CS:5810 Formal Methods in Software Engineering

Dynamic Models in Alloy

Copyright 2001-25, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.

Created by Cesare Tinelli and Laurence Pilard at the University of lowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas
State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Overview

e Basics of dynamic models
— Modeling a system’s states and state transitions

— Modeling operations causing transitions

* Simple example of operations

Static Models

e So far, we've used Alloy to define the allowable values of state
components

— values of sets

— values of relations

* Amodelinstance is a set of state component values that

— Satisfies the constraints defined by multiplicities, fact, “realism”
conditions, ...

Static Model Instances

Person = {Matt, Sue}
Man = {Matt}
Woman = {Sue}
Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children ={}

siblings = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

Dynamic Models

e Static models let us describe the legal states of a dynamic
system

 However, we’'d like also to be able to describe possible
transitions between states

E.g.
— Two unmarried people become each other’s spouses once they get married
— People go from being alive to not being alive when the die

— A person becomes someone’s child after being born

Example

Family Model

abstract sig Person {
children: set Person,
siblings: set Person

¥

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married

¥

State Transitions

Two people get married

— Attimet, spouse

= 1}

— Attimet/, spouse = {(Matt, Sue), (Sue, Matt)}

= We can add the notion of time in the spouse relation

Person = {Matt,Sue}
Man = {Matt}
Woman = {Sue}
Married = {}

spouse = {}

children = {}
siblings = {}

Time t

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}
children = {}

siblings = {}

Time t’

Modeling State Transitions

* Until version 6, Alloy had no predefined notion of time and of
state transition

* This is not really a problem since there are several ways to
model dynamic aspects of a system in Alloy

* A general and relatively simple way is to:

1. introduce a Time signature expressing time
2. add atime component to each relation that changes over time

Family Model Signatures

abstract sig Person {
children: set Person,
siblings: set Person

¥

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married

¥

Family Model Signatures with Time

sig Time {}

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time

¥

sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married one -> Time

¥

Transitions

Two people get married

— At time t, Married = {}
— Attime t/, Married = {Matt, Sue}

Person = {Matt,Sue} Person = {Matt, Sue}

Man = {Matt} Man = {Matt}

Woman = {Sue} Woman = {Sue}

Married = {} 7 Married = {Matt, Sue}

spouse = {} spouse = {(Matt, Sue), (Sue, Matt)}

children = {} children = {}

siblings = {} Time t siblings = {} Time t’

A person is born
— At time t, Person = {}

Transitions

— At time t/, Person = {Sue}

For simplicity, we will not use time-dependent signatures

Person = {}
Man = {}
Woman = {}
spouse = {}

children = {}

siblings = {}

Time t

Person = {Sue}
Man = {}
Woman = {Sue}
spouse = {}
children ={}

siblings = {} Time t’

Keeping Signatures Static

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time

¥

sig Man, Woman extends Person {}

"sig Married in Person {

spouse: Marc

-> Time

Keeping Signatures Static

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time

¥

sig Man, Woman extends Person {}

Revising Constraints

abstract sig Person {
children: Person set -> Time,
siblings: Person set -> Time,
spouse: Person lone -> Time,
alive: set Time,
parents: Person set -> Time

¥

sig Man, Woman extends Person {}

—fr—parentst——Ferson—-Person—f—-chiteren—}
fact parentsDef
all t: Time | parents.t = ~(children.t)

¥

Revising Constraints

-- Time-dependent parents relation

fact parentsDef {
all t: Time | parents.t = ~(children.t)

¥

-- Two persons are blood relatives (at time t) iff
-- they have a common ancestor (at time t)
pred BloodRelatives [p, q: Person, t: Time]

{
¥

some p.*(parents.t) & qg.*(parents.t)

Revising Static Constraints

-- People cannot be their own ancestors (at any time)

all t: Time | no p: Person |
p in p.”~(parents.t)

-- No one can have more than one father or mother (at any time)
all t: Time | all p: Person |
lone (p.parents.t & Man)

and
lone (p.parents.t & Woman)

Revising Static Constraints

all t: Time | all p: Person |
p.siblings.t = { gq: Person - p | some g.parents.t and
p.parents.t = g.parents.t }

all t: Time |
spouse.t = ~(spouse.t)

Revising Static Constraints

all t: Time | no p: Person |
some p.spouse.t and p.spouse.t in p.siblings.t

all t: Time | no p: Person |
let s = p.spouse.t |
some s and BloodRelatives[p, s, t]

Revising Static Constraints

all t: Time | all p, g: Person |
(some (p.children.t & g.children.t) and p != q)
implies
not BloodRelatives|[p, q, t]

