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From contracts to Floyd-Hoare Logic

In the design-by-contract methodology, contracts are usually assigned
to procedures or modules

In general, it is possible to assign contracts to each statement of a
program

A formal framework for doing this was developed by Tony Hoare,
formalizing a reasoning technique by Robert Floyd

It is based on the notion of a Hoare triple

Dafny is based on Floyd-Hoare Logic



Hoare triples

For predicates P and Q and program S, the Hoare triple

preconditionp——>{ P } S { Q }- postcondition

states the following:

if S is started in any state that satisfies F,
then S will not crash (or do other bad things) and
will terminate in some state satisfying O

Examples: { x ==1} x := 20 { x == 20 }
{ X< 18 }y (=18 - x{ vy >= 0 }
{ x <18 } y :=5 {y >= 0 }

Non-example: { x < 18 } x :=y { y >= 0 }



Forward reasoning

Constructing a postcondition from a given precondition

In general, there are many possible postconditions

Examples:
1. { x =0} vy :=x+3 {y < 100 }
2. {x =0} vy :=x+3 { X =20}
3. { x=01} vy :=x+3 {0<k=x8&&y==31}
4. { x ==0 } y :=x+ 3 { 3 <K=y}
5. { x==0} vy :=x+ 3 { true }



Strongest postcondition

Forward reasoning constructs the strongest (i.e., most specific)
postcondition

Def: Ais strongerthan B if A ==> B holds (i.e., is a valid formula)

Def: A formula is valid if it is true for any valuation of its free variables

Ex: O X && 3 > 0
0 X && 3 0

X holds
> X

&& y >= 3 holds

y
y



Backward reasoning

Construct a precondition for a given postcondition

Again, there are many possible preconditions

Examples:

1. { X <= 70 }
2. { x ==658&% vy < 21 }
3. { X <= 77 }
4. { x*x + y*y <= 2500 }
5. { false }
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Weakest precondition

Backward reasoning constructs the weakest (i.e., most general)
precondition

{ x<k=77} vy :=x+3 {y<= 80}

Def: A is weaker than B if B ==> A is a valid formula



Weakest precondition for assighment

Given { }

10}

we construct ? by replacing each x in Q with E (denoted by Q[ x := E])



Weakest precondition for assighment
Given {0[x := E]} x := E { Q }

Examples: { ? } yv :=a+b {25«<=y}
t\\\__ 25 <=a + b

1. {25 <k=x+ 3+ 12} a:=x+3 { 25«<=a + 12 }

2. {XxX+1«<k=y} x =x+1 {x<=y}

3. { 3*2*x + 5*y < 160 } x :

2%X { 3*x + 5%y < 100 }



Swap example

var tmp := X;



Swap example

The initial values of x and y are
specified using logical variables
X XandY

var tmp :



Swap example

The initial values of x and y are
specified using logical variables

var tmp := X; XandY
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Swap example

var tmp := X;
X =Y
y = tmp;

The final step is the proof obligation that
(x == X && y == VY) ==> (y == Y && x == X)

is valid



Program-proof bookkeeping

y - X,

y - X,

y + X,

Suppose x and y store
infinite precision integers




Program-proof bookkeeping

X =Yy - X;
y ‘=Y - X;
X 1=y + X;

The constructed precondition simplifies to
(and so is implied by)

y== &&X::



Program-proof bookkeeping

>
X =Y - X,
-
LD
y (=Y - X;
X =Y + X;

We are also allowed to strengthen the conditions as
we work backwards (but not weaken them!)



Simultaneous assignments

Dafny allows several assignments in one statement

Examples:
X, y := 3, 10; sets xto 3 and yto 19
X, V := X +Y, X - VY; sets x to the sum of x and y

and y to their difference

All right-hand sides are computed before any variables are assigned

Note difference with

X 1= X+VY; Yy =X -Y;



WP for Simultaneous assignments

The weakest precondition of

J ° J

wrt postcondition Q is constructed by replacing in
* each x, with E, and

* each x, with (denoted Q[x,,x, := E;,E,])
Example:
[X)y .= J ]
X, Y i=Y, X X, = 5,



WP for Variable introduction

var x := tmp; is actually two statements:

var xX; X := tmp;



WP for Variable introduction

17 }yvar x {Q}

If a value of X satisfies Q in the postcondition,
it must be that every value of X satisfies Q in the precondition

{ forall x :: Q } var x { Q }

Examples: false

«’/

{forall x : :: @ <=x }rvar x { 9 <= x }

{forall x : :: 0 <= x*x } var x { 0 <= x*x }



What about strongest postconditions?

