Propositional Logic is insufficient

\[A \]

ALL PERSONS ARE HAPPY
Propositional Logic is insufficient

\[A \quad \text{ALL PERSONS ARE HAPPY} \]
\[B \quad \text{PAT IS A PERSON} \]
Propositional Logic is insufficient

\[A \quad \text{ALL PERSONS ARE HAPPY} \]

\[B \quad \text{PAT IS A PERSON} \]

\[? \quad \text{PAT IS HAPPY} \]

Propositional logic lacks possibility to talk about individuals
In particular, need to model objects, attributes, associations, etc.
Propositional Logic is insufficient

\[A \quad \text{ALL PERSONS ARE HAPPY} \]
\[B \quad \text{PAT IS A PERSON} \]
\[? \quad \text{PAT IS HAPPY} \]

Propositional logic lacks possibility to talk about individuals
In particular, need to model objects, attributes, associations, etc.

⇒ First-Order Logic (FOL) with Types
First-Order Logic

First-Order Formulas

First-Order Models

First-Order Sequent Calculus

\[I, \models \]

\[\vdash \]
OO Type Hierarchy

- Finite set \mathcal{T} of static types, subtype relation \subseteq,
- Dynamic types $\mathcal{T}_d \subseteq \mathcal{T}$, where $\top \in \mathcal{T}_d$
- Abstract types $\mathcal{T}_a \subseteq \mathcal{T}$, where $\bot \in \mathcal{T}_a$
- $\mathcal{T}_d \cap \mathcal{T}_a = \emptyset$, $\mathcal{T}_d \cup \mathcal{T}_a = \mathcal{T}$, $\bot \subseteq z \subseteq \top$ for all $z \in \mathcal{T}$
Signature of Typed First-Order Logic

Given type hierarchy $(\mathcal{T}, \mathcal{T}_d, \mathcal{T}_a, \sqsubseteq)$, let $\mathcal{T}_q := \mathcal{T} \setminus \{\bot\}$

Signature $\Sigma = (V, P, F, \alpha)$
Signature of Typed First-Order Logic

Given type hierarchy \((\mathcal{T}, \mathcal{T}_d, \mathcal{T}_a, \sqsubseteq)\), let \(\mathcal{T}_q := \mathcal{T} \setminus \{\bot\}\)

Signature \(\Sigma = (\mathcal{V}, \mathcal{P}, \mathcal{F}, \alpha)\)

Variable Symbols \(\mathcal{V} = \{x_i \mid i \in \mathbb{N}\}\)

Predicate Symbols \(\mathcal{P} = \{p_i \mid i \in \mathbb{N}\}\)

Function Symbols \(\mathcal{F} = \{f_i \mid i \in \mathbb{N}\}\)
Signature of Typed First-Order Logic

Given type hierarchy \((\mathcal{T}, \mathcal{T}_d, \mathcal{T}_a, \sqsubseteq)\), let \(\mathcal{T}_q := \mathcal{T} \setminus \{\bot\}\)

Signature \(\Sigma = (\mathcal{V}, \mathcal{P}, \mathcal{F}, \alpha)\)

Variable Symbols \(\mathcal{V} = \{x_i \mid i \in \mathbb{N}\}\)

Predicate Symbols \(\mathcal{P} = \{p_i \mid i \in \mathbb{N}\}\)

Function Symbols \(\mathcal{F} = \{f_i \mid i \in \mathbb{N}\}\)

Typing function \(\alpha\) for all symbols:

\(\alpha(x) \in \mathcal{T}_q\) for all \(x \in \mathcal{V}\)

We write \(x: z\) instead of \(\alpha(x) = z\) (in Java: “\(z \; t;\)”)

\(\alpha(p) \in \mathcal{T}_q^*\) for all \(p \in \mathcal{P}\)

We write \(p: z_1, \ldots, z_r\) instead of \(\alpha(p) = (z_1, \ldots, z_r)\)

\(\alpha(f) \in \mathcal{T}_q^* \times \mathcal{T}_q\) for all \(f \in \mathcal{F}\)

We write \(f: z_1, \ldots, z_r \rightarrow z\) instead of \(\alpha(f) = ((z_1, \ldots, z_r), z)\)

\(r = 0\) ok, **No overloading of variables, functions, predicates!**
Special Signature Symbols

An **Equality** symbol \doteq in P, with typing $\doteq : \top, \top$

A **type predicate** symbol \in_z in P for each $z \in \mathcal{T}_q$.
with typing $\in_z : \top$

Type cast symbol (z) in F for each $z \in \mathcal{T}_q$,
with typing $(z) : \top, z$
First-Order Signature Example

Sticks and stones may break your bones, but flowers will never hurt
First-Order Signature Example

Sticks and stones may break your bones, but flowers will never hurt

Types
\[T_d = \{ \text{Stick}, \text{Stone}, \text{Flower} \}, \quad T_a = \{ \text{Weapon}, \text{Any} \} \]

Stick, Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates
\[P = \{ \text{hurts} : \text{Any} \} \]

Functions
\[F = \{ \text{stick} : \rightarrow \text{Stick}, \text{stone} : \rightarrow \text{Stone}, r : \rightarrow \text{Flower} \} \]

Function with empty argument list: constant
First-Order Signature Example

Sticks and stones may break your bones, but flowers will never hurt

Types
\[
\mathcal{T}_d = \{\text{Stick, Stone, Flower}\}, \quad \mathcal{T}_a = \{\text{Weapon, Any}\}
\]

Stick, Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates
\[
P = \{\text{hurts} : \text{Any}\}
\]

Functions
\[
F = \{\text{stick} : \rightarrow \text{Stick}, \text{stone} : \rightarrow \text{Stone}, r : \rightarrow \text{Flower}\}
\]

Function with empty argument list: constant

Terms of First-Order Logic

Given signature \((V, P, F, \alpha)\)

Terms: Set \(\text{Term}_z\) of terms of type \(z\), one for each **static type** \(z \in \mathcal{T}\)

- \(x\) is term of type \(z\) for each variable \(x : z\)

