CS:5810 Formal Methods in Software Engineering

Introduction to Floyd-Hoare Logic

Copyright 2020-25, Graeme Smith and Cesare Tinelli.

Produced by Cesare Tinelli at the University of lowa from notes originally developed by Graeme Smith at the University of Queensland. These notes
are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form or modified form without
the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking
notes by any person or commercial firm without the express written permission of one of the copyright holders.

From contracts to Floyd-Hoare Logic

In the design-by-contract methodology, contracts are usually assigned
to procedures or modules

In general, it is possible to assign contracts to each statement of a
program

A formal framework for doing this was developed by Tony Hoare,
formalizing a reasoning technique by Robert Floyd

It is based on the notion of a Hoare triple

Dafny is based on Floyd-Hoare Logic

Hoare triples

For predicates P and Q and program S, the Hoare triple

preconditionp——>{ P } S { Q }- postcondition

states the following:

if S is started in any state that satisfies F,
then S will not crash (or do other bad things) and
will terminate in some state satisfying O

Examples: { x ==1} x := 20 { x == 20 }
{ X< 18 }y (=18 - x{ vy >= 0 }
{ x <18 } y :=5 {y >= 0 }

Non-example: { x < 18 } x :=y { y >= 0 }

Forward reasoning

Constructing a postcondition from a given precondition

In general, there are many possible postconditions

Examples:
1. { x =0} vy :=x+3 {y < 100 }
2. {x =0} vy :=x+3 { X =20}
3. { x=01} vy :=x+3 {0<k=x8&&y==31}
4. { x ==0 } y :=x+ 3 { 3 <K=y}
5. { x==0} vy :=x+ 3 { true }

Strongest postcondition

Forward reasoning constructs the strongest (i.e., most specific)
postcondition

Def: Ais strongerthan B if A ==> B holds (i.e., is a valid formula)

Def: A formula is valid if it is true for any valuation of its free variables

Ex: O X && 3 > 0
0 X && 3 0

X holds
> X

&& y >= 3 holds

y
y

Backward reasoning

Construct a precondition for a given postcondition

Again, there are many possible preconditions

Examples:

1. { X <= 70 }
2. { x ==658&% vy < 21 }
3. { X <= 77 }
4. { x*x + y*y <= 2500 }
5. { false }

< K v K X

w w w W w

{y
{y
1y
1y
{y

<= 80 }
<= 80 }
<= 80 }
<= 80 }
<= 80 }

Weakest precondition

Backward reasoning constructs the weakest (i.e., most general)
precondition

{ x<k=77} vy :=x+3 {y<= 80}

Def: A is weaker than B if B ==> A is a valid formula

Weakest precondition for assighment

Given { }

10}

we construct ? by replacing each x in Q with E (denoted by Q[x := E])

Weakest precondition for assighment
Given {0[x := E]} x := E { Q }

Examples: { ? } yv :=a+b {25«<=y}
t__ 25 <=a + b

1. {25 <k=x+ 3+ 12} a:=x+3 { 25«<=a + 12 }

2. {XxX+1«<k=y} x =x+1 {x<=y}

3. { 3*2*x + 5*y < 160 } x :

2%X { 3*x + 5%y < 100 }

Swap example

var tmp := X;

Swap example

The initial values of x and y are
specified using logical variables
X XandY

var tmp :

Swap example

The initial values of x and y are
specified using logical variables

var tmp := X; XandY

~—

~ > ~

Il 1|

I Q I

=

S e s>
X

o o o

o I oJ o

< g
Q e =

Il = > Pl

N~ 4~ | | | I

X e C N oo X oo X
)

N S N X Y D

oJ ><
I
>
o
Qo
<
|
I
<
-

I - |l

X
Il
| f'|‘ Il ‘< |

A AN X AN AN

Q

o S

I
=
©
||
X
\o

X
Il

I
< X

Q
e < O KK X

I
=)
“. ©

X
Il
<<

{
{
\Y,
{
X =
{
y
{

x LN]
Il

Swap example

var tmp := X;
X =Y
y = tmp;

The final step is the proof obligation that
(x == X && y == VY) ==> (y == Y && x == X)

is valid

Program-proof bookkeeping

y - X,

y - X,

y + X,

Suppose x and y store
infinite precision integers

Program-proof bookkeeping

X =Yy - X;
y ‘=Y - X;
X 1=y + X;

The constructed precondition simplifies to
(and so is implied by)

y== &&X::

Program-proof bookkeeping

>
X =Y - X,
-
LD
y (=Y - X;
X =Y + X;

We are also allowed to strengthen the conditions as
we work backwards (but not weaken them!)

