CS:5810 Formal Methods in Software Engineering

Case Study: Hotel Lock System

Copyright 2001-25, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.

Created by Cesare Tinelli and Laurence Pilard at the University of lowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas
State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Acknowledgments

These notes are based on an Alloy example in the book:

[Jack06] Daniel Jackson. Software abstractions — Logic, Language, and
Analysis. The MIT press, 2006

The Task

 Model in Alloy the disposable card key system used in most
hotels for locking and unlocking guest rooms

* The system uses recordable locks, which prevent previous
guests from entering a room once its has been re-assigned

 We will model both static and dynamic aspects of the system

Problem Description [Jack06]

“[..] the hotel issues a new key to the next occupant, which
recodes the lock, so that previous keys will no longer
work.

The lock is a simple, stand-alone unit [..] with a memory
holding the current key combination.

A hardware device [..] [within the lock] generates a
sequence of pseudorandom numbers.”

Problem Description [Jack06]

“The lock is opened either by the current key combination,
or by 1its successor;

If a key with the successor is inserted, the successor 1is
made to be the current combination, so that the old
combination will no longer be accepted.

This scheme requires no communication between the front
desk and the door 1lock.”

Problem Description [Jack06]

“By synchronizing the front desk and the door locks
initially, and by using the same pseudorandom generator,

the front desk can keep its records of the current
combinations i1n step with the doors themselves.”

Signatures and Fields
Signatures: Key, Room, Guest, FrontDesk

« Key refers to the key combination stored in the magnetic
strip of the card

* FrontDesk stores at any time a mapping

* between each room and its most recent key combination
(if any), and

* between each room and its current guest

Signatures and Fields

Room refers to the room lock

Each room (lock) has
m an associated set of possible keys, and
m exactly one current key at a time

Each key belongs to at most one room

Each guest has zero or more keys at any time

Signatures and Fields

module hotel
open util/ordering [Key] as KO

Signatures and Fields

module hotel
open util/ordering [Key] as KO

sig Key {}

sig Room {
keys: set Key,
var currentKey: Key

¥

sig Guest {
var keys: set Key

¥

one sig FrontDesk {
var lastKey: Room -> lone Key,
var occupant: Room -> lone Guest

¥

fun sig FDlastKey

}

FrontDesk. lastKey

: Room -> Key {

fun sig FDoccupant: Room -> Guest {

}

FrontDesk.occupant

10

Room Constraint

Each key belongs to at most one room

fact {
all k: Key | lone (Room <: keys).k

module hotel
open util/ordering [Key] as KO

sig Key {}

sig Room {
keys: set Key,
var currentKey: Key

}
sig Guest { var keys: set Key }

one sig FrontDesk {
var lastKey: Room -> lone Key,
var occupant: Room -> Guest

¥

fun sig FDlastKey : Room -> Key {
FrontDesk.lastKey

}

fun sig FDoccupant: Room -> Guest {
FrontDesk.occupant

¥

11

New Key Generation

Given a key k and a set ks of keys,

nextKey returns the smallest key (in the key ordering) in ks that follows k
fun nextKey [k: Key, ks: set Key]: set Key

{
KO/min [KO/nexts[k] & ks]

12

Initial State

module examples/hotel
open util/ordering [Key] as KO

sig Key {}
sig Room {
keys: set Key,) No constraints
var currentKey: Key
} the record of each room’s key
sig Guest { at the front desk is synchronized
var keys: set Key) No guests have keys with the current combination
} of the lock itself
one sig FrontDesk {)//’
var lastKey: Room -> lone Key,
var occupa nt: Room -> Guest) No rooms are OCCU,D/.EUI

¥

13

Hotel Operations: Initial State

pred init {
-- no guests have keys
no Guest.keys

-- the roster at the front desk shows
-- no room as occupied

no FDoccupant

-- the record of each room’s key at the
-- front desk is synchronized with the
-- current combination of the lock itself

all r: Room |
r.FDlastKey = r.currentKey

14

Hotel Operations: Guest Entry

pred entry [g: Guest, r: Room, k: Key]

* Preconditions:
— The key used to open the lock is one of the keys the guest is holding

* Pre and Post Conditions:

— The key on the card

» either matches the lock’s current key, and the lock remains unchanged (not a new guest), or
* matches its successor, and the lock is advanced (new guest)

* Frame conditions:

— no changes to the state of other rooms, to the set of keys held by guests, or to
the records at the front desk

15

Hotel Operations: Guest Entry

pred entry [g: Guest, r: Room, k: Key] {

k in g.keys

(

k = r.currKey and r.currkKey' = r.currKey
or

k = nextKey[r.currKey, r.keys] and r.currkKey' = k

)

noFrontDeskChange
noRoomChange[Room - r]
noGuestChange[Guest]

16

Hotel Operations: Check-out

pred checkout [g: Guest]

* Preconditions:

— the guest occupies one or more rooms

e Postconditions:

— the guest’s rooms become available

* Frame conditions:
— Nothing changes but the occupant relation

17

Hotel Operations: Check-out

pred checkOut [g: Guest] {
some FDoccupant.g

FDoccupant' = FDoccupant - (Room -> g)

FDlastKey' = FDlastKey
noRoomChange[Room]
noGuestChange[Guest]