- \(f(t_1, \ldots, t_r)\) is term of type \(z\) for each function symbol \(f : z_1, \ldots, z_r \rightarrow z\) and terms \(t_i\) of type \(z'_i \sqsubseteq z_i\) for \(1 \leq i \leq r\)

If \(f\) is constant \((r = 0)\) we write \(f\) instead of \(f()\)
Terms of First-Order Logic

Given signature \((V, P, F, \alpha)\)

Terms: Set \(\text{Term}_z\) of terms of type \(z\), one for each **static type** \(z \in T\)

- \(x\) is term of type \(z\) for each variable \(x : z\)
- \(f(t_1, \ldots, t_r)\) is term of type \(z\) for each function symbol \(f : z_1, \ldots, z_r \rightarrow z\) and terms \(t_i\) of type \(z'_i \sqsubseteq z_i\) for \(1 \leq i \leq r\)
 If \(f\) is constant \((r = 0)\) we write \(f\) instead of \(f()\)

Example:

\(T_d = \{\text{Car, Person, } \top\}\) where \(\text{Person} \sqsubseteq \top, \text{Car} \sqsubseteq \top\)

\(F = \{\text{owner : Car} \rightarrow \text{Person, pat} : \rightarrow \text{Person, herbie} : \rightarrow \text{Car}\}, \ x : \text{Car}\)

Terms: herbie, owner(herbie), owner((Car)pat) (!), owner(x)

Non-terms: Car, owner(pat), owner(((Person)herbie)
Formulas of First-Order Logic

First-Order Formulas: Set For of (first-order) formulas

- $p(t_1, \ldots, t_r)$ is an **atomic** formula for predicate symbol $p : z_1, \ldots, z_r$ and terms t_i of type $z'_i \sqsubseteq z_i$ for $1 \leq i \leq r$

- **Truth constants**, **connectives** as in propositional logic

- If x is any variable, ϕ a formula, then $\forall x. \phi$ and $\exists x. \phi$ are formulas

 We call ϕ the **scope** of variable x. We say that x is **bound** by the **quantifier** \forall in $\forall x. \phi$ (similarly for $\exists x. \phi$)
Formulas of First-Order Logic

First-Order Formulas: Set For of (first-order) formulas

- $p(t_1, \ldots, t_r)$ is an atomic formula for predicate symbol $p : z_1, \ldots, z_r$ and terms t_i of type $z'_i \sqsubseteq z_i$ for $1 \leq i \leq r$

- Truth constants, connectives as in propositional logic

If x is any variable, ϕ a formula, then $\forall x. \phi$ and $\exists x. \phi$ are formulas

We call ϕ the scope of variable x. We say that x is bound by the quantifier \forall in $\forall x. \phi$ (similarly for $\exists x. \phi$)

Bound variables in quantified formulas are analogous to local variables/formal parameters in programs

Use pathentheses and usual precedence rules to avoid syntactic ambiguity
First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt

Types
\[T_d = \{ \text{Stick, Stone, Flower} \}, \quad T_a = \{ \text{Weapon, Any} \} \]
Stick, Stone \sqsubseteq \text{Weapon} \sqsubseteq \text{Any}, \text{Flower} \sqsubseteq \text{Any}

Predicates
\[P = \{ \text{hurts : Any} \} \]

Functions
\[F = \{ \text{stick : } \to \text{ Stick, stone : } \to \text{ Stone, r : } \to \text{ Flower} \} \]

Variables
\[V = \{ x : \text{ Weapon}, y : \text{ Flower} \} \]

Examples:
First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt

Types

\[T_d = \{ \text{Stick, Stone, Flower} \}, \quad T_a = \{ \text{Weapon, Any} \} \]

Stick, Stone \sqsubseteq Weapon \sqsubseteq Any, Flower \sqsubseteq Any

Predicates

\[P = \{ \text{hurts : Any} \} \]

Functions

\[F = \{ \text{stick : } \rightarrow \text{ Stick, stone : } \rightarrow \text{ Stone, r : } \rightarrow \text{ Flower} \} \]

Variables

\[V = \{ x : \text{ Weapon, y : Flower} \} \]

Examples:

\[\forall x . \text{hurts}(x) \quad \& \quad \forall y . \neg\text{hurts}(y) \]

We sometimes write the type of quantified variables explicitly.
First-Order Syntax Example

Sticks and stones may break your bones, but flowers will never hurt

Types
\[T_d \] = \{Stick, Stone, Flower\}, \quad \[T_a \] = \{Weapon, Any\}
Stick, Stone ⊆ Weapon ⊆ Any, Flower ⊆ Any

Predicates
\[P \] = \{hurts : Any\}

Functions
\[F \] = \{stick : → Stick, stone : → Stone, r : → Flower\}

Variables
\[V \] = \{x : Weapon, y : Flower\}

Examples:
\[\forall x : Weapon . hurts(x) \land \forall y : Flower . !hurts(y) \]
Sticks and stones may break your bones, but flowers will never hurt

Types
\[T_d = \{\text{Stick}, \text{Stone}, \text{Flower}\}, \quad T_a = \{\text{Weapon}, \text{Any}\} \]
Stick, Stone \sqsubseteq \text{Weapon} \sqsubseteq \text{Any}, \text{Flower} \sqsubseteq \text{Any}

Predicates
\[P = \{\text{hurts} : \text{Any}\} \]

Functions
\[F = \{\text{stick} : \rightarrow \text{Stick}, \text{stone} : \rightarrow \text{Stone}, r : \rightarrow \text{Flower}\} \]

Variables
\[V = \{x : \text{Weapon}, y : \text{Flower}\} \]

Examples:
\[\forall x : \text{Weapon}. \text{hurts}(x) \land \forall y : \text{Flower}. \lnot \text{hurts}(y) \]
\[\text{hurts}(r) \rightarrow \exists y. \text{hurts}(y) \]
Semantics of First-Order Logic
Semantics of First-Order Logic

A **model** of FOL is a triple \(M = (D, \delta, I) \) where

- \(D \) is the **universe** or **domain**
 Contains “objects” and “values”
- \(\delta \) is a **dynamic typing** function \(\delta : D \rightarrow T_d \)
 Each domain element has dynamic (“runtime”) type
- \(I \) is an **interpretation** of the function and predicate symbols s.t.
 - If \(p : z_1, \ldots, z_r \in P \), then \(I(p) \subseteq D^{z_1} \times \cdots \times D^{z_r} \)
 - If \(f : z_1, \ldots, z_r \rightarrow z \in F \), then \(I(f) : D^{z_1} \times \cdots \times D^{z_r} \rightarrow D^z \)

Moreover, let \(D^z = \{ d \in D \mid \delta(d) \sqsubseteq z \} \)

(the **domain elements of type** \(z \)).

