CS:5810 Formal Methods in Software Engineering

Reasoning about Programs with Arrays in Dafny

Copyright 2020-25, Graeme Smith and Cesare Tinelli.

Produced by Cesare Tinelli at the University of lowa from notes originally developed by Graeme Smith at the University of Queensland. These notes are
copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form or modified form without the
express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking notes
by any person or commercial firm without the express written permission of one of the copyright holders.

Arrays are references

var a := new [20]; Type of ais array<string>
al7] := K

var b := a;

assert b[7] == 5

b[7] 5

a[8] ;
assert al[7] == && b[8] ==

Arrays are references

var a := new [20]; Type of ais array<string>
al7] := ;

var b := a;

assert b[7] == 5

b[7] := ;

3[8] . =)

assert a[7] == && b[8] == 5

b := new [8];

b[7] := ;

assert a[7] == 5

assert a.Length == 20 && b.Length == 8;

Two-dimensional arrays

var m := new [3,

m[@, 9] := true;
m[1l, 8] := false;
assert m.Lengtho ==

10];

3 && m.Lengthl

Type of mis array2<bool>

10;

Sequences

Arrays are mutable and are reference types
Sequences are immutable and are value types, like and

To declare a sequence we use type constructor seq,
e.g.,, seq<bool>, seg<int>

Examples:
[] the empty sequence
[58] singleton integer sequence

, ,] string sequence

var s
assert
assert
assert

var p

assert
assert
assert

a .= new

© O O

Sequences

(6, 28, 496];

[2] == 496;

// length function

= 3,
+ [8128] == [6, 28, 496, 8128];

[1, 5, 12, 22, 35]
[2..4] == [12, 22];
-°'2] == [1J 5]5
:2.] == [12, 22, 35];

[3];

alo], a[1], a[2] := 6, 28, 496,

S, p :
assert

S

[..]J a[..Z];
== [6, 28, 496] && p == [6, 28];

Linear search

method LinearSearch<T>(a: <T>,

returns (n:

)

P: T ->

\

Predicateon T

Linear search

method LinearSearch<T>(a: <T>, P: T ->

returns (n:) \\\

ensures O <= n <= a.lLength _
ensures n == a.Length || P(a[n]) Predicateon T

Linear search

method LinearSearch<T>(a: <T>, P: T ->
returns (n:)

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := 0;

while n I= a.Length
invariant @ <= n <= a.Length

Linear search

method LinearSearch<T>(a: <T>, P: T ->)
returns (n:)

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := 0;

while n I= a.Length
invariant @ <= n <= a.Length

{
if P(aln]) return jumps to end of method, and
{ return; } -
we need to prove postconditions
n :=n+ 1;
}

Alternative implementation

method LinearSearchl<T>(a: <T>, P:T ->
returns (n:)

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := a.lLength;
¥

Alternative implementation

method LinearSearchl<T>(a: <T>, P:T ->)
returns (n:)
ensures @ <= n <= a.lLength
ensures n == a.Length || P(a[n])
{
n := a.lLength;
}
To specify that no elements satisfy P, when n == a.Length we need to quantify

over the elements of a.

We can achieve the same effect by quantifying over the array positions instead:

forall 1 :: @ <=1 < a.Length ==> !P(a[i])

Strengthening the contract

method LinearSearchl<T>(a: <T>, P:T ->)
returns (n:)

ensures @ <= n <= a.Length

ensures n == a.Length || P(a[n])

ensures n == a.Length ==>

forall i :: @ <= 1 < a.Length ==> IP(a[i])

\

can leave off 1’s type
since it can be inferred

Strengthening the contract

method LinearSearchl<T>(a: <T>, P:T ->)
returns (n:)

ensures O <= n <= a.lLength

ensures n == a.Length || P(a[n])

ensures n == a.Length ==>

forall i :: @ <= i < a.Length ==> IP(a[i])

We use the “replace a constant by a variable”
loop design technique:

invariant forall i :: @ <=1 < n ==> !P(a[i])

{ forall i :: @ <=1 < n + 1 ==> IP(a[i]) }
n :=n+ 1;
{ forall i :: @ <=1 < n ==> IP(a[i]) }

{ forall i :: (@ <=1 < n || 1i==n) ==> IP(a[i]) }
{ forall 1 :: @ <=1 < n+ 1 ==>1P(a[i]) }

n :=n+ 1;

{ forall i :: @ <=1 < n ==> IP(a[i]) }

Linear search

forall x :: (A || B) ==> C

¥

= (forall x :: A ==> C) && (forall x :: B ==> Q)
{ (forall 1 :: @ <=1 < n ==> IP(a[i1])) &&
(forall 1 :: 1 == n ==> IP(a[i]))
{ forall i :: (@ <=1 <n || 1 ==n) ==> IP(a[i]) }

{ forall i :: @ <=1 < n + 1 ==> IP(a[i]) }

n :=n+ 1;