A Better Approach: Mutable Fields

Alloy 6 incorporates an implicit, built-in notion of (discrete) time

* The meaning of an Alloy model is actually an infinite sequence of
Instances, or a trace

 Each instance in a trace corresponds to a state of a dynamic system
e Signatures/relations can change from state to state

 Aset of temporal operators allows us to express properties over time
as properties over traces

Mutable Fields: Example

enum Color { Green, Yellow, Red }
enum Ped { Stop, Go }

one sig TrafficlLight
{

var col: Color
var ped: Ped

¥

fun ¢ : Color { TrafficlLight.col }

From Instances to Traces

* Models with mutable signatures and/or fields represent
dynamic systems, systems that change over time

* |nstead of standing for a set of instances, a dynamic model
stands for a set of traces

* Atrace is an infinite sequence of instances
— An instance now describes just one possible state of a system

— A trace describes a particular sequence of state transitions for the
system

From Instances to Traces

An Alloy model captures the behavior of a system over time
by means of constraints containing temporal operators

Temporal operators implicitly talk about (properties of) traces

Temporal Operators in Alloy 6

Formula

always p
historically p
after p

before p
eventually p
once p

p until g

p since ¢

a?

Intuitive meaning

0 holds from current state/instance forward in a trace
D holds from current state backward

p holds in next state (after current one)

p holds in previous state (before current one)

p holds in current state or a later one

p holds in current state or an earlier one

g holds eventually and p holds continuously until then
D has held continuously since last time g held

denotes the value of e in next state

Example Traces
IHBHBHIHHIIIIIIIIIIII-

p (state prop.) °© o o o o o o o o o °© o o o o o o
q (state prop.) .
alwaysp e e e e s e ° _
historically p ¢ ¢ ¢ ¢ o
after p © o o o e e e e e e e e o o e e o -
before p @ e e e o o e e s o e s e e s o o -
eventually Q ® e e e e o o o o o o e o o o
once q s e e s s o o o o s o o o o o o -
puntil g = ¢ ¢ o o o o
p since qa e e e e e e e e o s o s o o .

o = true blank = false

Temporal Operator Precedence

High ! not
always eventually after
historically once before
until since
&& and
=> implies else
<=> iff
|| or
let | no | some lone one
Low

The Family Model with Mutable Fields

enum Liveness { Alive, Dead, Unborn }

abstract sig Person {
var children: set Person,
var parents: set Person,
var siblings: set Person,
var spouse: lone Person,
var liveness: Liveness

¥

sig Man, Woman extends Person {}

Revising the Model

enum Liveness { Alive, Dead, Unborn }

abstract sig Person {
var children: set Person,

var spouse: lone Person,
var liveness: Liveness

¥

sig Man, Woman extends Person {}

fun parents : Person -> Person { ~children }
fun siblings [p: Person]: Person { {q: Person | .. } }

Useful Predicates

pred BloodRelatives [p, g: Person] {

some p.*parents & (.*parents
}
pred isAlive [p: Person] { p.liveness = Alive }
pred isDead [p: Person] { p.liveness = Dead }
pred isUnborn [p: Person] { p.liveness = Unborn }

pred newBorn[p: Person] {
isAlive[p] and before isUnborn[p]

¥

pred isMarried [p: Person] { some p.spouse }

Revising Static Constraints

always no p: Person | p in p.”~parents

always all p: Person |
lone (p.parents & Man) and lone (p.parents & Woman)

always spouse = ~spouse

Revising Static Constraints

always no p: Person |
some p.spouse and p.spouse in p.siblings

always no p: Person | let s = p.spouse |
some s and BloodRelatives[p, s]

always all disj p, g: Person |
some (p.children & g.children) implies
not BloodRelatives[p, q]

Adding Temporal Constraints

always all p: Person |
isDead[p] implies after isDead[p]

always all p: Person |
isDead[p] implies once isAlive[p]

always all p: Person |
isAlive[p] implies eventually isDead[p]

Adding Temporal Constraints

always all p: Person |
isAlive[p] implies always not isUnborn[p]

always all p: Person |
isAlive[p] implies (isAlive[p] until isDead[p])

always all p: Person | newBorn[p] implies
some m: Man | some w: Woman | p.parents = m + w

Adding Temporal Constraints

always all p, g: Person |
p in g.children implies
once (newBorn[p] and once isAlive[q])

always all p, q: Person |
p in g.children implies
(p in g.children since newBorn[p])

Exercises

Load family-6-elec.als in Alloy

Execute it

Analyze the model

Look at the generated instance

Does it look correct?

