step does not hold

\[P(n) \overset{\text{def}}{=} C(n) \leq 4 \]

All of these, in fact.
Why the induction step does not hold

\[P(n) \overset{\text{def}}{=} C(n) \leq 4 \]

When \(C(n) = 4 \) and \(R(n) = \text{false} \), say,

\(P(n) \) is true but \(P(n + 1) \) is not.
Why the induction step does not hold

\[P(n) \overset{\text{def}}{=} C(n) \leq 4 \]

When \(C(n) = 4 \) and \(R(n) = \text{false} \), say, \(P(n) \) is true but \(P(n + 1) \) is not.

Problem: This is not a counter-example to \(P \):

- \(\langle C(n), R(n) \rangle = \langle 4, \text{false} \rangle \) is not a configuration of counter

 - but assuming just \(P(n) \) is not enough to rule it out.
Why the induction step does not hold

\[P(n) \overset{\text{def}}{=} C(n) \leq 4 \]

When \(C(n) = 4 \) and \(R(n) = \text{false} \), say,

\(P(n) \) is true but \(P(n + 1) \) is not.

(Partial) Solution:

Assume \(P(n - k), \ldots, P(n - 1), P(n) \) for a large enough \(k \).
k-induction: Induction with Depth

Fix some concrete $k \geq 0$

Base case) Prove that

$$\Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)$$

Induction Step) Prove that

$$\Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n + k) \Rightarrow P(n + k + 1)$$

We have again 3 possibilities:
Fix some concrete $k \geq 0$

Base case) Prove that

$$\Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)$$

Induction Step) Prove that

$$\Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1)$$

We have again 3 possibilities:

1. Both the base case and the induction step hold.
 Then, we can conclude that P is always true.
k-induction: Induction with Depth

Fix some concrete $k \geq 0$

Base case) Prove that

\[\Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k) \]

Induction Step) Prove that

\[\Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1) \]

We have again 3 possibilities:

2. The base case does not hold.
 Then, $P(m)$ is false for some $m \in \{0, \ldots, k\}$.
k-induction: Induction with Depth

Fix some concrete $k \geq 0$

Base case) Prove that

$$\Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)$$

Induction Step) Prove that

$$\Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1)$$

We have again 3 possibilities:

3. The base case holds but the induction step does not.

 Then, we cannot conclude anything about P.

 But we can increase k and start again.
Previous Example

\[C(n) = \begin{cases} 0 & \text{if } n = 0 \\ C(n-1) + 1 & \text{else} \end{cases} \]

\[\Delta_n: \begin{cases} 0 & \text{if } R(n) \text{ or } C(n-1) = 2 \\ C(n-1) + 1 & \text{else} \end{cases} \]

\[P(n) = C(n) \leq 4 \]

\[\Delta_{n+1}: \begin{cases} 0 & \text{if } R(n+1) \text{ or } C(n) = 2 \\ C(n) + 1 & \text{else} \end{cases} \]

\[P(n+1) = C(n+1) \leq 4 \]

- With \(k \)-induction we can prove that \(P \) is always true.
- **Exercise:** Find the smallest value of \(k \) that will do.
The k-induction Procedure

1: $k := 0$;
2: while true do
3: check validity of $\Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)$;
4: if counter-example found then
5: return counter-example
6: end if;
7: check validity of
 $\Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1)$;
8: if valid then
9: return "Property holds"
10: end if;
11: $k := k + 1$;
12: end while
Features of the k-induction Procedure

- When Δ contains no multiplications, the validity tests in lines 3 and 7 can be performed completely automatically.
- The induction procedure is sound: if it says that the property holds, then the property does hold.
- However, the procedure is still incomplete: for some properties that do hold it may loop forever.
- The procedure can be made complete for some (large) classes of Lustre programs, including finite state ones.
- However, it is impossible to make the procedure complete (and still automatic) for all Lustre programs.
Limits of k-induction

node counter2 (R, X: bool) returns (P: bool);
var C: int;
let
 C = 0 -> if (R or pre(C) = 2) then 0 else pre(C) + 1;
P = X or (C <= 4);
tel;

Similar to counter but now P is $X \lor (C \leq 4)$, with X an additional input stream.

P is again always true but k-induction is unable to prove that for any k.

For each k, there is a counter-example for the induction step, e.g., $n = 10$, $C(n - 1) = 4$, $X(n) = true$, $X(n + k) = true$, and $X(n + k + 1) = false$.
A Simplifying Assumption

Let us consider only Lustre programs where pre applies only to variables.

Note: This is with no loss of generality. For example, the first program below can be rewritten equivalently into the second:

```lustre
node Foo (X,Y: int) returns (Z:int);
let
  Z = 0 -> pre (X + Y);
tel;

node FooNorm (X,Y: int) returns (Z:int);
var U: int
let
  U = X + Y;
  Z = 0 -> pre(U);
tel;
```
If L is a Lustre program, let S be the tuple of L’s *state variables*, non-input variables that occur within a \texttt{pre}.

Example. $S = \langle A, C \rangle$ for this program:

```plaintext
node test( X: bool ) returns ( P : bool );
var A, B, C : bool;
let
  A = X -> \texttt{pre} A;
  B = \text{not} (\texttt{not} X \rightarrow \texttt{pre}(C));
  C = \text{not} B;
  P = A = B;
\text{tel};
```

The value S_n that the tuple S has at some instant n is the *state of L at instant n*.
\(k\)-induction with Distinct States

- We can make \(k\)-induction less incomplete, by considering only configurations with distinct states.

- Let \(D_{0,k}\) be the formula stating that the states \(S_0, \ldots, S_k\) are pairwise distinct. (And similarly for \(D_{n,n+k+1}\)).

- We can use

Base case)

\[
D_{0,k} \land \Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)
\]

Induction step)

\[
D_{n,n+k+1} \land \Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1)
\]
The k-induction Procedure with Distinct States

1: $k := 0$;
2: **while** true **do**
3: check validity of $D_{0,k} \land \Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)$;
4: **if** counter-example found **then**
5: return counter-example
6: **end if**;
7: check $D_{n,n+k+1} \land \Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1)$;
8: **if** valid **then**
9: return "Property holds"
10: **end if**;
11: $k := k + 1$;
12: check validity of $\Delta_0 \land \cdots \land \Delta_k \Rightarrow \neg D_{0,k}$;
13: **if** valid **then**
14: return "Property holds"
15: **end if**;
16: **end while**
Adding the distinct states restriction to k-induction preserves its soundness.

It makes it complete for programs where every legal execution sequence with pairwise distinct states is shorter than some positive integer d.

This is the case, for instance, for finite state programs, programs whose state variables can take only finitely many values.

But it is also the case for some (potentially) infinite state programs like counter2.