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Arrays are references

var a := new [20]; Type of ais array<string>
al7] := K

var b := a;

assert b[7] == 5

b[7] 5

a[8] ;
assert al[7] == && b[8] ==



Arrays are references

var a := new [20]; Type of ais array<string>
al7] := ;

var b := a;

assert b[7] == 5

b[7] := ;

3[8] . = )

assert a[7] == && b[8] == 5

b := new [8];

b[7] := ;

assert a[7] == 5

assert a.Length == 20 && b.Length == 8;



Two-dimensional arrays

var m := new [3,

m[@, 9] := true;
m[1l, 8] := false;
assert m.Lengtho ==

10];

3 && m.Lengthl

Type of mis array2<bool>

10;



Sequences

Arrays are mutable and are reference types
Sequences are immutable and are value types, like and

To declare a sequence we use type constructor seq,
e.g.,, seq<bool>, seg<int>

Examples:
[ ] the empty sequence
[58] singleton integer sequence

, , ] string sequence



var s
assert
assert
assert

var p

assert
assert
assert

a .= new

© O O

Sequences

(6, 28, 496];

[2] == 496;

// length function

= 3,
+ [8128] == [6, 28, 496, 8128];

[1, 5, 12, 22, 35]
[2..4] == [12, 22];
-°'2] == [1J 5]5
:2. ] == [12, 22, 35];

[3];

alo], a[1], a[2] := 6, 28, 496,

S, p :
assert

S

[..]J a[..Z];
== [6, 28, 496] && p == [6, 28];



Linear search

method LinearSearch<T>(a: <T>,

returns (n:

)

P: T ->

\

Predicateon T




Linear search

method LinearSearch<T>(a: <T>, P: T ->

returns (n: ) \\\

ensures O <= n <= a.lLength _
ensures n == a.Length || P(a[n]) Predicateon T




Linear search

method LinearSearch<T>(a: <T>, P: T ->
returns (n: )

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := 0;

while n I= a.Length
invariant @ <= n <= a.Length



Linear search

method LinearSearch<T>(a: <T>, P: T -> )
returns (n: )

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := 0;

while n I= a.Length
invariant @ <= n <= a.Length

{
if P(aln]) return jumps to end of method, and
{ return; } -
we need to prove postconditions
n :=n+ 1;
}



Alternative implementation

method LinearSearchl<T>(a: <T>, P:T ->
returns (n: )

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := a.lLength;
¥



Alternative implementation

method LinearSearchl<T>(a: <T>, P:T -> )
returns (n: )
ensures @ <= n <= a.lLength
ensures n == a.Length || P(a[n])
{
n := a.lLength;
}
To specify that no elements satisfy P, when n == a.Length we need to quantify

over the elements of a.

We can achieve the same effect by quantifying over the array positions instead:

forall 1 :: @ <=1 < a.Length ==> !P(a[i])



Strengthening the contract

method LinearSearchl<T>(a: <T>, P:T -> )
returns (n: )

ensures @ <= n <= a.Length

ensures n == a.Length || P(a[n])

ensures n == a.Length ==>

forall i :: @ <= 1 < a.Length ==> IP(a[i])

\

can leave off 1’s type
since it can be inferred




Strengthening the contract

method LinearSearchl<T>(a: <T>, P:T -> )
returns (n: )

ensures O <= n <= a.lLength

ensures n == a.Length || P(a[n])

ensures n == a.Length ==>

forall i :: @ <= i < a.Length ==> IP(a[i])

We use the “replace a constant by a variable”
loop design technique:

invariant forall i :: @ <=1 < n ==> !P(a[i])



{ forall i :: @ <=1 < n + 1 ==> IP(a[i]) }
n :=n+ 1;
{ forall i :: @ <=1 < n ==> IP(a[i]) }



{ forall i :: (@ <=1 < n || 1i==n) ==> IP(a[i]) }
{ forall 1 :: @ <=1 < n+ 1 ==>1P(a[i]) }

n :=n+ 1;

{ forall i :: @ <=1 < n ==> IP(a[i]) }



Linear search

forall x :: (A || B) ==> C

¥

= (forall x :: A ==> C) && (forall x :: B ==> Q)
{ (forall 1 :: @ <=1 < n ==> IP(a[i1])) &&
(forall 1 :: 1 == n ==> IP(a[i]))
{ forall i :: (@ <=1 <n || 1 ==n) ==> IP(a[i]) }