The dynamic types \(z \in T_d \) **must be non-empty**: \(D^z \neq \emptyset \)
Semantics of Special Symbols

Equality symbol \(\equiv \) in \(P \), with typing \(\equiv: \top, \top \)

Semantics: \(\mathcal{I}(\equiv) = \{(d, d) \mid d \in D\} \subseteq D^\top \times D^\top \)

“Referential Equality”
Semantics of Special Symbols

Equality symbol \doteq in P, with typing $\doteq : \top, \top$

Semantics: $\mathcal{I}(\doteq) = \{(d, d) \mid d \in \mathcal{D}\} \subseteq \mathcal{D}^\top \times \mathcal{D}^\top$

“Referential Equality”

Type predicate symbol \sqsubseteq in P for each $z \in \mathcal{T}_q$, with typing $\sqsubseteq : \top$

Semantics: $\mathcal{I}(\sqsubseteq) = \mathcal{D}^z \subseteq \mathcal{D}^\top$
Semantics of Special Symbols

Equality symbol \(\hat{=} \) in \(P \), with typing \(\hat{=} : \top, \top \)

Semantics: \(I(\hat{=}) = \{(d, d) \mid d \in D\} \subseteq D\top \times D\top \)

“Referential Equality”

Type predicate symbol \(\sqsubseteq \) in \(P \) for each \(z \in Tq \), with typing \(\sqsubseteq : \top \)

Semantics: \(I(\sqsubseteq) = D^z \subseteq D\top \)

Type cast symbol \((z) \) in \(F \) for each \(z \in Tq \), with typing \((z) : \top, z \)

Semantics: \(I((z)) \) is a function such that

\[
I((z))(x) = \begin{cases}
 x & \text{if } \delta(x) \sqsubseteq z \\
 d & \text{otherwise}
\end{cases}
\]

with \(d \) an arbitrary but fixed element of \(D^z \)
Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types
\[T_d = \{ \text{Stick, Stone, Flower} \}, \quad T_a = \{ \text{Weapon, Any} \} \]

Predicates
\[P = \{ \text{hurts : Any} \} \]

Functions
\[F = \{ \text{stick : } \rightarrow \text{ Stick, stone : } \rightarrow \text{ Stone, r : } \rightarrow \text{ Flower} \} \]

Variables
\[V = \{ x : \text{ Weapon, y : Flower} \} \]

One of (infinitely) many possible models:
Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types
\[T_d = \{ \text{Stick, Stone, Flower} \}, \quad T_a = \{ \text{Weapon, Any} \} \]

Stick, Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates
\[P = \{ \text{hurts} : \text{Any} \} \]

Functions
\[F = \{ \text{stick} : \rightarrow \text{Stick}, \text{stone} : \rightarrow \text{Stone}, r : \rightarrow \text{Flower} \} \]

Variables
\[V = \{ x : \text{Weapon}, y : \text{Flower} \} \]

One of (infinitely) many possible models:

Domain
\[D = \{ o_1, o_2, o_3, o_4 \} \]
Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types

\[T_d = \{\text{Stick, Stone, Flower}\}, \quad T_a = \{\text{Weapon, Any}\} \]

\(\text{Stick, Stone} \sqsubseteq \text{Weapon} \sqsubseteq \text{Any}, \text{Flower} \sqsubseteq \text{Any} \)

Predicates

\[P = \{\text{hurts} : \text{Any}\} \]

Functions

\[F = \{\text{stick} : \rightarrow \text{Stick}, \text{stone} : \rightarrow \text{Stone}, r : \rightarrow \text{Flower}\} \]

Variables

\[V = \{x : \text{Weapon}, y : \text{Flower}\} \]

One of (infinitely) many possible models:

Domain

\[D = \{o_1, o_2, o_3, o_4\} \]

Typing

\[\delta(o_1) = \delta(o_4) = \text{Stick}, \quad \delta(o_2) = \text{Stone}, \quad \delta(o_3) = \text{Flower} \]

\[D^{\text{Stick}} = \{o_1, o_4\}, \quad D^{\text{Stone}} = \{o_2\}, \quad D^{\text{Flower}} = \{o_3\}, \quad D^{\text{Any}} = \{o_1, o_2, o_3, o_4\} \]
Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types
\[T_d = \{ \text{Stick, Stone, Flower} \}, \quad T_a = \{ \text{Weapon, Any} \} \]
 Stick, Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates
\[P = \{ \text{hurts : Any} \} \]

Functions
\[F = \{ \text{stick} : \rightarrow \text{Stick}, \text{stone} : \rightarrow \text{Stone}, r : \rightarrow \text{Flower} \} \]

Variables
\[V = \{ x : \text{Weapon}, y : \text{Flower} \} \]

One of (infinitely) many possible models:

Domain
\[D = \{ o_1, o_2, o_3, o_4 \} \]

Typing
\[\delta(o_1) = \delta(o_4) = \text{Stick}, \quad \delta(o_2) = \text{Stone}, \quad \delta(o_3) = \text{Flower} \]
\[D^\text{Stick} = \{ o_1, o_4 \}, \quad D^\text{Stone} = \{ o_2 \}, \quad D^\text{Flower} = \{ o_3 \}, \quad D^\text{Any} = \{ o_1, o_2, o_3, o_4 \} \]