{ forall 1 :: 6 <=1 < n ==> IP(a[i]) }

Linear search

(forall x :: x == E ==> A) = A[X\E] (one-pointrule)

{ (forall i :: @ <=1 < n ==> IP(a[i])) && !P(a[n]) }
{ (forall 1 :: @ <=1 < n ==> IP(a[i1])) &&
(forall 1 :: 1 == n ==> IP(a[i]))

}

{ forall i :: (@ <=1 <n || 1 ==n) ==> IP(a[i]) }
{ forall i :: @ <=1 < n + 1 ==> IP(a[i]) }

n :=n+ 1;

{ forall 1 :: 6 <=1 < n ==> IP(a[i]) }

Linear search

holds due to invariant

\\

== n) ==> !P(a[i])

{ forall 1 :: @ <=1 < n + 1 ==> IP(a[i]) }

{ (forall i :: @ <=1 <

{ (forall i :: @ <=1 <
(forall 1 :: 1 == n ==>

¥

{ forall i :: (6 <=1i<n || i

n :=n+ 1;

{ forall i :: @ <=1 < n

> IP(a[i]) }

holds after if P(a[n]) { return; }

Linear search

{ (forall 1 :: @ <=1 < n ==> IP(a[i])) && !'P(a[n]) }
{ (forall 1 :: @ <=1 < n ==> IP(a[i1])) &&
(forall i :: 1 == n ==> P(a[i]))
}
{ forall i :: (@ <=1 <n || 1 ==n) ==> IP(a[i]) }
{ forall 1 :: @ <=1 < n+ 1 ==>1P(a[i]) }
n :=n+ 1;
{ forall 1 :: @6 <=1 < n ==> IP(a[i]) }

Loop body for LinearSearch works here

Full program

method LinearSearchl<T>(a: <T>, P:T ->)
returns (n:)
ensures O <= n <= a.lLength
ensures n == a.Length || P(a[n])
ensures n == a.lLength ==
forall 1 :: @ <=1 < a.Length ==> IP(a[i])

{
n := 0;
while n != a.Length
invariant © <= n <= a.lLength
invariant forall 1 :: @ <=1 < n ==> !P(a[i])
{
it P(a[n]) { return; }
n :=n+ 1;
}
}

Finding the first element

method LinearSearch2<T>(a: <T>, P:T ->)
returns (n:)

ensures O <= n <= a.lLength

ensures n == a.Length || P(a[n])

ensures forall 1 :: 0 <=1 < n ==> IP(a[i])

The second and third postconditions imply that n is the smallest index such
that a[n | satisfies P

The loop specification and body of LinearSearchl satisfy this contract too

Knowing it is there

If we can assume that at least one element of a satisfies P
we can simplify the contract to

method LinearSearch3<T>(a: <T>, P:T ->)
returns (n:)
requires exists 1 :: @ <= 1 < a.Length && P(a[i])

ensures @ <= n < a.Length && P(a[n])

An invariant that says where to look

The element we are looking for is at index n or higher

invariant exists i ::
n <= 1 < a.lLength && P(a[i])

holds after
if P(a[n])
{ return; }

holds due to invariant
on entry to loop

{ 'P(a[n]) && exists i :: ///
n <= 1 < a.Length && P(a[i]) }
{ exists 1 :: n+ 1 <=1 < a.Length & P(a[i]) }
n :=n + 1;
{ exists 1 :: n <=1 < a.Length & P(a[i]) }

Implementation of LinearSearch3

method LinearSearch3<T>(a:
returns (n:)

{

¥

requires exists 1 ::

<T>, P: T

ensures @ <= n < a.lLength && P(a[n])

n

while true -«

¥

= 0;

-S>)

9 <= 1 < a.Length && P(a[i])

invariant © <= n < a.lLength

simplified since n never
reaches a.Length

e

invariant exists 1 :: n <= 1i < a.Length && P(a[i])

decreases a.Length - n

if P(a[n]) { return; }
n :=n+ 1;

	Slide 1: CS:5810 Formal Methods in Software Engineering
	Slide 2: Arrays are references
	Slide 3: Arrays are references
	Slide 4: Two-dimensional arrays
	Slide 5: Sequences
	Slide 6: Sequences
	Slide 7: Linear search
	Slide 8: Linear search
	Slide 9: Linear search
	Slide 10: Linear search
	Slide 11: Alternative implementation
	Slide 12: Alternative implementation
	Slide 13: Strengthening the contract
	Slide 14: Strengthening the contract
	Slide 15: Linear search
	Slide 16: Linear search
	Slide 17: Linear search
	Slide 18: Linear search
	Slide 19: Linear search
	Slide 20: Linear search
	Slide 21: Full program
	Slide 22: Finding the first element
	Slide 23: Knowing it is there
	Slide 24: An invariant that says where to look
	Slide 25: Implementation of LinearSearch3