{ forall i :: @ <=1 < n + 1 ==> IP(a[i]) }

n :=n+ 1;

{ forall 1 :: 6 <=1 < n ==> IP(a[i]) }




Linear search

(forall x :: x == E ==> A) = A[X\E] (one-pointrule)

{ (forall i :: @ <=1 < n ==> IP(a[i])) && !P(a[n]) }
{ (forall 1 :: @ <=1 < n ==> IP(a[i1])) &&
(forall 1 :: 1 == n ==> IP(a[i]))

}

{ forall i :: (@ <=1 <n || 1 ==n) ==> IP(a[i]) }
{ forall i :: @ <=1 < n + 1 ==> IP(a[i]) }

n :=n+ 1;

{ forall 1 :: 6 <=1 < n ==> IP(a[i]) }



Linear search

holds due to invariant

\\

== n) ==> !P(a[i])

{ forall 1 :: @ <=1 < n + 1 ==> IP(a[i]) }

{ (forall i :: @ <=1 <

{ (forall i :: @ <=1 <
(forall 1 :: 1 == n ==>

¥

{ forall i :: (6 <=1i<n || i

n :=n+ 1;

{ forall i :: @ <=1 < n

> IP(a[i]) }

holds after if P(a[n]) { return; }




Linear search

{ (forall 1 :: @ <=1 < n ==> IP(a[i])) && !'P(a[n]) }
{ (forall 1 :: @ <=1 < n ==> IP(a[i1])) &&
(forall i :: 1 == n ==> P(a[i]))
}
{ forall i :: (@ <=1 <n || 1 ==n) ==> IP(a[i]) }
{ forall 1 :: @ <=1 < n+ 1 ==>1P(a[i]) }
n :=n+ 1;
{ forall 1 :: @6 <=1 < n ==> IP(a[i]) }

Loop body for LinearSearch works here



Full program

method LinearSearchl<T>(a: <T>, P:T -> )
returns (n: )
ensures O <= n <= a.lLength
ensures n == a.Length || P(a[n])
ensures n == a.lLength ==
forall 1 :: @ <=1 < a.Length ==> IP(a[i])

{
n := 0;
while n != a.Length
invariant © <= n <= a.lLength
invariant forall 1 :: @ <=1 < n ==> !P(a[i])
{
it P(a[n]) { return; }
n :=n+ 1;
}
}



Finding the first element

method LinearSearch2<T>(a: <T>, P:T -> )
returns (n: )

ensures O <= n <= a.lLength

ensures n == a.Length || P(a[n])

ensures forall 1 :: 0 <=1 < n ==> IP(a[i])

The second and third postconditions imply that n is the smallest index such
that a[n | satisfies P

The loop specification and body of LinearSearchl satisfy this contract too



Knowing it is there

If we can assume that at least one element of a satisfies P
we can simplify the contract to

method LinearSearch3<T>(a: <T>, P:T -> )
returns (n: )
requires exists 1 :: @ <= 1 < a.Length && P(a[i])

ensures @ <= n < a.Length && P(a[n])



An invariant that says where to look

The element we are looking for is at index n or higher

invariant exists i ::
n <= 1 < a.lLength && P(a[i])

holds after
if P(a[n])
{ return; }

holds due to invariant
on entry to loop

{ 'P(a[n]) && exists i :: ///
n <= 1 < a.Length && P(a[i]) }
{ exists 1 :: n+ 1 <=1 < a.Length & P(a[i]) }
n :=n + 1;
{ exists 1 :: n <=1 < a.Length & P(a[i]) }



Implementation of LinearSearch3

method LinearSearch3<T>(a:
returns (n: )

{

¥

requires exists 1 ::

<T>, P: T

ensures @ <= n < a.lLength && P(a[n])

n

while true -«

¥

= 0;

-S> )

9 <= 1 < a.Length && P(a[i])

invariant © <= n < a.lLength

simplified since n never
reaches a.Length

e

invariant exists 1 :: n <= 1i < a.Length && P(a[i])

decreases a.Length - n

if P(a[n]) { return; }
n :=n+ 1;
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