Interpretation
\[I(\text{hurts}) = \{ o_1, o_2, o_4 \} \]
\[I(\text{stick}) = o_1, \quad I(\text{stone}) = o_2, \quad I(r) = o_3 \]
Assigning meaning to variables

Let \(x \) be variable of static type \(z \)

A Variable Assignment \(\beta \) maps \(x \) to an element of \(D^z \)
Assigning meaning to variables

Let x be variable of static type z

A Variable Assignment β maps x to an element of \mathcal{D}^z

Assigning meaning to terms: a mapping $val_{\mathcal{M},\beta}$ from $\text{Term}_z(t)$ to \mathcal{D}^z (depending on model \mathcal{M} and variable assignment β) such that

\[
\begin{align*}
val_{\mathcal{M},\beta}(x) &= \beta(x) \quad \text{(element in \mathcal{D}^z, where x has type z)} \\
val_{\mathcal{M},\beta}(f(t_1, \ldots, t_r)) &= \mathcal{I}(f)(\val_{\mathcal{M},\beta}(t_1), \ldots, \val_{\mathcal{M},\beta}(t_r))
\end{align*}
\]
Assigning meaning to variables

Let \(x \) be variable of static type \(z \)

A Variable Assignment \(\beta \) maps \(x \) to an element of \(D^z \)

Assigning meaning to terms: a mapping \(\text{val}_{\mathcal{M}, \beta} \) from \(\text{Term}_z(t) \) to \(D^z \) (depending on model \(\mathcal{M} \) and variable assignment \(\beta \)) such that

\[
\begin{align*}
\text{val}_{\mathcal{M}, \beta}(x) &= \beta(x) \quad &\text{(element in } D^z, \text{ where } x \text{ has type } z) \\
\text{val}_{\mathcal{M}, \beta}(f(t_1, \ldots, t_r)) &= I(f)(\text{val}_{\mathcal{M}, \beta}(t_1), \ldots, \text{val}_{\mathcal{M}, \beta}(t_r))
\end{align*}
\]

Modified variable assignment:

For \(d \in D^z \) let \(\beta^d_y(x) := \begin{cases}
\beta(x) & \text{if } x \neq y \\
d & \text{if } x = y
\end{cases} \)
Assigning meaning to formulas

Validity relation: \(M, \beta \models \phi \) for \(\phi \in For \)

- \(M, \beta \models p(t_1, \ldots, t_r) \) iff \((\text{val}_{M, \beta}(t_1), \ldots, \text{val}_{M, \beta}(t_r)) \in \mathcal{I}(p) \)

- \(M, \beta \models \phi \land \psi \) iff \(M, \beta \models \phi \) and \(M, \beta \models \psi \)

- \(\ldots \)

- \(M, \beta \models \forall x. \phi \) iff \(M, \beta^d_x \models \phi \) for all \(d \in D^z \) where the type of \(x \) is \(z \)

- \(M, \beta \models \exists x. \phi \) iff \(M, \beta^d_x \models \phi \) for at least one \(d \in D^z \) where the type of \(x \) is \(z \)
Semantics of First-Order Logic: Example

Sticks and stones may break your bones, but flowers will never hurt

Types

\[\mathcal{T}_d = \{\text{Stick, Stone, Flower}\}, \quad \mathcal{T}_a = \{\text{Weapon, Any}\} \]

Stick, Stone ⊑ Weapon ⊑ Any, Flower ⊑ Any

Predicates

\[\mathcal{P} = \{\text{hurts : Any}\} \]

Functions

\[\mathcal{F} = \{\text{stick : Stick, stone : Stone, } r : \text{Flower}\} \]

Variables

\[\mathcal{V} = \{x : \text{Weapon, } y : \text{Flower}\} \]

In our previous model \(\mathcal{M} \):

\[\mathcal{D}_{\text{Stick}} = \{o_1, o_4\}, \quad \mathcal{D}_{\text{Stone}} = \{o_2\}, \quad \mathcal{D}_{\text{Flower}} = \{o_3\} \]

\[\mathcal{D}_{\text{Weapon}} = \{o_1, o_2, o_4\}, \quad \mathcal{I}(\text{hurts}) = \{o_1, o_2, o_4\} \subseteq \mathcal{D}_{\text{Any}} \]

Evaluate these formulas: \(\exists x. \text{hurts}(x), \quad \forall x. \text{hurts}(x), \quad \exists y. \text{hurts}(y) \)
Let \(\beta \) be arbitrary.

\[\mathcal{M}, \beta \models \exists x : \text{Weapon} . \text{hurts}(x) \quad \text{iff} \]
Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

$\mathcal{M}, \beta \models \exists x : \text{Weapon} \cdot \text{hurts}(x)$ iff
There exists $d \in \mathcal{D}^{\text{Weapon}}$ such that $\mathcal{M}, \beta^d_x \models \text{hurts}(x)$ if

Semantic Rule

$\mathcal{M}, \beta \models \exists x . \phi$ iff $\mathcal{M}, \beta^d_x \models \phi$ for at least one $d \in \mathcal{D}^z$
where the type of x is z

Information from model $(\mathcal{D}, \delta, \mathcal{I})$
Let β be arbitrary.

$\mathcal{M}, \beta \models \exists x : \text{Weapon} \cdot \text{hurts}(x) \quad \text{iff} \quad \exists d \in D^{\text{Weapon}} \text{ such that } \mathcal{M}, \beta^d \models \text{hurts}(x)$

There exists $d \in D^{\text{Weapon}}$ such that $\mathcal{M}, \beta^d \models \text{hurts}(x)$ if

$\mathcal{M}, \beta^{o_1} \models \text{hurts}(x) \quad \text{iff} \quad \mathcal{M}, \beta^{o_2} \models \text{hurts}(x)$

Semantic Rule

Information from model (D, δ, I)

$D^{\text{Weapon}} = \{ o_1, o_2, o_4 \}$
Let β be arbitrary.