Consider { w < X && X <y } x :=100 { ? }

Obviously, x == 100 is a postcondition, but it is not the strongest

Something more is implied by the precondition:
there existsannsuchthat w < n & n < vy
which is equivalent to sayingthat y - w >= 2

In general:

{ P } x :

E { exists n :: P[x := n] &&
x == E[x 1= n] }



WP and SP

Let P be a predicate on the pre-state of a program S and
let O be a predicate on the post-state of S

WP[S, Q] denotes the weakest precondition of S wrt Q

SP[S, P] denotes the strongest postcondition of S wrt P

WP[x := E, Q]
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SP[x := E, P]



Control flow

Until now:
Assignment: x := E

Variable introduction: var x

Next:

Sequential composition: S ; T
Conditions: if B { S } else { T }
Method calls: r := M(E)

Later:

Loops: while B { S }



Sequential composition

1P}rS; TALR}
1P}YSLQ}FT LR}
{P}rs{Q}rand{Q}T{R}

Strongest postcondition

let Q = SP[S, P] in SP[S; T, P] =8P[T, Q] =S8P[T, SPIS, PI]

Weakest precondition
let Q = WP[T, R] in WP[S; T, R]=WP[S, Q] = WP[S, WPI[T, R]]



Conditional control flow

{Pr(@EFfBA{S}else {T}){0Q}

P}
Y\
{vy {wy
{xy AV

10Q}




Conditional control flow

{Pr(@EFfBA{S}else {T}){0Q}

[{ P }J Floyd-Hoare logic tells us:
R 1. P & B ==> V
1V} [{W} 2. P & !B ==> W
3. {V}s{X}
{x)y AV} 4 {WYT{V}
5. ==>Q
10} 6. Y==>Q




Strongest postcondition

{ P}y @FBA{Selse{T}){0Q}

IB = ’
{p &‘& {P && IB} Y = SP[P && !B, T]
@

{x} LY} SPLifB{s}else{T} Pl
\ / =SP[P && B, S] || SP[P && !B, T]
X |1 v}

{




Weakest precondition

{Pr(@EFfBA{S}else {T}){0Q}

{B==> V8 !B ==> W

/ \B V= WP[S, 0]

{V} W }} W=WP[T, Q]

{Q} {10}
WP[if B { S } else { T }, Q]=
( B ==> WP[S, Q]) &&
(IB ==> WP[T, Q])



Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {
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} else {



Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {



Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {
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Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {



Weakest precondition (example)

{ X == 50 }
it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {



Refresher: Implication properties

A ==> B equiv.to A || B

Hence,
A ==>true | equiv.to |true
A ==> false ! I A
true ==>B N B
false ==>B ! true

Other useful laws for simplifying predicates

* A ==> (B ==> C) equivto (A && B) ==> C

« A ==> (B & C) equiv.to (A ==> B) && (A ==> ()
« A& (B || C©) equiv.to (A && B) || (A && C)

« A || (B && C) equiv.to (A || B) && (A || ©)



Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {
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Weakest precondition (example)
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Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {



Method correctness

Given

method M(x: T,) returns (y: T,)
requires P
ensures Q

{
¥

B

we need to prove

P ==> WPIB, Q]



Method calls

Methods are opaque, i.e., we reason in terms of their specifications, not
their implementations

Example: Given

method Triple(x: ) returns (y: )
ensures y == 3 * X

we expect to be able to prove, for instance, the following method call

v := Triple(u + 4)



Parameters

We need to relate the actual parameters (of the method call) with the
formal parameters (of the method)

To avoid any name clashes, we first rename the formal parameters to
fresh variables:

method Triple(x1: ) returns (yl: )
ensures yl == 3 * x1
Then, foracall v := Triple(u + 1) we have
X1 :=u + 1

v =1yl



Assumptions

The caller can assume that the method's postcondition holds

We introduce a new statement, assume E, to capture this

SP[assume E, P] =P & E
WP[assume E,Q] = E ==> 0

The semantics of v := Triple(u + 1) isthen given by
var x1; var yl; method Triple(x1: )
X1 = u + 1; returns (yl: )
assume yl == 3 * x1; ensures yl == 3 * x1

v =Yyl



WP[r := M(E), Q]
= WP|[var x. ; var
= WP[var x., WP
= WP[var x. , WP
= WP[var x. , WP

Weakest precondition

method M(x: X) returns (y: Y) ensures R[x,y]

with x;, y, fresh
Y, ; Xg := E;assume R[x,y :=x.,y,]; r:i=vy,, Q]
vary,, WP[x. := E, WP[assume R[x,y :=xgy.], WP[r :=vy,, Q]]]]
[ vary,, WP[x; := E, WP[assume R[x,y :=x,y, ], Qr := v, ]]1]]

[vary,, WP[xg := E, R[x,y :=xg,y] ==>Q[r :=y/]]]

= WP [var x., WP[var vy, , R[x,y :=E,y.] ==>Q[r :=vy/]]
= WP[var x., forall y, :: R[x,y := E,y,] ==>Q[r :=y/]]

= forall x; :: forall y, :: R[x,y := E,y,] ==> Q[r := y/]

=forall y, :: R[x,y := E,y, ] ==>Q[r :=y/] since x; is not in Q



Weakest precondition

WP[r := M(E), Q] = forall y1 ::
R[X)y . = EJyl] ==> Q[P

where x is M’s input, y is M’s output, and R is M's postcondition

Example. LetQ be v == 48 for the method:

method Triple(x: ) returns (y: )
ensures y == 3 * X

v := Triple(u + 1);

:= y1]



