CS:5810 Formal Methods in Software Engineering

Recursion and Termination

Copyright 2020-25, Graeme Smith and Cesare Tinelli.

Produced by Cesare Tinelli at the University of lowa from notes originally developed by Graeme Smith at the University of Queensland. These notes
are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form or modified form without
the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking
notes by any person or commercial firm without the express written permission of one of the copyright holders.

Recursive methods

method Double(x:) returns (d:)
requires x >= 0
ensures d == 2*x
{
it x ==
{
d := 0;
} else {
var y;
y := Double(x - 1);
d :=y + 2;
}
}

Recursive methods

method Double(x:) returns (d:)
requires x >= 0
ensures d == 2*x

{

it x ==

{
d := 0;
} else {
var y;

y := Double(x - 1);
d y + 2;

¥
}

Recursive methods

method Double(x:) returns (d:)
requires x >= 0
ensures d == 2*Xx
{
if X == 0 Recursive methods can be analyzed
{ like any methods that call other methods ...
d := 0;
} else { ... if they terminate!
var y;
y := Double(x - 1);
d :=y + 2;
}

¥

method BadDouble(x:

Problematic recursion

) returns (d:

ensures d == 2%*x
{ var y := BadDouble(x - 1);
d :=y + 2;
}
method BadIdentity(x:) returns (y:
ensures y == X
{
if X% 2 == 2
{y =X}
else
{ vy := BadIdentity(x); }

)

)

Does not terminate!

Does not terminate!

Fibonacci function

non-negative integers
function Fib(n:): { ° °

if n < 2 then n else Fib(n - 2) + Fib(n - 1) }

Terminates! @
Gruen S

How to prove termination?

function Fib(n:):
{
if n < 2 then n else Fib(n - 2) + Fib(n - 1)
}
function Ack(m: , Nn:)
{

Also terminates!
if m==0 then n + 1

else if n == 0 then Ack(m - 1, 1)
else Ack(m - 1, Ack(m, n - 1))

Termination metric

function Fib(n:) Suggestion for Dafny
decreases n . —

1
if n < 2 then n else Fib(n - 2) + Fib(n - 1)

}

function SeqSum(s: < >, lo:
requires @ <= lo <= hi <= |[s]|
decreases hi - lo

, hi:):

if lo == hi then © else s[lo] + SeqSum(s, lo + 1, hi)

Termination metric

Termination metrics do not have to be natural numbers
Any set of values with a well-founded order can be used

An order > is well-founded when
e >isirreflexive: a > a never holds

e > jstransitive: ifa > bandb > c then a > ¢

* thereis no infinite descending chain: ay > a; > a, > ...

Well-founded orders in Dafny

X && 1Y true decreases to false
X>Y && X >= 0 negative ints not ordered

X -1.0>Y && X >= 0.0
<T> X is a proper superset of Y D, not 2
<T> X strictly contains Y e.g., [a, b, c] > [b, c]
datatypes X structurally includes'Y e.g. ((a, b), (c,d)) > (a, b)

Lexicographic tuples

A lexicographic order orders tuples of values

It does component-wise comparison,
where earlier components are more significant

Examples:

* 4, 12 > 4, 11 > 4, 2 > 3, 5260 > 2, O
e 4, 12 > 4, 12, 365, ©
e 12, true, 1.9 > 12, false, 57.3

Lexicographic tuples

A lexicographic order orders tuples of values

It does component-wise comparison,
where earlier components are more significant

Theorem: A lexicographic order is well founded whenever all the
component orders are well founded

Remaining study

The following method simulates your time until graduation, from when
you have h hours of study left in course ¢

method Study(c: , h:)
decreases ¢, h

{ — c, h > c, h-1
if h =0 { Study(c, h - 1); }
else if ¢ == 0 { }
else { var hl := ReqStudyTime(c - 1);
Study(c - 1, hl);

}
} — c, h > c-1, hl

Ackermann function

function Ack(m: , Nn:):
decreases m, n

ifm==20 then n + 1
else if n == 0 then Ack(m - 1, 1)
else Ack(m - 1, Ack(m, n - 1))

Mutually recursive functions

method StudyPlan(c:)
requires c <= 40 40-c > 40-c, h

decreases 40 - c /’//
{

if ¢ I= 40 { var h := ReqStudyTime(c); Learn(c, h); }
¥

method Learn(c: , h:)y 40-¢, h > 40-(c+1)

requires ¢ < 40

decreases 40 - ¢, h 40-c, h > 40-c, h-1
{ ~

if h == 0 { StudyPlan(c + 1); } else { Learn(c, h - 1); }
}

	Slide 1: CS:5810 Formal Methods in Software Engineering
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