$\mathcal{M}, \beta \models \exists x : \text{Weapon}. \text{hurts}(x)$ iff

There exists $d \in D^{\text{Weapon}}$ such that $\mathcal{M}, \beta^d_x \models \text{hurts}(x)$ if

$\mathcal{M}, \beta^o_x \models \text{hurts}(x)$ iff

$\text{val}_{\mathcal{M}, \beta^o_x}(x) \in I(\text{hurts})$

Semantic Rule

$\mathcal{M}, \beta \models p(t_1, \ldots, t_r)$ iff $(\text{val}_{\mathcal{M}, \beta}(t_1), \ldots, \text{val}_{\mathcal{M}, \beta}(t_r)) \in I(p)$

Information from model (\mathcal{D}, δ, I)
Semantics of First-Order Logic: Evaluation Example

Let β be arbitrary.

$\mathcal{M}, \beta \models \exists x : \text{Weapon} \cdot \text{hurts}(x)$ \iff

There exists $d \in \mathcal{D}^\text{Weapon}$ such that $\mathcal{M}, \beta_d^x \models \text{hurts}(x)$ if

$\mathcal{M}, \beta_{x}^{o_1} \models \text{hurts}(x)$ \iff

$\text{val}_{\mathcal{M}, \beta_{x}^{o_1}}(x) \in \mathcal{I}(\text{hurts})$

since $\text{val}_{\mathcal{M}, \beta_{x}^{o_1}}(x) = \beta_{x}^{o_1}(x) = o_1$ \iff

Semantic Rule

$\text{val}_{\mathcal{M}, \beta}(x) = \beta(x)$, \quad $\beta_d^x(x) := \begin{cases} \beta(x) & x \neq y \\ d & x = y \end{cases}$

Information from model \((\mathcal{D}, \delta, \mathcal{I})\)
Let β be arbitrary.

$\mathcal{M}, \beta \models \exists x : \text{Weapon}. \text{hurts}(x)$ iff

There exists $d \in D^{\text{Weapon}}$ such that $\mathcal{M}, \beta^d_x \models \text{hurts}(x)$ if

$\mathcal{M}, \beta^o_{x1} \models \text{hurts}(x)$ iff

$\text{val}_{\mathcal{M}, \beta^o_{x1}}(x) \in I(\text{hurts})$

since $\text{val}_{\mathcal{M}, \beta^o_{x1}}(x) = \beta^o_{x1}(x) = o_1$ iff

$o_1 \in I(\text{hurts}) = \{o_1, o_2, o_4\}$

Semantic Rule

Information from model (D, δ, I)

$I(\text{hurts}) = \{o_1, o_2, o_4\}$
Semantics of First-Order Logic: Evaluation Example

Let \(\beta \) be arbitrary.

\[M, \beta \models \exists x : \text{Weapon} . \text{hurts}(x) \quad \text{iff} \]

There exists \(d \in D^{\text{Weapon}} \) such that \(M, \beta_d^x \models \text{hurts}(x) \) if

\[M, \beta_{x}^{o_1} \models \text{hurts}(x) \quad \text{iff} \]

\(\text{val}_{M, \beta_{x}^{o_1}}(x) \in I(\text{hurts}) \)

since \(\text{val}_{M, \beta_{x}^{o_1}}(x) = \beta_{x}^{o_1}(x) = o_1 \) \(\text{iff} \)

\(o_1 \in I(\text{hurts}) = \{ o_1, o_2, o_4 \} \) \quad \text{ok!} \)

Semantic Rule

Information from model \((D, \delta, I)\)
First-Order Semantic Notions

Satisfiability, truth, and validity

\[M, \beta \models \phi \] \quad (\phi \text{ is satisfiable})

\[M \models \phi \text{ iff for all } \beta : \ M, \beta \models \phi \] \quad (\phi \text{ is true in } M)

\[\models \phi \text{ iff for all } M : \ M \models \phi \] \quad (\phi \text{ is valid})

Formula containing only variables in scope of a quantifier is closed
Closed formulas that are satisfiable are also true: only one notion

From now on only closed formulas are considered.
First-Order Logic Example

Types
\[T_d = \{\text{Stick, Stone, Flower}\}, \quad T_a = \{\text{Weapon, Any}\}\]
Stick, Stone \sqsubseteq \text{Weapon} \sqsubseteq \text{Any}, \text{Flower} \sqsubseteq \text{Any}

Predicates
\[P = \{\text{hurts : Any}\}\]

Variables
\[V = \{x : \text{Weapon}, y : \text{Flower}\}\]
First-Order Logic Example

Types \(\mathcal{T}_d = \{\text{Stick, Stone, Flower}\}, \quad \mathcal{T}_a = \{\text{Weapon, Any}\} \)
Stick, Stone \(\sqsubseteq \) Weapon \(\sqsubseteq \) Any, Flower \(\sqsubseteq \) Any

Predicates \(P = \{\text{hurts : Any}\} \)

Variables \(V = \{x : \text{Weapon}, y : \text{Flower}\} \)

\[\forall x : \text{Weapon} . \text{hurts}(x) \quad \& \quad \forall y : \text{Flower} . \neg \text{hurts}(y) \]

Satisfiable? True? Valid?
First-Order Logic Example

Types
\[T_d = \{ \text{Stick, Stone, Flower} \}, \quad T_a = \{ \text{Weapon, Any} \} \]
Stick, Stone \sqsubseteq \text{Weapon} \sqsubseteq \text{Any}, \text{Flower} \sqsubseteq \text{Any}

Predicates
\[P = \{ \text{hurts : Any} \} \]

Variables
\[V = \{ x : \text{Weapon}, y : \text{Flower} \} \]

\[\forall x : \text{Weapon}. \text{hurts}(x) \quad \& \quad \forall y : \text{Flower}. \neg \text{hurts}(y) \]

Satisfiable? True? Valid?
Model:
\[\mathcal{D} = \{ o_1, o_2 \}, \quad \delta(o_1) = \text{Stone}, \quad \delta(o_2) = \text{Flower} \]
\[\mathcal{I}(\text{hurts}) = \{ o_1 \} \]
First-Order Logic Example