Simultaneous assignments

Dafny allows several assignments in one statement

Examples:
X, y := 3, 10; sets xto 3 and yto 19
X, V := X +Y, X - VY; sets x to the sum of x and y

and y to their difference

All right-hand sides are computed before any variables are assigned

Note difference with

X 1= X+VY; Yy =X -Y;

WP for Simultaneous assignments

The weakest precondition of

J ° J

wrt postcondition Q is constructed by replacing in
* each x, with E, and

* each x, with (denoted Q[x,,x, := E;,E,])
Example:
[X)y .= J]
X, Y i=Y, X X, = 5,

WP for Variable introduction

var x := tmp; is actually two statements:

var xX; X := tmp;

WP for Variable introduction

17 }yvar x {Q}

If a value of X satisfies Q in the postcondition,
it must be that every value of X satisfies Q in the precondition

{ forall x :: Q } var x { Q }

Examples: false

«’/

{forall x : :: @ <=x }rvar x { 9 <= x }

{forall x : :: 0 <= x*x } var x { 0 <= x*x }

What about strongest postconditions?

Consider { w < X && X <y } x :=100 { ? }

Obviously, x == 100 is a postcondition, but it is not the strongest

Something more is implied by the precondition:
there existsannsuchthat w < n & n < vy
which is equivalent to sayingthat y - w >= 2

In general:

{ P } x :

E { exists n :: P[x := n] &&
x == E[x 1= n] }

WP and SP

Let P be a predicate on the pre-state of a program S and
let O be a predicate on the post-state of S

WP[S, Q] denotes the weakest precondition of S wrt Q

SP[S, P] denotes the strongest postcondition of S wrt P

WP[x := E, Q]

I
O
—

X
|
=
—

I
M
X
=t
n
t
n
>
O

—

X

I
>

—

o

Qo

SP[x := E, P]

Control flow

Until now:
Assignment: x := E

Variable introduction: var x

Next:

Sequential composition: S ; T
Conditions: if B { S } else { T }
Method calls: r := M(E)

Later:

Loops: while B { S }

Sequential composition

1P}rS; TALR}
1P}YSLQ}FT LR}
{P}rs{Q}rand{Q}T{R}

Strongest postcondition

let Q = SP[S, P] in SP[S; T, P] =8P[T, Q] =S8P[T, SPIS, PI]

Weakest precondition
let Q = WP[T, R] in WP[S; T, R]=WP[S, Q] = WP[S, WPI[T, R]]

Conditional control flow

{Pr(@EFfBA{S}else {T}){0Q}

P}
Y\
{vy {wy
{xy AV

10Q}

Conditional control flow

{Pr(@EFfBA{S}else {T}){0Q}

[{ P }J Floyd-Hoare logic tells us:
R 1. P & B ==> V
1V} [{W} 2. P & !B ==> W
3. {V}s{X}
{x)y AV} 4 {WYT{V}
5. ==>Q
10} 6. Y==>Q

Strongest postcondition

{ P}y @FBA{Selse{T}){0Q}

IB = ’
{p &‘& {P && IB} Y = SP[P && !B, T]
@

{x} LY} SPLifB{s}else{T} Pl
\ / =SP[P && B, S] || SP[P && !B, T]
X |1 v}

{

Weakest precondition

{Pr(@EFfBA{S}else {T}){0Q}

{B==> V8 !B ==> W

/ \B V= WP[S, 0]

{V} W }} W=WP[T, Q]

{Q} {10}
WP[if B { S } else { T }, Q]=
(B ==> WP[S, Q]) &&
(IB ==> WP[T, Q])

Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Weakest precondition (example)

{ X == 50 }
it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Refresher: Implication properties

A ==> B equiv.to A || B

Hence,
A ==>true | equiv.to |true
A ==> false ! I A
true ==>B N B
false ==>B ! true

Other useful laws for simplifying predicates

* A ==> (B ==> C) equivto (A && B) ==> C

« A ==> (B & C) equiv.to (A ==> B) && (A ==> ()
« A& (B || C©) equiv.to (A && B) || (A && C)

« A || (B && C) equiv.to (A || B) && (A || ©)

Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {

Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {

Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {

Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {

Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {

Method correctness

Given

method M(x: T,) returns (y: T,)
requires P
ensures Q

{
¥

B

we need to prove

P ==> WPIB, Q]

Method calls

Methods are opaque, i.e., we reason in terms of their specifications, not
their implementations

Example: Given

method Triple(x:) returns (y:)
ensures y == 3 * X

we expect to be able to prove, for instance, the following method call

v := Triple(u + 4)

Parameters

We need to relate the actual parameters (of the method call) with the
formal parameters (of the method)

