The Lustre Language

Synchronous Programming

Pascal Raymond, Nicolas Halbwachs

Verimag-CNRS
Data-flow approach

• A program = a network of operators connected by wires

• Rather classical (control theory, circuits)

```
node Average(X, Y : int)
returns (A : int);
let
A = (X + Y) / 2 ;
tel
```

• Synchronous: discrete time = \(\mathbb{IN} \)

\[\forall t \in \mathbb{IN} \ A_t = (X_t + Y_t)/2 \]

• Full parallelism: nodes are running concurrently
Another version

node Average(X, Y : int)
returns (A : int);

var S : int; -- local variable
let
 A = S / 2; -- equations
 S = X + Y; -- (order does not matter)

tel

- **declarative**: set of equations
- **a single equation for each output/local**
- **variables are infinite sequences of values**
Lustre (textual) and Scade (graphical)
Combinational programs

- Basic types: bool, int, real

- Constants:
 \[2 \equiv 2, 2, 2, \ldots \]
 \[\text{true} \equiv \text{true}, \text{true}, \text{true}, \ldots \]

- Pointwise operators:
 \[\mathbf{X} \equiv x_0, x_1, x_2, x_3, \ldots \quad \mathbf{Y} \equiv y_0, y_1, y_2, y_3, \ldots \]
 \[\mathbf{X} + \mathbf{Y} \equiv x_0 + y_0, x_1 + y_1, x_2 + y_2, x_3 + y_3, \ldots \]

- All classical operators are provided
• if operator

node Max(A,B: real) returns (M: real);
let
 M = if (A >= B) then A else B;
tel

Warning: functional “if then else”, not statement

Combinational programs

Lustre (textual) and Scade (graphical)
Memory programs

Delay operator

- Previous operator: `pre`

<table>
<thead>
<tr>
<th>X</th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pre X</code></td>
<td>nil</td>
<td>x_0</td>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>...</td>
</tr>
</tbody>
</table>
Memory programs

Delay operator

- Previous operator: pre

\[
\begin{array}{ccccccc}
X & x_0 & x_1 & x_2 & x_3 & x_4 & \ldots \\
\text{pre } X & \text{nil} & x_0 & x_1 & x_2 & x_3 & \ldots \\
\end{array}
\]

i.e. \((\text{pre } X)_0\) undefined and \(\forall i \neq 0 \ (\text{pre } X)_i = X_{i-1}\)
Memory programs

Delay operator

- Previous operator: pre

 $X \ x_0 \ x_1 \ x_2 \ x_3 \ x_4 \ ...$

 $\text{pre} \ X \ \text{nil} \ x_0 \ x_1 \ x_2 \ x_3 \ ...$

 i.e. $(\text{pre} X)_0$ undefined and $\forall i \neq 0 \ (\text{pre} X)_i = X_{i-1}$

- Initialization: \rightarrow

 $X \ x_0 \ x_1 \ x_2 \ x_3 \ x_4 \ ...$

 $Y \ y_0 \ y_1 \ y_2 \ y_3 \ y_4 \ ...$

 $X \rightarrow Y \ x_0 \ y_1 \ y_2 \ y_3 \ y_4 \ ...$
Memory programs

Delay operator

• Previous operator: \(\text{pre} \)

\[
\begin{array}{c}
X \quad x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad \ldots \\
\text{pre} X \quad \text{nil} \quad x_0 \quad x_1 \quad x_2 \quad x_3 \quad \ldots \\
i.e. \ (\text{pre} X)_0 \text{ undefined and } \forall i \neq 0 \ (\text{pre} X)_i = X_{i-1}
\end{array}
\]

• Initialization: \(\rightarrow \)

\[
\begin{array}{c}
X \quad x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad \ldots \\
Y \quad y_0 \quad y_1 \quad y_2 \quad y_3 \quad y_4 \quad \ldots \\
X \rightarrow Y \quad x_0 \quad y_1 \quad y_2 \quad y_3 \quad y_4 \quad \ldots \\
i.e. \ (X \rightarrow Y)_0 = X_0 \text{ and } \forall i \neq 0 \ (X \rightarrow Y)_i = Y_i
\end{array}
\]
Nodes with memory

