Semantics of Lustre programs

- A Lustre program is in essence a set of constraints between its input streams and output streams.
- These constraints operate in an algebra of streams.
- But they can also seen as Boolean and arithmetic constraints over instantaneous configurations of the program.

Important observation: A stream x containing values of type T is essentially a function $x : \mathbb{N} \rightarrow T$.
For each $n \in \mathbb{N}$,

$$x(n)$$

is the value of x at position (or, *instant*) n.

Let L be a Lustre program. Let
\[x_1, \ldots, x_p \]
be streams given in input to L, and
\[x_{p+1}, \ldots, x_{p+q} \]
be the non-input (i.e., local and output) streams computed by P.

For each $n \in \mathbb{N}$, the tuple of values
\[\langle x_1(n), x_2(n), \ldots, x_{p+q}(n) \rangle \]
is a configuration (of L at instant n).
Instantaneous Configuration: Example

node counter (R:bool, X:int) returns (Y:bool);
var C: int;
let
 C = X -> if R then X else pre(C) + 1;
 Y = (C = 5);
tel;

\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & \ldots \\
R &=& \text{false, false, false, true, false, false, \ldots} \\
X &=& \text{0, 4, 5, 1, 0, 11, \ldots} \\
C &=& \text{0, 1, 2, 1, 2, 3, \ldots} \\
Y &=& \text{false, false, false, false, false, false, \ldots} \\
\end{array}
\]

\[\langle R(3), X(3), C(3), Y(3)\rangle = \langle \text{true, 1, 1, false} \rangle\] is the configuration at instant 3.
node counter (R:bool, X:int) returns (Y:bool);
var C: int;
let
 C = X -> if R then X else pre(C) + 1;
 Y = (C = 5);
tel;

The program above can be seen as the following set of constraints for all $n \in \mathbb{N}$.

$$C(n) = \begin{cases}
 X(n) & \text{if } n = 0 \\
 \text{else if } R(n) \text{ then } X(n) \\
 \text{else } C(n-1) + 1
\end{cases}$$

$$Y(n) = C(n) = 5$$
node test(X: bool) returns (P : bool);
var A, B : bool;
let
 A = X -> pre A;
 B = not (not X -> pre (not B));

--- A and B are identical streams
 P = A = B;
tel;

Conjecture: test always returns that constantly true stream.

How do we prove that?
Mathematically, the program test expresses, for all \(n \in \mathbb{N} \), the constraints set \(\Delta_n \):

\[
A(n) = \begin{cases}
 \text{if } n = 0 \text{ then } X(n) \text{ else } A(n - 1) \\
 \text{else}
\end{cases} \\
B(n) = \neg \left(\text{if } n = 0 \text{ then } \neg X(n) \text{ else } \neg B(n - 1) \right) \\
P(n) = A(n) = B(n)
\]

We want to show that \(P(n) = \text{true} \) for all \(n \in \mathbb{N} \).

To do that, we can reason by induction on \(n \):

1. First, we prove that \(P(0) \)’s value is always true.
2. Then, we prove that whenever \(P(n) \) is true for an arbitrary \(n \) then \(P(n + 1) \) is also true.
Induction proof:

Base case) Prove that $\Delta_0 \Rightarrow P(n)$
Induction Step) Prove that $\Delta_n \land \Delta_{n+1} \land P(n) \Rightarrow P(n+1)$

We have 3 possibilities.

1. Both the base case and the induction step hold. Then, we can conclude that P is always true.
2. The base case does not hold. Then, clearly, P is sometimes false.
3. The base case holds but the induction step does not. Then, we cannot conclude anything about P.
Induction Proof: Example

\[A(n) = \begin{cases} X(n) & \text{if } n = 0 \\ A(n - 1) & \text{else} \end{cases} \]

\[\Delta_n: \quad B(n) = \begin{cases} \neg \big(\text{if } n = 0 \text{ then } \neg X(n) \text{ else } \neg B(n - 1) \big) & \end{cases} \]

\[P(n) = A(n) = B(n) \]

Base case \(\Delta_0 \) is equivalent to:

\[A(0) = X(0) \]
\[B(0) = \neg \neg X(0) \]
\[P(0) = A(0) = B(0) \]

Clearly, \(P(0) = \text{true} \)
Induction Proof: Example

\[A(n) = \begin{cases} X(n) & \text{if } n = 0 \\ A(n-1) & \text{else} \end{cases} \]

\[\Delta_n: \quad B(n) = \neg (\neg X(n) \text{ if } n = 0 \neg B(n-1)) \]

\[P(n) = A(n) = B(n) \]

Induction Step: Assume that \(A(n), B(n), C(n) \) are defined as in \(\Delta_n \). \(\Delta_{n+1} \) is equivalent to:

\[A(n+1) = A(n) \]

\[B(n+1) = \neg (\neg B(n)) \]

\[P(n+1) = A(n+1) = B(n+1) \]

If we assume that \(P(n) \) is true, it must be that \(A(n) = B(n) \).