To avoid any name clashes, we first rename the formal parameters to
fresh variables:

method Triple(x1:) returns (yl:)
ensures yl == 3 * x1
Then, foracall v := Triple(u + 1) we have
X1 :=u + 1

v =1yl

Assumptions

The caller can assume that the method's postcondition holds

We introduce a new statement, assume E, to capture this

SP[assume E, P] =P & E
WP[assume E,Q] = E ==> 0

The semantics of v := Triple(u + 1) isthen given by
var x1; var yl; method Triple(x1:)
X1 = u + 1; returns (yl:)
assume yl == 3 * x1; ensures yl == 3 * x1

v =Yyl

WP[r := M(E), Q]
= WP|[var x. ; var
= WP[var x., WP
= WP[var x. , WP
= WP[var x. , WP

Weakest precondition

method M(x: X) returns (y: Y) ensures R[x,y]

with x;, y, fresh
Y, ; Xg := E;assume R[x,y :=x.,y,]; r:i=vy,, Q]
vary,, WP[x. := E, WP[assume R[x,y :=xgy.], WP[r :=vy,, Q]]]]
[vary,, WP[x; := E, WP[assume R[x,y :=x,y,], Qr := v,]]1]]

[vary,, WP[xg := E, R[x,y :=xg,y] ==>Q[r :=y/]]]

= WP [var x., WP[var vy, , R[x,y :=E,y.] ==>Q[r :=vy/]]
= WP[var x., forall y, :: R[x,y := E,y,] ==>Q[r :=y/]]

= forall x; :: forall y, :: R[x,y := E,y,] ==> Q[r := y/]

=forall y, :: R[x,y := E,y,] ==>Q[r :=y/] since x; is not in Q

Weakest precondition

WP[r := M(E), Q] = forall y1 ::
R[X)y . = EJyl] ==> Q[P

where x is M’s input, y is M’s output, and R is M's postcondition

Example. LetQ be v == 48 for the method:

method Triple(x:) returns (y:)
ensures y == 3 * X

v := Triple(u + 1);

:= y1]

Assertions

assert E does nothing when E holds in the current state;
otherwise, it crashes the program

method Triple(x:) returns (r:) {
var y = 2 * x;
roi= X + yj;
assert r == 3 * x;

¥

SP[assert E,P] = P && E
WP[assert E,Q] = E & & Q

Method calls with preconditions

Given

method M(x: X) returns (y: Y)
requires P

ensures R
The semanticsof r := M(E) s
var Xg ; var y.;
Xe := E ;
assert P[x := X¢] ;
assume R[X,Y := XgVY.]
r =y,

WP[r := M(E),Q] = P[x := E] &&

forall y. :: R[X,y

= E,y.] ==> Q[r :

Vel

Function calls

No output

o t
function Average(a: , b:) : { parameters
(a +b) /2
} T\ An expression,

not a statement

Functions are transparent: we reason about them in terms of their
definition

method Triple(x:) returns (r:)
ensures r == 3%*X
{ r := Average(2*x, 4*x); }

Function calls

No output
. ¢/ parameters
function Average(a: , b:) {
(a +b) / 2
} T\ An expression,

not a statement

Functions are transparent: we reason about them in terms of their
definition by unfolding it

method Triple(x:) returns (r:)
ensures r == 3*x
{ r = (2*x + 4*x) / 2; }

Function calls

In Dafny, functions are actually part of the code

If you want to use a function in specification, you need to use
a ghost function

ghost function Average(a: , b:) :
(a +b) /2

}

method Triple(x:) returns (r:)

ensures r == Average(2*x, 4%*Xx)

Partial expressions

An expression may be not always well defined,
e.g., ¢/d when d evaluates to 0

Associated with such partial expressions are implicit assertions

Example:

assert d 1= 0 && v = 0;

it ¢/d < u/v {
assert @ <= 1 < a.Length;
X :=alil];

¥

Partial expressions

Functions may have preconditions, making calls to them partial
Example: given

function MinusOne(Xx:)
requires 0 < X

thecall z := MinusOne(y + 1) hasan implicit assertion

assert O <y + 1

Exercises

1. Suppose youwant X + y == 22 to hold after the statement
if x < 20{y :=3; }else{y :=2; }

In which states can you start the statement? In other words, compute the weakest precondition of
the statement with respectto x + y == 22. Simplify the condition after you have computed it.