18

Hotel Operations: Check-in

pred checkIn [g: Guest, r: Room, k: Key]

* Preconditions:

— the room is available
— the input key is the successor of the last key in the
sequence associated to the room
* Postconditions:

— the guest holds the input key and becomes the new
occupant of the room

— the input key becomes the room’s current key

* Frame conditions:

— Nothing changes but the occupant relation and the guest’s
relations

19

Hotel Operations: Check-in

pred checkIn [g: Guest, r: Room, k: Key] {
no r.FDoccupant
k = nextKey[r.FDlastKey, r.keys]
FDoccupant' = FDoccupant + (r -> g)

g.keys' = g.keys + k

FDlastKey' = FDlastKey ++ (r -> k)

noRoomChange[Room]
noGuestChange[Guest - g] }

Trace Generation

* The first time step satisfies the initialization conditions
* Any pair of consecutive time steps are related by

— an entry operation, or
— a check-in operation, or
— a check-out operation

Trace Generation

fact Traces {
init

always
some g: Guest, r: Room, k: Key |
entry[g, r, k] or
checkin[g, r, k] or
checkout[g]

22

Analysis

Let’s check if unauthorized entries are possible:

— |f a guest g enters room r at time t, and the front desk records show r as
occupied at that time, then g must be a recorded occupant of r.

assert noBadEntry {
always all r: Room, g: Guest, k: Key |
let o = r.FDoccupant |
(entry[g, r, k] and some o) implies g in o

23

Analysis

check noBadEntry for 3
but 1 Room, 2 Guest, 5 steps

* |tis enough to check for problem already with just 2 guests and 2 rooms

- steps’s scope must be at least 5 because at least 4 steps are needed to
execute each operation once

 Thereis a counterexample
(see file dynamic/hotell-elec.als)

24

Initial State

<

Iast}{ey A

/ -.::urrl{ev keyq N\ \Keys KeyO < Keyl < Key2
?FD{astKey \

,»k'l? VS

." i/,
f

[Gn7 ...

* initially, the current key of Room is KeyO
* thisis also reflected in the front desk’s record

25

1: Checkln Operation

* Guestl checks in to Room and receives key Key1
* the occupancy roster at the front desk is updated accordingly
* Keyl is recorded as the last key assigned to Room

26

2: CheckOut Operation

oy | Y
i \
/7 IastI{e}f

L
!
/7 \keys

| \
| \
I$,F”Dla5tl(eylc1|.| rrkey \

IffKE"y‘S | |kE"y"5 Y
i ! | kY

Guestl checks out, and the occupancy roster is cleared
Since Guest1 never entered, Room’s current key is still KeyO
Guest1 still holds Key1

27

3: Checkln Operation

* GuestO checks into Room and receives key Key?2
* the occupancy roster at the front desk is updated accordingly
* Key2 is recorded as the last key assigned to Room

28

4: Entry Operation

Guestl presents Key1 to the lock of Room

Since Room’s current key is still KeyO, Guest1 is admitted

keys

29

Necessary Restriction

There must be no intervening operation
between a guest’s check-in and their room entry

pred noInterveningOps {
always
all g: Guest, r: Room, k: Key |
checkIn[g, r, k] implies after entry[g, r, k]

30

Conditional Assertion

Make assertion under noInterveningOps assumption

assert noBadEntry {
noInterveningOps implies
always all r: Room, g: Guest, k: Key |

Tlet o = r.FrontDesk.occupant |
(entry[g, r, k] and some o) implies g 1in o

31

Analysis

* We check once again:

check noBadEntry for 3
but 2 Room, 2 Guest, 5 steps

— No counter-example (see file dynamic/hotel2-elec.als)

* For greater confidence, we increase the scope:

check noBadEntry for 5
but 3 Room, 3 Guest, 20 steps

— No counterexamples

32

	Slide 1: CS:5810 Formal Methods in Software Engineering
	Slide 2: Acknowledgments
	Slide 3: The Task
	Slide 4: Problem Description [Jack06]
	Slide 5: Problem Description [Jack06]
	Slide 6: Problem Description [Jack06]
	Slide 7: Signatures and Fields
	Slide 8: Signatures and Fields
	Slide 9: Signatures and Fields
	Slide 10: Signatures and Fields
	Slide 11: Room Constraint
	Slide 12: New Key Generation
	Slide 13: Initial State
	Slide 14: Hotel Operations: Initial State
	Slide 15: Hotel Operations: Guest Entry
	Slide 16: Hotel Operations: Guest Entry
	Slide 17: Hotel Operations: Check-out
	Slide 18: Hotel Operations: Check-out
	Slide 19: Hotel Operations: Check-in
	Slide 20: Hotel Operations: Check-in
	Slide 21: Trace Generation
	Slide 22: Trace Generation
	Slide 23: Analysis
	Slide 24: Analysis
	Slide 25: 0: Initial State
	Slide 26: 1: CheckIn Operation
	Slide 27: 2: CheckOut Operation
	Slide 28: 3: CheckIn Operation
	Slide 29: 4: Entry Operation
	Slide 30: Necessary Restriction
	Slide 31: Conditional Assertion
	Slide 32: Analysis