Types
\[T_d = \{ \text{Stick, Stone, Flower} \}, \quad T_a = \{ \text{Weapon, Any} \} \]
Stick, Stone \subseteq \text{Weapon, Any}, Flower \subseteq \text{Any}

Predicates
\[P = \{ \text{hurts : Any} \} \]

Variables
\[V = \{ x : \text{Weapon}, y : \text{Flower} \} \]

\[\forall x : \text{Weapon} . \text{hurts}(x) \quad \& \quad \forall y : \text{Flower} . \lnot \text{hurts}(y) \]

Satisfiable? True? Valid?
Counter-model:
\[D = \{ o_1, o_2 \}, \quad \delta(o_1) = \text{Stone}, \quad \delta(o_2) = \text{Flower} \]
\[\mathcal{I}(\text{hurts}) = \{ \} \]
First-Order Logic Example

Types
\[T_d = \{ \text{Stick, Stone, Flower} \}, \quad T_a = \{ \text{Weapon, Any} \} \]
Stick, Stone \sqsubseteq \text{Weapon} \sqsubseteq \text{Any}, \text{ Flower} \sqsubseteq \text{Any}

Predicates
\[P = \{ \text{hurts : Any} \} \]

Variables
\[V = \{ x : \text{Weapon}, y : \text{Flower} \} \]

\[
\forall x : \text{Weapon}. \text{hurts}(x) \quad \& \quad \forall y : \text{Flower}. \neg \text{hurts}(y)
\]

Satisfiable? True? Valid?

Another Counter-model:
\[D = \{ o_1, o_2, o_3 \}, \quad \delta(o_1) = \text{Stone}, \quad \delta(o_2) = \delta(o_3) = \text{Flower} \]
\[I(\text{hurts}) = \{ o_1, o_3 \} \]
Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single typed])

Obtained as special case of typed signature:

\[T_d = \{ \top \}, \quad T_a = \{ \bot \} \]

Hence, \(D = D^\top \neq \emptyset \), \(\delta(d) = \top \) for all \(d \in D \)

All variables, predicate and function symbols declared on \(\top \)

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matters
Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single typed])

Obtained as special case of typed signature:

\[T_d = \{ \top \}, \quad T_a = \{ \bot \} \]

Hence, \(D = D^\top \neq \emptyset \), \(\delta(d) = \top \) for all \(d \in D \)

All variables, predicate and function symbols declared on \(\top \)

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matters

Example: \(P = \{ \text{person}/1, \text{happy}/1 \}, \quad F = \{ \text{pat}/0 \} \)
Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single typed])

Obtained as special case of typed signature:

\[T_d = \{ \top \}, \quad T_a = \{ \bot \} \]

Hence, \[D = D^\top \neq \emptyset, \quad \delta(d) = \top \text{ for all } d \in D \]

All variables, predicate and function symbols declared on \[\top \]

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matters

Example: \[P = \{ \text{person} / 1, \text{happy} / 1 \}, \quad F = \{ \text{pat} / 0 \} \]

\[\forall x. (\text{person}(x) \rightarrow \text{happy}(x)) \quad \text{ALL PERSONS ARE HAPPY} \]
Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single typed])

 Obtained as special case of typed signature:

\[T_d = \{ \top \}, \quad T_a = \{ \bot \} \]

Hence, \(D = D^\top \neq \emptyset \), \(\delta(d) = \top \) for all \(d \in D \)

All variables, predicate and function symbols declared on \(\top \)

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matters

Example: \(P = \{ \text{person}/1, \text{happy}/1 \} \), \(F = \{ \text{pat}/0 \} \)

\[\forall x . (\text{person}(x) \rightarrow \text{happy}(x)) \]

ALL PERSONS ARE HAPPY

person(pat) \quad \text{PAT IS A PERSON}
Untyped First-Order Logic

Standard FOL (as in most logic textbooks is untyped [single typed])

Obtained as special case of typed signature:

\(T_d = \{ \top \} \), \(T_a = \{ \bot \} \)

Hence, \(D = D^\top \neq \emptyset \), \(\delta(d) = \top \) for all \(d \in D \)

All variables, predicate and function symbols declared on \(\top \)

Don’t need type information of variables (omit)

Only arity in signature of function/predicate symbols matters

Example: \(P = \{ \text{person}/1, \text{happy}/1 \} \), \(F = \{ \text{pat}/0 \} \)

\(\forall x . (\text{person}(x) \rightarrow \text{happy}(x)) \) \hspace{1cm} \text{ALL PERSONS ARE HAPPY}

\(\text{person(pat)} \) \hspace{2cm} \text{PAT IS A PERSON}

\(\text{happy(pat)} \) \hspace{2cm} \text{PAT IS HAPPY}
Certain symbols should have “standard” meaning in all interpretations

So far: \(\doteq, \in \mathbb{Z}, (z) \)

For certain types we also fix domain and dynamic typing:

\[
D^{\text{int}} = \{ d \in D \mid \delta(d) = \text{int} \} = \mathbb{Z}
\]

These types appear between \(\bot \) and \(\top \), uncomparable to others

Examples of types, function/predicate symbols with fixed meaning

\(\mathcal{I}(17) \) should be always 17, not e.g. towel

\textbf{int} KeY can switch between JAVA 32-bit integers and \(\mathbb{Z} \)
but in FOL always math integers \(\mathcal{I}(+) = +\mathbb{Z}, \ \mathcal{I}(\ast) = \ast\mathbb{Z} \), ...