2. Compute the weakest precondition for the following statement with respect toy < 10. Simplify
the condition.

if x < 8 {
if x ==5{y :=10; } else { vy :=2; }
} else
y =

O~

}

Exercises

3. Compute the weakest precondition for the following statement with respecttoy % 2 ==
(that is, "y is even"). Simplify the condition.

if x < 10 {

if x <20 {y :=1; }else{y :=2; }
} else {

y = 4;
}

4. Compute the weakest precondition for the following statement with respect toy % 2 == 0 (that is,
"y is even"). Simplify the condition.

if x < 8 {

if x <4 {x :=x+1; }yelse{y :=2; }
} else {

if x <32 {y :=1; } else { }
}

Exercises

5. Determine under which circumstances the following program establishes 0 <=y < 100. Try
first to do that in your head. Write down the answer you come up with, and then write out the full
computations to check that you got the right answer.

if x < 34 {
if x ==2{y:=x+1; }else {y :=233; }
} else {

if x < 55 {y :=21; } else {y := 144; }
}

6. Which of the following Hoare-triple combinations are valid?
a) {9 <=x} x :=x+1{ -2<=x1%}ty:=0 {-10 <= x}
b) {0 <= x} x :=x +1{ true } x := x + 1 {2 <= x}
c) {0 <=x} x :=x+1; x :=x +1{2 <= x}
d) {0 <= x} x := 3 X :=x +1{3 <= x}
e) {x <2}y = x+5; x :=2*x {x <y}

Exercises

7. Compute the weakest precondition of the following statements with respect to the postcondition
X + Yy < 100.

a) x :=32; y := 40
b) X : =X+ 2;y :=y -3 *Xx

8. Compute the weakest precondition of the following statement with respect to the postcondition
X < 10:

a) if x%2==0{y :=y +3; }else{y :=4; }
b) ify <10 {y :=x+vy; } else { x :=38; }

9. Compute the weakest precondition of the following statements with respect to the postcondition
X < 1080. Simplify your answer.

a) assert y == 25 d) assert x <= 100
b) assert 0 <= X e) assert 0 <= x < 100
c) assert x < 200

Exercises

10. If x1 does not appear in the desired postcondition Q, then prove that
x1l:= E; assert P[x := x1] isthesameas assert P[x := E] byshowing that the
weakest preconditions of these two statements with respect to Q are the same.

11. What implicit assertions are associated with the following expressions?

a) x/ (y + z)
b) arr[2 * 1i]
c) MinusOne(MinusOne(y)) //MinusOne introduced in earlier slide

12. What implicit assertions are associated with the following expressions?

Note: The right-hand expression in a conjunction is only evaluated when the left-hand conjunction
holds.

a) a/b<c/d
b) a/ b< 10 & c / d < 100
c) MinusOne(y) == 8 ==> arr[y] == 2 //MinusOne introduced in earlier slide

	Slide 1: CS:5810 Formal Methods in Software Engineering
	Slide 2: From contracts to Floyd-Hoare Logic
	Slide 3: Hoare triples
	Slide 4: Forward reasoning
	Slide 5: Strongest postcondition
	Slide 6: Backward reasoning
	Slide 7: Weakest precondition
	Slide 8: Weakest precondition for assignment
	Slide 9: Weakest precondition for assignment
	Slide 10: Swap example
	Slide 11: Swap example
	Slide 12: Swap example
	Slide 13: Swap example
	Slide 14: Swap example
	Slide 15: Swap example
	Slide 16: Swap example
	Slide 17: Program-proof bookkeeping
	Slide 18: Program-proof bookkeeping
	Slide 19: Program-proof bookkeeping
	Slide 20: Simultaneous assignments
	Slide 21: WP for Simultaneous assignments
	Slide 22: WP for Variable introduction
	Slide 23: WP for Variable introduction
	Slide 24: What about strongest postconditions?
	Slide 25: WP and SP
	Slide 26: Control flow
	Slide 27: Sequential composition
	Slide 28: Conditional control flow
	Slide 29: Conditional control flow
	Slide 30: Strongest postcondition
	Slide 31: Weakest precondition
	Slide 32: Weakest precondition (example)
	Slide 33: Weakest precondition (example)
	Slide 34: Weakest precondition (example)
	Slide 35: Weakest precondition (example)
	Slide 36: Weakest precondition (example)
	Slide 37: Weakest precondition (example)
	Slide 38: Weakest precondition (example)
	Slide 39: Refresher: Implication properties
	Slide 40: Weakest precondition (example)
	Slide 41: Weakest precondition (example)
	Slide 42: Weakest precondition (example)
	Slide 43: Weakest precondition (example)
	Slide 44: Weakest precondition (example)
	Slide 45: Method correctness
	Slide 46: Method calls
	Slide 47: Parameters
	Slide 48: Assumptions
	Slide 49: Weakest precondition
	Slide 50: Weakest precondition
	Slide 51: Assertions
	Slide 52: Method calls with preconditions
	Slide 53: Function calls
	Slide 54: Function calls
	Slide 55: Function calls
	Slide 56: Partial expressions
	Slide 57: Partial expressions
	Slide 58: Exercises
	Slide 59: Exercises
	Slide 60: Exercises
	Slide 61: Exercises
	Slide 62: Exercises