But then, we can conclude that \(P(n+1) \) is true.
Limits of Simple Induction

node counter (R: bool) returns (P: bool);
 var C: int;
 let
 C = 0 -> if (R or pre(C) = 2) then 0
 else pre(C) + 1;

 P = C <= 4;
 tel;

Observe:

- C is never more than 2, so P is constantly true.
- However, simple induction is unable to prove that.
- The problem is that the induction step does not hold.
Why the induction step does not hold

\[
C(n) = \begin{cases}
0 & \text{if } n = 0 \\
\text{else} & \text{if } R(n) \text{ or } C(n-1) = 2 \text{ then } 0 \text{ else } C(n-1) + 1
\end{cases}
\]

\[
\Delta_n: \quad \text{if } R(n) \text{ or } C(n-1) = 2 \text{ then } 0 \text{ else } C(n-1) + 1
\]

\[
P(n) = C(n) \leq 4
\]

\[
\Delta_{n+1}: \quad C(n + 1) = \begin{cases}
0 & \text{if } R(n+1) \text{ or } C(n) = 2 \text{ then } 0 \text{ else } C(n) + 1 \\
\text{else} & \text{if } R(n+1) \text{ or } R(n) \text{ or } R(n+1) \text{ to } false, \text{ we can satisfy } \Delta_n \wedge \Delta_{n+1} \wedge P(n) \text{ and falsify } P(n + 1).
\]

We need to show that the following implication holds:

\[
\Delta_n \wedge \Delta_{n+1} \wedge P(n) \Rightarrow P(n + 1) \quad (\ast)
\]

However, if we set, e.g., \(n \) to 10, \(C(n - 1) \) to 3, and \(R(n) \) and \(R(n + 1) \) to false, we can satisfy \(\Delta_n \wedge \Delta_{n+1} \wedge P(n) \) and falsify \(P(n + 1) \).
Why the induction step does not hold

\[
C(n) = \begin{cases}
0 & \text{if } n = 0 \\
\text{else} & \begin{cases}
0 & \text{if } R(n) \text{ or } C(n - 1) = 2 \\
C(n - 1) + 1 & \text{else}
\end{cases}
\end{cases}
\]

\[
\Delta_n: \begin{cases}
0 & \text{if } R(n) \text{ or } C(n - 1) = 2 \\
\text{else} & C(n - 1) + 1
\end{cases}
\]

\[
P(n) = C(n) \leq 4
\]

\[
C(n + 1) = \begin{cases}
0 & \text{if } R(n + 1) \text{ or } C(n) = 2 \\
\text{else} & C(n) + 1
\end{cases}
\]

\[
\Delta_{n+1}: \begin{cases}
0 & \text{if } R(n + 1) \text{ or } C(n) = 2 \\
\text{else} & C(n + 1) \leq 4
\end{cases}
\]

Problem:

- a value of 3 for \(C(n - 1) \) is impossible in the program
- but the premise of (\(\ast \)) is not strong enough to rule it out
Why the induction step does not hold

\[C(n) = \begin{cases} \text{if } n = 0 \text{ then } 0 \text{ else} \\ \Delta_n: \quad \text{if } R(n) \text{ or } C(n - 1) = 2 \text{ then } 0 \text{ else } C(n - 1) + 1 \\ P(n) = C(n) \leq 4 \end{cases} \]

\[\Delta_{n+1}: \quad C(n+1) = \begin{cases} \text{if } R(n+1) \text{ or } C(n) = 2 \text{ then } 0 \text{ else } C(n) + 1 \\ P(n+1) = C(n+1) \leq 4 \end{cases} \]

Problem:
- a value of 3 for \(C(n - 1) \) is impossible in the program
- but the premise of (\(\ast \)) is not strong enough to rule it out

Solution:
- look at a few more preceding configurations
k-induction: Induction with Depth

Fix some $k \geq 0$

Base case) Prove that

$$\Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)$$

Induction Step) Prove that

$$\Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1)$$

We have again 3 possibilities:
k-induction: Induction with Depth

Fix some $k \geq 0$

Base case Prove that

$$\Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)$$

Induction Step Prove that

$$\Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1)$$

We have again 3 possibilities:

1. Both the base case and the induction step hold. Then, we can conclude that P is always true.
\textit{k}-\textit{induction: Induction with Depth}

Fix some $k \geq 0$

Base case) Prove that

$$\Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)$$

Induction Step) Prove that

$$\Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1)$$

We have again 3 possibilities:

2. The base case does not hold.
 Then, P is false for some $m \in \{0, \ldots, k\}$.

k-induction: Induction with Depth

Fix some $k \geq 0$

Base case) Prove that

$$\Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)$$

Induction Step) Prove that

$$\Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1)$$

We have again 3 possibilities:

