
CS:5810 Formal Methods in Software Engineering

Reasoning About Programs in Dafny

Copyright 2020-25, Graeme Smith and Cesare Tinelli.
Produced by Cesare Tinelli at the University of Iowa from notes originally developed by Graeme Smith at the University of Queensland. These notes
are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form or modified form without
the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking
notes by any person or commercial firm without the express written permission of one of the copyright holders.

Is this program fragment correct?

x = 0;
y = a;
while (y > 0) {
 x = x + b;
 y = y − 1;
}

Recall: A program can only be said to be correct with respect to a
specification

Program Correctness

Correctness

Is this program fragment correct with respect to the following
specification?

“Given integers a and b, the program produces in x the product of a
and b”

x = 0;
y = a;
while (y > 0) {
 x = x + b;
 y = y − 1;
}

Correctness

Is this program fragment correct with respect to the following
specification?

“Given positive integers a and b, the program produces in x the product
of a and b”

x = 0;
y = a;
while (y > 0) {
 x = x + b;
 y = y − 1;
}

Specification of example program:

“Given positive integers a and b, the program produces in x the product
of a and b”

 requires a and b to be positive integers

 ensures x is the product of a and b

Precondition: caller needs to
ensure this to get a
meaningful result

Postcondition: callee
guarantees this when
precondition is met

Design by Contract

Timsort

▪ Timsort is a sorting algorithm developed for Python by Tim Peters in
2002

▪ It uses a combination of merge sort and insertion sort

▪ It was designed to perform well on real-world data (with runs of
descending values, and of non-descending values)

▪ Ported to Java 1.7 (java.util.Collections.sort and
java.util.Arrays.sort) in 2011

▪ Default sorting algorithm for Android SDK, Oracle’s JDK and Open
JDK

Timsort bug

Bug in Timsort discovered in 2015

 leads to

Stijn de Gouw
CWI, The Netherlands

Formal verification

To formally verify a program you need

 – A formal (i.e., mathematical) specification

 – A formal proof

 – Automated tools (Timsort bug found using the KeY tool)

 – Expertise

Learning about specification and proof sharpens thinking

Formal verification

Some program verification tools

• KeY, OpenJML – Java

• VCC, Verifast, Smack – C

• Spec# – C#

• Stainless, Sireum – Scala

• Why3 – WhyML

• Dafny – Dafny

Formal verification

Krakatoa (Java) Frama-C © SPARK (Ada)

 Why3

 Dafny

 C# Java Javascript Go . . .

Educational objectives

In the rest of this course, we will learn how to

• specify precisely what a program is supposed to do

• verify that a program behaves as specified

• derive a program that behaves as specified

• use the Dafny programming language/verifier for goals above

Introduction to Dafny

method Triple(x: int) returns (r: int)
 ensures r == 3 * x
{
 var y := 2 * x;
 r := x + y;
}

Compositional reasoning philosophy:
The caller should not be able to see a method’s body, only its
specification

The specification describes the method’s behavior, abstracting from
the details of the method’s body

Introduction to Dafny

method Triple(x: int) returns (r: int)
 ensures r == 3 * x
{
 var y := Double(x);
 r := x + y;
}

method Double(x: int) returns (r: int)
 ensures r == 2 * x

Introduction to Dafny

method Triple(x: int) returns (r: int)
 ensures r == 3 * x
{
 var y := Double(x);
 r := x + y;
}

method Double(x: int) returns (r: int)
 requires x >= 0
 ensures r == 2 * x

Introduction to Dafny

method Triple(x: int) returns (r: int)
 requires x >= 0
 ensures r == 3 * x
{
 var y := Double(x);
 r := x + y;
}

method Double(x: int) returns (r: int)
 requires x >= 0
 ensures r == 2 * x

Introduction to Dafny

method Triple(x: int) returns (r: int)
 ensures r == 3 * x
{
 if x >= 0 {
 var y := Double(x); r := x + y;
 } else {
 var y := Double(-x); r := x - y;
 }
}

method Double(x: int) returns (r: int)
 requires x >= 0
 ensures r == 2 * x

Logic in Dafny

true false
!A “not A”
A && B “A and B”
A || B “A or B”