Assertions

assert E does nothing when E holds in the current state;
otherwise, it crashes the program

method Triple(x: ) returns (r: ) {
var y = 2 * x;
roi= X + yj;
assert r == 3 * x;

¥

SP[assert E,P] = P && E
WP[assert E,Q] = E & & Q



Method calls with preconditions

Given

method M(x: X) returns (y: Y)
requires P

ensures R
The semanticsof r := M(E) s
var Xg ; var y.;
Xe := E ;
assert P[x := X¢] ;
assume R[X,Y := XgVY.]
r =y,

WP[r := M(E),Q] = P[x := E] &&

forall y. :: R[X,y

= E,y.] ==> Q[r :

Vel



Function calls

No output

o t
function Average(a: , b: ) : { parameters
(a +b) /2
} T\ An expression,

not a statement

Functions are transparent: we reason about them in terms of their
definition

method Triple(x: ) returns (r: )
ensures r == 3%*X
{ r := Average(2*x, 4*x); }



Function calls

No output
. ¢/ parameters
function Average(a: , b: ) {
(a +b) / 2
} T\ An expression,

not a statement

Functions are transparent: we reason about them in terms of their
definition by unfolding it

method Triple(x: ) returns (r: )
ensures r == 3*x
{ r = (2*x + 4*x) / 2; }



Function calls

In Dafny, functions are actually part of the code

If you want to use a function in specification, you need to use
a ghost function

ghost function Average(a: , b: ) :
(a +b) /2

}

method Triple(x: ) returns (r: )

ensures r == Average(2*x, 4%*Xx)



Partial expressions

An expression may be not always well defined,
e.g., ¢/d when d evaluates to 0

Associated with such partial expressions are implicit assertions

Example:

assert d 1= 0 && v = 0;

it ¢/d < u/v {
assert @ <= 1 < a.Length;
X :=alil];

¥



Partial expressions

Functions may have preconditions, making calls to them partial
Example: given

function MinusOne(Xx: )
requires 0 < X

thecall z := MinusOne(y + 1) hasan implicit assertion

assert O <y + 1



Exercises

1. Suppose youwant X + y == 22 to hold after the statement
if x < 20{y :=3; }else{y :=2; }

In which states can you start the statement? In other words, compute the weakest precondition of
the statement with respectto x + y == 22. Simplify the condition after you have computed it.

2. Compute the weakest precondition for the following statement with respect toy < 10. Simplify
the condition.

if x < 8 {
if x ==5{y :=10; } else { vy :=2; }
} else
y =

O~

}



Exercises

3. Compute the weakest precondition for the following statement with respecttoy % 2 ==
(that is, "y is even"). Simplify the condition.

if x < 10 {

if x <20 {y :=1; }else{y :=2; }
} else {

y = 4;
}

4. Compute the weakest precondition for the following statement with respect toy % 2 == 0 (that is,
"y is even"). Simplify the condition.

if x < 8 {

if x <4 {x :=x+1; }yelse{y :=2; }
} else {

if x <32 {y :=1; } else { }
}



Exercises

5. Determine under which circumstances the following program establishes 0 <=y < 100. Try
first to do that in your head. Write down the answer you come up with, and then write out the full
computations to check that you got the right answer.

if x < 34 {
if x ==2{y:=x+1; }else {y :=233; }
} else {

if x < 55 {y :=21; } else {y := 144; }
}

6. Which of the following Hoare-triple combinations are valid?
a) {9 <=x} x :=x+1{ -2<=x1%}ty:=0 {-10 <= x}
b) {0 <= x} x :=x +1{ true } x := x + 1 {2 <= x}
c) {0 <=x} x :=x+1; x :=x +1{2 <= x}
d) {0 <= x} x := 3 X :=x +1{3 <= x}
e) {x <2}y = x+5; x :=2*x {x <y}



Exercises

7. Compute the weakest precondition of the following statements with respect to the postcondition
X + Yy < 100.

a) x :=32; y := 40
b) X : =X+ 2;y :=y -3 *Xx

8. Compute the weakest precondition of the following statement with respect to the postcondition
X < 10:

a) if x%2==0{y :=y +3; }else{y :=4; }
b) ify <10 {y :=x+vy; } else { x :=38; }

9. Compute the weakest precondition of the following statements with respect to the postcondition
X < 1080. Simplify your answer.

a) assert y == 25 d) assert x <= 100
b) assert 0 <= X e) assert 0 <= x < 100
c) assert x < 200



Exercises

10. If x1 does not appear in the desired postcondition Q, then prove that
x1l:= E; assert P[x := x1] isthesameas assert P[x := E] byshowing that the
weakest preconditions of these two statements with respect to Q are the same.

11. What implicit assertions are associated with the following expressions?

a) x/ (y + z)
b) arr[2 * 1i]
c) MinusOne(MinusOne(y)) //MinusOne introduced in earlier slide

12. What implicit assertions are associated with the following expressions?

Note: The right-hand expression in a conjunction is only evaluated when the left-hand conjunction
holds.

a) a/b<c/d
b) a/ b< 10 & c / d < 100
c) MinusOne(y) == 8 ==> arr[y] == 2 //MinusOne introduced in earlier slide
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