\textbf{boolean}
Some Predefined Symbols in KeY FO Logic

Types

int, short, byte, boolean with standard meaning

All classes of current UML context diagram and Null

If T is one of these types then also $Set(T)$, $Bag(T)$, $Sequence(T)$

Predicates on integer types with standard meaning

>$, <, \geq, \leq, \ldots$ (infix)

Functions and Constants with standard meaning

$+, -, \div, \mod, 0, 1, \ldots$

TRUE, FALSE

Notation for quantifiers, variables declared at quantifier symbol

\forall Type Variable; Scope Formula
First-Order Problems in KeY Syntax: .key

\sorts { // types are called 'sorts'
 person; // one declaration per line, end with ';
}

\functions { // ResultType FctSymbol(ParType,..,ParType)
 int age(person); // 'int' predefined type
}

\predicates { // PredSymbol(ParType,..,ParType)
 parent(person,person);
}

\problem { // Goal formula
 \forall person son; \forall person father;
 (parent(father,son) -> age(father) > age(son)) }

Contents

- Overview of KeY
- UML and its semantics
- Introduction to OCL
- Specifying requirements with OCL
- Modelling of Systems with Formal Semantics
- Propositional & First-order logic, sequent calculus
- OCL to Logic, horizontal proof obligations, using KeY
- Dynamic logic, proving program correctness
- Java Card DL
- Vertical proof obligations, using KeY
- Wrap-up, trends
Sequent Calculus for FOL

<table>
<thead>
<tr>
<th>left side, antecedent</th>
<th>right side, succedent</th>
</tr>
</thead>
</table>

- $[t/t']\phi$ is result of replacing each occurrence of t in ϕ with t'
- $s^z, t^{z'}$ and t are arbitrary variable free terms
- x and s^z have static type z and $t^{z'}$ has static type $z' \sqsubseteq z$
- c^z new constant of type z (does not occur in current proof branch)
- Equations can be reversed (by symmetry of equality)
Sequent Calculus for FOL

<table>
<thead>
<tr>
<th>left side, antecedent</th>
<th>right side, succedent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall) [\Gamma, \forall x.\phi, [x/t^{z'}] \phi \implies \Delta]</td>
<td>[\Gamma \implies [x/c^{z}] \phi, \Delta]</td>
</tr>
<tr>
<td>[\Gamma, \forall x.\phi \implies \Delta]</td>
<td>[\Gamma \implies \forall x.\phi, \Delta]</td>
</tr>
</tbody>
</table>

- \([t/t']\phi\) is result of replacing each occurrence of \(t\) in \(\phi\) with \(t'\)
- \(s^{z}, t^{z'}\) and \(t\) are arbitrary variable free terms
- \(x\) and \(s^{z}\) have static type \(z\) and \(t^{z'}\) has static type \(z' \sqsubseteq z\)
- \(c^{z}\) new constant of type \(z\) (does not occur in current proof branch)
- Equations can be reversed (by symmetry of equality)
Sequent Calculus for FOL

<table>
<thead>
<tr>
<th>left side, antecedent</th>
<th>right side, succedent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall \Gamma, \forall x.\phi, [x/t^z'] \phi \implies \Delta$</td>
<td>$\Gamma \implies [x/c^z] \phi, \Delta$</td>
</tr>
<tr>
<td>$\Gamma, \forall x.\phi \implies \Delta$</td>
<td>$\Gamma \implies \forall x.\phi, \Delta$</td>
</tr>
<tr>
<td>$\exists \Gamma, [x/c^z] \phi \implies \Delta$</td>
<td>$\Gamma \implies [x/t^z'] \phi, \exists x.\phi, \Delta$</td>
</tr>
<tr>
<td>$\Gamma, \exists x.\phi \implies \Delta$</td>
<td>$\Gamma \implies \exists x.\phi, \Delta$</td>
</tr>
</tbody>
</table>

- $[t/t'] \phi$ is result of replacing each occurrence of t in ϕ with t'
- s^z, t^z' and t are arbitrary variable free terms
- x and s^z have static type z and t^z' has static type $z' \sqsubseteq z$
- c^z new constant of type z (does not occur in current proof branch)
- Equations can be reversed (by symmetry of equality)
Sequent Calculus for FOL

<table>
<thead>
<tr>
<th>left side, antecedent</th>
<th>right side, succedent</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall)</td>
<td>(\exists)</td>
</tr>
<tr>
<td>(\Gamma, \forall x. \phi, [x/t'] \phi \implies \Delta)</td>
<td>(\Gamma \implies [x/c^z] \phi, \Delta)</td>
</tr>
<tr>
<td>(\Rightarrow)</td>
<td>(\Gamma \implies \forall x. \phi, \Delta)</td>
</tr>
<tr>
<td>(\Gamma, \forall x. \phi \implies \Delta)</td>
<td>(\Gamma \implies [x/t'] \phi, \exists x. \phi, \Delta)</td>
</tr>
<tr>
<td>(\exists)</td>
<td>(\Gamma \implies \exists x. \phi, \Delta)</td>
</tr>
<tr>
<td>(\Gamma, [x/c^z] \phi \implies \Delta)</td>
<td>(\Gamma \implies [x/t'] \phi, \exists x. \phi, \Delta)</td>
</tr>
<tr>
<td>(\Rightarrow)</td>
<td>(\Gamma \implies t \doteq t, \Delta)</td>
</tr>
<tr>
<td>(\Gamma)</td>
<td>(\Gamma \implies [s^z/t'] [s^z/t'] \psi \implies [s^z/t'] \phi, \Delta)</td>
</tr>
<tr>
<td>(\Rightarrow)</td>
<td>(\Gamma \implies [s^z/t'] \phi, \Delta)</td>
</tr>
<tr>
<td>(\Gamma, s^z \doteq t', [s^z/t'] \psi \implies [s^z/t'] \phi, \Delta)</td>
<td>(\Gamma \implies s^z \doteq t', \psi \implies \phi, \Delta)</td>
</tr>
</tbody>
</table>

- \([t/t'] \phi \) is result of replacing each occurrence of \(t \) in \(\phi \) with \(t' \)
- \(s^z, t'^z \) and \(t \) are arbitrary variable free terms
- \(x \) and \(s^z \) have static type \(z \) and \(t'^z \) has static type \(z' \sqsubseteq z \)
- \(c^z \) new constant of type \(z \) (does not occur in current proof branch)
- Equations can be reversed (by symmetry of equality)
A Simple Proof (Exercises p3.key)

\[\exists x. \forall y. p(x, y) \implies \forall y. \exists x. p(x, y) \]

