CS:5810 Formal Methods in Software Engineering

Reasoning About Programs in Dafny

Copyright 2020-25, Graeme Smith and Cesare Tinelli.

Produced by Cesare Tinelli at the University of lowa from notes originally developed by Graeme Smith at the University of Queensland. These notes
are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form or modified form without
the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking
notes by any person or commercial firm without the express written permission of one of the copyright holders.



Program Correctness

Is this program fragment correct?
X = 0;

while (y > 0) {
X = X + b;
y =y -1

Recall: A program can only be said to be correct with respect to a
specification



Correctness

Is this program fragment correct with respect to the following
specification?

“Given integers a and b, the program produces in x the product of a
and b”

X = 0;

y = a,

while (y > 0) {
X = X + b;
y =y - 1;

}



Correctness

Is this program fragment correct with respect to the following
specification?

“Given positive integers a and b, the program produces in x the product
of a and b”

X = 0;

y = a,

while (y > 0) {
X = X + b;
y =y - 1;

}



Design by Contract

Specification of example program:

“Given positive integers a and b, the program produces in x the product
of a and b”

requires a and b to be positive integers
ensures X is the product of aandb

Precondition: caller needs to
ensure this to get a
meaningful result

Postcondition: callee
guarantees this when
precondition is met



Timsort

- Timsort is a sorting algorithm developed for Python by Tim Peters in
2002

It uses a combination of merge sort and insertion sort

It was designed to perform well on real-world data (with runs of
descending values, and of non-descending values)

Ported to Java 1.7 (java.util.Collections.sort and
java.util.Arrays.sort) in 2011

Default sorting algorithm for Android SDK, Oracle’s JDK and Open
JDK



Timsort bug

Bug in Timsort discovered in 2015

git clone https://github.com/abstools/java-timsort-bug.git
cd java-timsort-bug

javac *.java

java TestTimSort 67108864 ’a}‘
leads to | -
=

Exception in thread "main" r
java.lang.ArrayIndexOutOfBoundsException: 40
at java.util.TimSort.pushRun(TimSort.java:413)
at java.util.TimSort.sort(TimSort.java:240)

at java.util.Arrays.sort(Arrays.java:1438)

Stijn de Gouw
at TestTimSort.main(TestTimSort.java:18) CWI. The Netherlands



Formal verification

To formally verify a program you need
— A formal (i.e., mathematical) specification
— A formal proof
— Automated tools (Timsort bug found using the KeY tool)

— Expertise

Learning about specification and proof sharpens thinking



Formal verification

Some program verification tools

* KeY, OpenJML — Java
 VCC, Verifast, Smack —C

* Spec#H — CH#

e Stainless, Sireum — Scala

e Why3 — WhyML

 Dafny — Dafny



Formal verification

Krakatoa (Java) Frama-C © SPARK (Ada)

>~

Why3

Dafny

e

Java Javascript Go




Educational objectives

In the rest of this course, we will learn how to

* specify precisely what a program is supposed to do
* verify that a program behaves as specified
* derive a program that behaves as specified

* use the Dafny programming language/verifier for goals above



Introduction to Dafny

method Triple(x: ) returns (r: )
ensures r == 3 * x

Compositional reasoning philosophy:
The caller should not be able to see a method’s body, only its

specification

The specification describes the method’s behavior, abstracting from
the details of the method’s body



Introduction to Dafny

method Triple(x: ) returns (r: )
ensures r == 3 * x

{
var y := Double(x);
r:= X+ yj;

}

method Double(x: ) returns (r: )

ensures pr == 2 * x



Introduction to Dafny

method Triple(x: ) returns (r: )
ensures r == 3 * x

{
var y := Double(x);
r:= X+ yj;

}

method Double(x: ) returns (r: )

requires x >= 0
ensures r == 2 ¥ x



Introduction to Dafny

method Triple(x: ) returns (r: )
requires x >= 0
ensures r == 3 * x
{
var y := Double(x);
r:= X+ yj;
}
method Double(x: ) returns (r: )

requires x >= 0
ensures r == 2 ¥ x



Introduction to Dafny

method Triple(x: ) returns (r: )
ensures r == 3 * x
{
if x >= 0 {
var y := Double(x); r := X + y;
} else {
var y := Double(-x); r := x - y;
}
}
method Double(x: ) returns (r: )

requires x >= 0
ensures r == 2 * x



true false
LA

Precedence order:

forall x: T2 A
exists x: T:: A

Logic in Dafny

&&

llnot AII
“A and B”
“Aor B”

“Aimplies B” or “Aonlyif B”
“Aif and only if B”

“for all x of type T, A is true”
“there exists an x of type T
such that A is true”



Program state

method MyMethod(x: ) returns (y: )
requires x >= 10
ensures y >= 25

{
var a := X + 3;
var b := 12;
y := a + b;

}

The program variables X, y, a, and b, collectively constitute
the method’s state

Note: not all program variables are in scope the whole time



method MyMethod(x:
requires x >= 10
ensures y >= 25

{

var a := X + 3;
var b := 12;
y := a + b;

Floyd logic

) returns (y:

)



Floyd logic

method MyMethod(x: int)
requires x >= 10
ensures y >= 25

returns (y: int)

X+3 ‘::::>
X+3 && b == 1;5:::>

x+3 && b ==@

{ 1

// here, We know X >=
var a := X + 3;

// here, |x >= 10 && a
var b :=/[12;

// here,[x >= 10 && a
y := a +/ b;

// herej x >= 10 && a
// y == a + b <«

Last constructed condition implies
the required postcondition



method MyMethod(x:

Floyd logic

) returns (y:

requires x >= 10

ensures y >= 25

1
var a := X + 3;
var b := 12;
y :=a + b;

)



Floyd logic

method MyMethod(x: int) returns (y: int)
requires x >= 10 <
ensures y >= 25

// here,lwe want x + 3 + 12 >= 25

var a :=|X + 3; j Last calculated
B condition is implied
// here,|we want a + 12 >= 25 by the stated

var b :=]12; ] precondition
// here,|lwe want a + b >= 25

y := a + |b; _]
// here, we want y >= 25




Exercise 1

Consider a method with the type signature below which returnsin s
the sum of x and y and in m the maximum of x and y:

method MaxSum(x: , Y ) returns (s: , m: )

Write the postcondition specification for this method



Exercise 2

Consider a method that attempts to reconstruct the arguments X and y
from the return values of MaxSum in Exercise 1.

In other words, consider a method with the following type signature
and same postcondition as the method of Exercise 1:

method ReconstructFromMaxSum(s: , m: )
returns (X: , Y. )

This method cannot be implemented. Write an appropriate
precondition for the method that allows you to implement it.



	Slide 1: CS:5810 Formal Methods in Software Engineering
	Slide 2
	Slide 3: Correctness
	Slide 4: Correctness
	Slide 5
	Slide 6: Timsort
	Slide 7: Timsort bug
	Slide 8: Formal verification
	Slide 9: Formal verification
	Slide 10: Formal verification
	Slide 11: Educational objectives
	Slide 12: Introduction to Dafny
	Slide 13: Introduction to Dafny
	Slide 14: Introduction to Dafny
	Slide 15: Introduction to Dafny
	Slide 16: Introduction to Dafny
	Slide 17: Logic in Dafny
	Slide 18: Program state
	Slide 19: Floyd logic
	Slide 20: Floyd logic
	Slide 21: Floyd logic
	Slide 22: Floyd logic
	Slide 23: Exercise 1
	Slide 24: Exercise 2