A ==> B “A implies B” or “A only if B”
A <==> B “A if and only if B”

Precedence order: ! && || ==> <==>

forall x: T :: A “for all x of type T, A is true”
exists x: T :: A “there exists an x of type T
 such that A is true"

Program state

method MyMethod(x: int) returns (y: int)
 requires x >= 10
 ensures y >= 25
{
 var a := x + 3;
 var b := 12;
 y := a + b;
}

The program variables x, y, a, and b, collectively constitute
the method’s state

Note: not all program variables are in scope the whole time

Floyd logic

method MyMethod(x: int) returns (y: int)
 requires x >= 10
 ensures y >= 25
{
 // here, we know x >= 10 ​
 var a := x + 3;
 // here, x >= 10 && a == x+3 ​
 var b := 12;
 // here, x >= 10 && a == x+3 && b == 12
 y := a + b;
 // here, x >= 10 && a == x+3 && b == 12 &&
 // y == a + b
}

Floyd logic

method MyMethod(x: int) returns (y: int)
 requires x >= 10
 ensures y >= 25
{
 // here, we know x >= 10 ​
 var a := x + 3;
 // here, x >= 10 && a == x+3 ​
 var b := 12;
 // here, x >= 10 && a == x+3 && b == 12
 y := a + b;
 // here, x >= 10 && a == x+3 && b == 12 &&
 // y == a + b
} Last constructed condition implies

the required postcondition

Floyd logic

method MyMethod(x: int) returns (y: int)
 requires x >= 10
 ensures y >= 25
{
 // here, we want x + 3 + 12 >= 25
 var a := x + 3;
 // here, we want a + 12 >= 25
 var b := 12;
 // here, we want a + b >= 25
 y := a + b;
 // here, we want y >= 25
}

Floyd logic

method MyMethod(x: int) returns (y: int)
 requires x >= 10
 ensures y >= 25
{
 // here, we want x + 3 + 12 >= 25
 var a := x + 3;
 // here, we want a + 12 >= 25
 var b := 12;
 // here, we want a + b >= 25
 y := a + b;
 // here, we want y >= 25
}

Last calculated
condition is implied
by the stated
precondition

Exercise 1

Consider a method with the type signature below which returns in s
the sum of x and y and in m the maximum of x and y:

 method MaxSum(x: int, y: int) returns (s: int, m: int)

Write the postcondition specification for this method

Exercise 2

Consider a method that attempts to reconstruct the arguments x and y
from the return values of MaxSum in Exercise 1.

In other words, consider a method with the following type signature
and same postcondition as the method of Exercise 1:

 method ReconstructFromMaxSum(s: int, m: int)

 returns (x: int, y: int)

This method cannot be implemented. Write an appropriate
precondition for the method that allows you to implement it.

	Slide 1: CS:5810 Formal Methods in Software Engineering
	Slide 2
	Slide 3: Correctness
	Slide 4: Correctness
	Slide 5
	Slide 6: Timsort
	Slide 7: Timsort bug
	Slide 8: Formal verification
	Slide 9: Formal verification
	Slide 10: Formal verification
	Slide 11: Educational objectives
	Slide 12: Introduction to Dafny
	Slide 13: Introduction to Dafny
	Slide 14: Introduction to Dafny
	Slide 15: Introduction to Dafny
	Slide 16: Introduction to Dafny
	Slide 17: Logic in Dafny
	Slide 18: Program state
	Slide 19: Floyd logic
	Slide 20: Floyd logic
	Slide 21: Floyd logic
	Slide 22: Floyd logic
	Slide 23: Exercise 1
	Slide 24: Exercise 2

