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Recursive methods

method Double(x: ) returns (d: )
requires x >= 0
ensures d == 2*x
{
it x ==
{
d := 0;
} else {
var y;
y := Double(x - 1);
d :=y + 2;
}
}



Recursive methods

method Double(x: ) returns (d: )
requires x >= 0
ensures d == 2*x
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it x ==
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d := 0;
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var y;

y := Double(x - 1);
d y + 2;
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Recursive methods

method Double(x: ) returns (d: )
requires x >= 0
ensures d == 2*Xx
{
if X == 0 Recursive methods can be analyzed
{ like any methods that call other methods ...
d := 0;
} else { ... if they terminate!
var y;
y := Double(x - 1);
d :=y + 2;
}

¥



method BadDouble(x:

Problematic recursion

) returns (d:

ensures d == 2%*x
{ var y := BadDouble(x - 1);
d :=y + 2;
}
method BadIdentity(x: ) returns (y:
ensures y == X
{
if X% 2 == 2
{y =X}
else
{ vy := BadIdentity(x); }

)

)

Does not terminate!

Does not terminate!



Fibonacci function

non-negative integers
function Fib(n: ): { ° °

if n < 2 then n else Fib(n - 2) + Fib(n - 1) }

Terminates! @
Gruen S



How to prove termination?

function Fib(n: ):
{
if n < 2 then n else Fib(n - 2) + Fib(n - 1)
}
function Ack(m: , Nn: )
{

Also terminates!
if m==0 then n + 1

else if n == 0 then Ack(m - 1, 1)
else Ack(m - 1, Ack(m, n - 1))



Termination metric

function Fib(n: ) Suggestion for Dafny
decreases n . —

1
if n < 2 then n else Fib(n - 2) + Fib(n - 1)

}

function SeqSum(s: < >, lo:
requires @ <= lo <= hi <= |[s]|
decreases hi - lo

, hi: ):

if lo == hi then © else s[lo] + SeqSum(s, lo + 1, hi)



Termination metric

Termination metrics do not have to be natural numbers
Any set of values with a well-founded order can be used

An order > is well-founded when
e >isirreflexive: a > a never holds

e > jstransitive: ifa > bandb > c then a > ¢

* thereis no infinite descending chain: ay > a; > a, > ...



Well-founded orders in Dafny

X && 1Y true decreases to false
X>Y && X >= 0 negative ints not ordered

X -1.0>Y && X >= 0.0
<T> X is a proper superset of Y D, not 2
<T> X strictly contains Y e.g., [a, b, c] > [b, c]
datatypes X structurally includes'Y e.g. ((a, b), (c,d)) > (a, b)




Lexicographic tuples

A lexicographic order orders tuples of values

It does component-wise comparison,
where earlier components are more significant

Examples:

* 4, 12 > 4, 11 > 4, 2 > 3, 5260 > 2, O
e 4, 12 > 4, 12, 365, ©
e 12, true, 1.9 > 12, false, 57.3



Lexicographic tuples

A lexicographic order orders tuples of values

It does component-wise comparison,
where earlier components are more significant

Theorem: A lexicographic order is well founded whenever all the
component orders are well founded



Remaining study

The following method simulates your time until graduation, from when
you have h hours of study left in course ¢

method Study(c: , h: )
decreases ¢, h

{ — c, h > c, h-1
if h =0 { Study(c, h - 1); }
else if ¢ == 0 { }
else { var hl := ReqStudyTime(c - 1);
Study(c - 1, hl);

}
} — c, h > c-1, hl




Ackermann function

function Ack(m: , Nn: ):
decreases m, n

ifm==20 then n + 1
else if n == 0 then Ack(m - 1, 1)
else Ack(m - 1, Ack(m, n - 1))



Mutually recursive functions

method StudyPlan(c: )
requires c <= 40 40-c > 40-c, h

decreases 40 - c /’//
{

if ¢ I= 40 { var h := ReqStudyTime(c); Learn(c, h); }
¥

method Learn(c: , h: )y 40-¢, h > 40-(c+1)

requires ¢ < 40

decreases 40 - ¢, h 40-c, h > 40-c, h-1
{ ~

if h == 0 { StudyPlan(c + 1); } else { Learn(c, h - 1); }
}
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