Let static type of \(x \) and \(y \) be \(\top \)
A Simple Proof (Exercises p3.key)

\[\forall y. p(c, y) \implies \forall y. \exists x. p(x, y) \]

\[\exists x. \forall y. p(x, y) \implies \forall y. \exists x. p(x, y) \]

ex left: substitute new constant \(c \) of type \(\top \) for \(x \)
A Simple Proof (Exercises p3.key)

\[\forall y. p(c, y) \implies \exists x. p(x, d) \]

\[\forall y. p(c, y) \implies \forall y. \exists x. p(x, y) \]

\[\exists x. \forall y. p(x, y) \implies \forall y. \exists x. p(x, y) \]

all right: substitute new constant \(d \) of type \(\top \) for \(y \)
A Simple Proof (Exercises p3.key)

\[
p(c, d), \forall y. p(c, y) \implies \exists x. p(x, d)
\]

\[
\forall y. p(c, y) \implies \exists x. p(x, d)
\]

\[
\forall y. p(c, y) \implies \forall y. \exists x. p(x, y)
\]

\[
\exists x. \forall y. p(x, y) \implies \forall y. \exists x. p(x, y)
\]

all left: free to substitute any term of type \(\top\) for \(y\), choose \(d\)
A Simple Proof (Exercises p3.key)

\[
p(c, d) \implies \exists x. p(x, d)
\]

\[
\forall y. p(c, y) \implies \exists x. p(x, d)
\]

\[
\forall y. p(c, y) \implies \forall y. \exists x. p(x, y)
\]

\[
\exists x. \forall y. p(x, y) \implies \forall y. \exists x. p(x, y)
\]

all left not needed anymore (hide)
A Simple Proof (Exercises p3.key)

\[
\begin{align*}
p(c, d) & \implies p(c, d), \ \exists x. p(x, y) \\
p(c, d) & \implies \exists x. p(x, d) \\
\forall y. p(c, y) & \implies \exists x. p(x, d) \\
\forall y. p(c, y) & \implies \forall y. \exists x. p(x, y) \\
\exists x. \forall y. p(x, y) & \implies \forall y. \exists x. p(x, y)
\end{align*}
\]

ex right: free to substitute any term of type \(\top \) for \(x \), choose \(c \)
A Simple Proof (Exercises p3.key)

\[p(c,d) \implies p(c,d) \]

\[p(c,d) \implies \exists x. p(x,d) \]

\[\forall y. p(c,y) \implies \exists x. p(x,d) \]

\[\forall y. p(c,y) \implies \forall y. \exists x. p(x,y) \]

\[\exists x. \forall y. p(x,y) \implies \forall y. \exists x. p(x,y) \]

ex right not needed anymore (hide)
A Simple Proof (Exercises p3.key)

*

\[p(c, d) \implies p(c, d) \]

\[p(c, d) \implies \exists x. p(x, d) \]

\[\forall y. p(c, y) \implies \exists x. p(x, d) \]

\[\forall y. p(c, y) \implies \forall y. \exists x. p(x, y) \]

\[\exists x. \forall y. p(x, y) \implies \forall y. \exists x. p(x, y) \]

Close
Rules for Type Casts and Type Predicates

- **Type predicate** formulas $t \sqsubseteq z$
 true iff dynamic type $val_M(t)$ is subtype of z

- **Type cast** terms $(z)t$
 evaluates to $val_M(t)$ if cast succeeds, arb. element otherwise
Rules for Type Casts and Type Predicates

- **Type predicate formulas** \(t \sqsubseteq z \)
 true iff dynamic type \(val_M(t) \) is subtype of \(z \)

- **Type cast terms** \((z)t\)
 evaluates to \(val_M(t) \) if cast succeeds, arb. element otherwise

Typical rule:
Rules for Type Casts and Type Predicates

- **Type predicate** formulas $t \sqsubseteq z$
 true iff dynamic type $val_M(t)$ is subtype of z

- **Type cast** terms $(z)t$
 evaluates to $val_M(t)$ if cast succeeds, arb. element otherwise

Typical rule:
The dynamic type of a term must be typeable to its static type

$$\frac{\Gamma, t \sqsubseteq z \implies \Delta}{\Gamma \implies \Delta} \quad \text{TYPESTATIC}$$

z static (declared) type of t

Expresses **type-safety** of typed first-order logic
Rules for Type Casts and Type Predicates

- **Type predicate formulas** $t \sqsubseteq z$
 true iff dynamic type $\text{val}_M(t)$ is subtype of z

- **Type cast terms** $(z)t$
 evaluates to $\text{val}_M(t)$ if cast succeeds, arb. element otherwise

Typical rule:

The dynamic type of a term must be typeable to its static type

$$\text{TYPE_Static} \quad \frac{\Gamma, t \sqsubseteq z \quad \Rightarrow \Delta}{\Gamma \quad \Rightarrow \Delta} \quad z \text{ static (declared) type of } t$$

Expresses **type-safety** of typed first-order logic

KeY first-order strategy applies suitable typing rules automatically
Sequent Proofs: Important Issues

- Rules are applied to top-most connective/quantifier
- \texttt{exLeft} and \texttt{allRight} substitute \textit{new} constant
- \texttt{exRight} and \texttt{allLeft} allow to substitute \textit{any} variable-free term
- Formulas that are not needed in remaining proof may be hidden
- All branches must be \textit{closed} with axiom
- There are many different possible proofs for a valid sequent
- KeY FO strategy applies all but \texttt{exRight} and \texttt{allLeft} automatically
Another Proof Example

Types
\[\mathcal{T} = \{ \bot, \top \} \]

Predicates
\[\text{PSym} = \{ p \}, \quad p : \top, \top \]

Functions
\[\text{FSym} = \{ \} \]

\[
(\exists x . \exists y . p(x, y) \land \forall x . \neg p(x, x)) \implies \exists x . \exists y . (\neg x \equiv y)
\]

Intuitive Meaning? Satisfiable? True? Valid?

Demo

oclFol/rel.key