- **Boolean example: raising edge**

node Edge (X : bool) returns (E : bool);
let
 E = false -> X and not pre X ;
tel

- **Numerical example: min and max of a sequence**

node MinMax(X : int)
returns (min, max : int); -- several outputs
let
 min = X -> if (X < pre min) then X else pre min;
 max = X -> if (X > pre max) then X else pre max;
tel
Recursive definition

Examples

• $N = 0 \rightarrow \text{pre } N + 1$
Recursive definition

Examples

• $N = 0 \rightarrow \text{pre } N + 1$ \(N = 0, 1, 2, 3, \ldots \)
Recursive definition

Examples

• $N = 0 \rightarrow \text{pre } N + 1$ $N = 0, 1, 2, 3, \cdots$

• $A = \text{false} \rightarrow \text{not pre } A$
Recursive definition

Examples

- \(N = 0 \rightarrow \operatorname{pre} N + 1 \quad N = 0, 1, 2, 3, \ldots \)
- \(A = \text{false} \rightarrow \neg \operatorname{pre} A \quad A = \text{false, true, false, true,} \ldots \)
Recursive definition

Examples

- $N = 0 \rightarrow \text{pre } N + 1 \quad N = 0, 1, 2, 3, \cdots$

- $A = \text{false} \rightarrow \text{not pre } A \quad A = \text{false, true, false, true, } \cdots$

- Correct \Rightarrow the sequence can be computed step by step

Counter-example

- $X = 1/(2-X)$

- unique (integer) solution: “$X=1$”

- but not computable step by step

Sufficient condition: forbid combinational loops

How to detect combinational loops?
Syntactic vs semantic loop

- Example:
 \[X = \text{if } C \text{ then } Y \text{ else } A; \]
 \[Y = \text{if } C \text{ then } B \text{ else } X; \]

- Syntactic loop

- But not semantic: \[X = Y = \text{if } C \text{ then } B \text{ else } A \]

Correct definitions in Lustre

- Choice: syntactic loops are rejected
 (even if they are “false” loops)
Exercices

- A flow \(F = 1, 1, 2, 3, 5, 8, \cdots ? \)
- A node \(\text{Switch(on, off: bool)} \) returns \((s: \text{bool}) \); such that:
 - \(s \) raises \((false \text{ to true})\) if \(\text{on} \), and falls \((true \text{ to false})\) if \(\text{off} \)
 - everything behaves as if \(s \) was \(false \) at the origin
 - must work properly even if \(\text{off} \) and \(\text{on} \) are the same
- A node \(\text{Count(reset, x: bool)} \) returns \((c: \text{int}) \); such that:
 - \(c \) is reset to 0 if \(\text{reset} \), otherwise it is incremented if \(x \),
 - everything behaves as if \(c \) was 0 at the origin

Recursive definition
Solutions

- **Fibonacci:**
 \[f = 1 \rightarrow \text{pre}(f + (0 \rightarrow \text{pre } f)) ; \]

- **Bistable:**
 node Switch(on, off: bool) returns (s: bool);
 let s = if(false \rightarrow \text{pre } s) then not off else on; tel

- **Counter:**
 node Count(reset, x: bool) returns (c: int);
 let
 \[
 c = \begin{cases}
 0 & \text{if reset then} \\
 (0\rightarrow\text{pre } c) + 1 & \text{else if } x \text{ then} \\
 (0\rightarrow\text{pre } c) & \text{else}
 \end{cases}
 \]
 tel
Modularity

Reuse

- Once defined, a user node can be used as a basic operator
- Instanciation is functional-like
- Example (exercice: what is the value?)
 \[A = \text{Count}(true \rightarrow (\text{pre } A = 3), \text{true}) \]
- Several outputs:

```plaintext
node MinMaxAverage(x: bool) returns (a: int);
var min, max: int;
let
  a = average(min, max);
  min, max = MinMax(x);
tel
```
A complete example: stopwatch

- **1 integer output**: displayed time
- **3 input buttons**: on, off, reset, freeze
 - **on/off** starts and stops the stopwatch
 - **reset** resets the stopwatch (if not running)
 - **freeze** freezes the displayed time (if running)
A complete example: stopwatch