3. The base case holds but the induction step does not. Then, we cannot conclude anything about P.

But we can increase k and start again.
\[
C(n) = \begin{cases}
0 & \text{if } n = 0 \\
\text{else} & \end{cases}
\]

\[
\Delta_n: \quad \begin{cases}
0 & \text{if } R(n) \text{ or } C(n - 1) = 2 \\
\text{else} & C(n - 1) + 1
\end{cases}
\]

\[
P(n) = C(n) \leq 4
\]

\[
\Delta_{n+1}: \quad \begin{cases}
0 & \text{if } R(n + 1) \text{ or } C(n) = 2 \\
\text{else} & C(n) + 1
\end{cases}
\]

\[
P(n + 1) = C(n + 1) \leq 4
\]

With k-induction we can prove that P is always true.

Exercise: Find the smallest value of k that will do.
The k-induction Procedure

1: $k := 0$;
2: while true do
3: check validity of
 $\Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)$;
4: if counter-example found then
5: return counter-example
6: end if;
7: check validity of
 $\Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1)$;
8: if valid then
9: return "Property holds"
10: end if;
11: $k := k + 1$;
12: end while
Features of the k-induction Procedure

- When Δ contains no multiplications, the validity tests in lines 3 and 7 can be performed completely automatically.

- The induction procedure is **sound**: if it says that the property holds, then the property does hold.

- However, the procedure is still **incomplete**: for some properties that do hold it may loop forever.

- The procedure can be made **complete** for some (large) classes of Lustre programs, including **finite state** ones.

- However, it is **impossible** to make the procedure complete (and still automatic) for all Lustre programs.
node counter2 (R, X: bool) returns (P: bool);
var C: int; let
 C = 0 -> if (R or pre(C) = 2) then 0
 else pre(C) + 1;
 P = X or (C <= 4);
tel;

Observe:

- Similar to counter but now \(P \) is \(X \) or \(C \leq 4 \) instead of \(C \leq 4 \), with \(X \) an additional input stream.

- \(P \) is always \textit{true} but \(k \)-induction is \textit{unable} to prove that for any \(k \).

- For each \(k \), there is a counter-example for the induction step, e.g., \(n = 10 \), \(C(n - 1) = 4 \), \(X(n) = \text{true} \), \ldots, \(X(n + k) = \text{true} \), and \(X(n + k + 1) = \text{false} \).
A Simplifying Assumption

Let us consider only Lustre programs where pre applies only to variables.

Note: This is with no loss of generality. For example, the first program below can be rewritten equivalently into the second:

```plaintext
code node Foo (X,Y: int) returns (Z:int);
let
    Z = 0 -> pre (X + Y);
tel;

code node FooNorm (X,Y: int) returns (Z:int);
var U: int
let
    U = X + Y;
    Z = 0 -> pre(U);
tel;
```
If \(L \) is a Lustre program, let \(S \) be the tuple of \(L \)'s state variables, non-input variables that occur within a pre.

Example. \(S = \langle A, C \rangle \) for this program:

```plaintext
node test( X: bool ) returns ( P : bool );
var A, B, C : bool;
let
  A = X -> pre A;
  B = not (not X -> pre(C));
  C = not B;
  P = A = B;
tel;
```

The value \(S_n \) that the tuple \(S \) has at some instant \(n \) is the *state of \(L \) at instant \(n \).*
We can make \(k \)-induction less incomplete, by considering only configurations with distinct states.

Let \(D_{0,k} \) be the formula stating that the states \(S_0, \ldots, S_k \) are pairwise distinct. (And similarly for \(D_{n,n+k+1} \)).

We can use

Base case)
\[
D_{0,k} \land \Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)
\]

Induction step)
\[
D_{n,n+k+1} \land \Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1)
\]
The k-induction Procedure with Distinct States

1: $k := 0$;
2: while true do
3: check validity of $D_{0,k} \land \Delta_0 \land \cdots \land \Delta_k \Rightarrow P(0) \land \cdots \land P(k)$;
4: if counter-example found then
5: return counter-example
6: end if;
7: check validity of $D_{n,n+k+1} \land \Delta_n \land \cdots \land \Delta_{n+k+1} \land P(n) \land \cdots \land P(n+k) \Rightarrow P(n+k+1)$;
8: if valid then
9: return "Property holds"
10: end if;
11: $k := k + 1$;
12: check validity of $\Delta_0 \land \cdots \land \Delta_k \Rightarrow \neg D_{0,k}$;
13: if valid then
14: return "Property holds"
15: end if;
16: end while
Adding the distinct states restriction to \(k \)-induction preserves its soundness.

It makes it complete for programs where every legal execution sequence with pairwise distinct states is shorter than some positive integer \(d \).

This is the case, for instance, for \textit{finite state programs}, programs whose state variables can take only finitely many values.

But it is also the case for some infinite state programs like \texttt{counter2}.