- 1 integer output: displayed **time**
- 3 input buttons: **on**, **off**, **reset**, **freeze**
 - **on/off** starts and stops the stopwatch
 - **reset** resets the stopwatch (if not running)
 - **freeze** freezes the displayed time (if running)
- Find local variables (and how they are computed):
 - **running**: bool, a *Switch* instance
 - **freezed**: bool, a *Switch* instance
 - **cpt**: int, a *Count* instance
node Stopwatch(on_off, reset, freeze: bool) returns (time: int);
var running, freezed: bool; cpt: int;
let
 running = Switch(on_off, on_off);
 freezed = Switch(
 freeze and running,
 freeze or on_off);
 cpt = Count(reset and not running, running);
 time = if freezed then (0 -> pre time) else cpt;
tel
Motivation

- Attempt to conciliate “control” with data-flow
- Express that some part of the program works less often
- ⇒ notion of data-flow clock (similar to clock-enabled in circuit)
Motivation

- Attempt to conciliate “control” with data-flow
- Express that some part of the program works less often
- ⇒ notion of data-flow clock (similar to clock-enabled in circuit)

Sampling: `when` operator

```
X  4  1  -3  0  2  7  8
C  true  false  false  true  true  false  true
X when C  4  0  2  8
```

- Whenever \(C \) is false, \(X \ when \ C \) does not exist
Projection: current operator

- One can operate only on flows with the same clock
- projection on a common clock is (sometime) necessary

<table>
<thead>
<tr>
<th>X</th>
<th>4</th>
<th>1</th>
<th>-3</th>
<th>0</th>
<th>2</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>Y = X when C</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z = current(Y)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>
Nodes and clocks

- Clock of a node instance = clock of its effective inputs
- Sampling inputs = enforce the whole node to run slower
- In particular, sampling inputs \(\neq\) sampling outputs

<table>
<thead>
<tr>
<th>(C)</th>
<th>true</th>
<th>true</th>
<th>false</th>
<th>false</th>
<th>true</th>
<th>false</th>
<th>true</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count(((r,\text{true})\text{ when } C))</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count((r,\text{true})\text{ when } C)</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: stopwatch with clocks

node Stopwatch(on, off, reset, freeze: bool)
returns (time: int);
var running, freezed: bool;
 cpt_ena, tim_ena : bool;
(cpt:int) when cpt_ena;
let
 running = Switch(on, off, on, off);
 freezed = Switch(
 freeze and running,
 freeze or on, off);
 cpt_ena = true -> reset or running;
 cpt = Count((not running, true) when cpt_ena);
 tim_ena = true -> not freezed;
 time = current(current(cpt) when tim_ena);
etel
Clock checking

- Similar to type checking
- Clocks must be named (clocks are equal iff they are the same var)
- The clock of each var must be declared (the default is the base clock)
- \(clk(exp \text{ when } C) = C \iff clk(exp) = clk(C) \)
- \(clk(\text{current } exp) = clk(clk(exp)) \)
- For any other op:
 \(clk(e1 \text{ op } e2) = C \iff clk(e1) = clk(e2) = C \)
Programming with clocks

- **Clocks are the right semantic solution**

- **However, using clocks is quite tricky (cf. stopwatch)**

- **Main problem: initialisation**

 \[
 \text{current}(X \text{ when } C) \exists \text{, but is undefined until } C \text{ becomes true for the first time}
 \]

- **Solution: activation condition**

 ★ not an operator, rather a *macro*

 ★ \(X = \text{CONDACT}(OP, \text{ clk}, \text{ args}, \text{ dflt})\) equivalent to:

 \[
 X = \begin{cases} \text{if clk then current}(OP(\text{args when clk})) & \text{else (dflt -> pre X)} \end{cases}
 \]

 ★ Provided by Scade (industrial)
Is that all there is?

Dedicated vs general purpose languages

- Synchronous languages are dedicated to *reactive kernel*
- Not suitable for complex data types manipulation
- Abstract types and functions are *imported* from the host language (typically C)

However ...

- Statically sized arrays are provided
- Static recursion (Lustre V4, dedicated to circuit)
- Modules and templates (Lustre V6, dedicated to software)