What, if anything, would you change about it?

Dynamics as State Transitions

Recall
* The evolution of a dynamic system can be modeled as a set of traces

e Each trace is a sequence of transitions from one state to another

A transition can be thought of as caused by the application of a state
transformer

A state transformer is an operator that modifies the current state

Possible Trace

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

liveness = {(Matt, U), (Sue,A),(Sean,U)}

|

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

liveness = {(Matt,U), (Sue,U),(Sean,U)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue),(Sue,Matt)}
children = {}

liveness = {(Matt,A),(Sue,A),(Sean,U)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue),(Sue,Matt)}
children = {(Matt,Sean),(Sue,Sean)}

liveness = {(Matt,A),(Sue,A),(Sean,A)}

Transitions

A person is born from parents

State transformer that
modifies the children and
liveness relations

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {}

liveness = {(Matt,Alive), (Sue,Alive),
(Sean,Unborn)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}
children = {(Matt,Sean), (Sue,Sean)}

liveness = {(Matt,Alive), (Sue,Alive),
(Sean,Alive)}

Expressing State Transitions in Alloy

A state transformer is modeled as a predicate over two states:

1. the state right before the transition (current state) and
2. the state right after it (next state)

We use the temporal operators of Alloy to express constraints on
the current and the next state

(Single) primed field names refer to values in the next state

Expressing State Transformers

Pre-condition constraints

— Describe the states to which the transformer applies
Post-condition constraints

— Describes the effects of the transformer in generating the next state
Frame-condition constraints

— Describes what does not change between current state and next
state of a transition

Distinguishing the pre-, post- and frame-conditions

in comments provides useful documentation

pred getMarried [p, q: Person] {

-- p and ¢
isAlive[p]
-- neither

no (p + q)

-- they are not blood relatives

Example: Marriage

are both alive
and isAlive[q]
is married
spouse

not BloodRelatives[p, q]

enum Liveness { Alive, Dead, Unborn }
abstract sig Person {

var children: set Person,

var spouse: lone Person,

var liveness: Liveness }
sig Man,Woman extends Person {}

pred isAlive [p: Person] {
p.liveness = Alive
}
fun parents : Person -> Person { ~children }
fun siblings [p: Person]: Person {
{q: Person | .. }

}

p and g are each other’s spouses

p.spouse’
g.spouse’

q
P

spouse’ isthe next version of spouse

Frame Condition

How is each relation impacted by marriage?
5 mutable relations :

— children, %, %s
— spouse
— liveness

e The parents and siblings relations are defined in terms of the
children relation

* Thus, the frame condition has only to consider children, spouse and
liveness

Frame Condition Predicates

pred noChildrenChange [Ps: set Person] {
all p: Ps |
p.children' = p.children
}

pred noSpouseChange [Ps: set Person] {
all p: Ps |
p.spouse’ = p.spouse

¥

pred noLivenessChange [Ps: set Person] {
all p: Ps |
p.liveness' = p.liveness

Marriage Operator

pred getMarried [p, q: Person]
{

isAlive[p] and isAlive[q]
no (p + gq).spouse
not BloodRelatives[p, q]

p.spouse’ = q and g.spouse' = p
noSpouseChange[Person - (p + q)]

noChildrenChange[Person]
noLivenessChange[Person]

Instance of Marriage

pred someMarriage A
some m: Man | some w: Woman | getMarried[m, w]

run { someMarriage }
run { eventually someMarriage }

run { not someMarriage and eventually someMarriage }

Birth from Parents Operator

pred isBornFromParents [p: Person, m: Man, w: Woman] {
isUnborn[p]
isAlive[w]
once isAlive[m]
after isAlive[p]
children' = children + (m -> p) + (w -> p)
noSpouseChange[Person]

noLivenessChange[Person - p]
noChildrenChange[Person - (m + w)]

Birth from Parents Operator

pred isBornFromParents [p: Person, m: Man, w: Woman] {

isUnborn[p]
isAlive[w]
once isAlive[m]

liveness’ liveness - (p -> Unborn) + (p -> Alive)

children' children + (m -> p) + (w -> p)

noSpouseChange[Person]
noLivenessChange[Person - p]
noChildrenChange[Person - (m + w)]

Instance of Birth

pred someBirth {
some b: Person, m: Man, w: Woman
isBornFromParents[b, m, w]

run { eventually someBirth }
run { some b: Person, m: Man, w: Woman |

eventually (getMarried[m, w] and
eventually isBornFromParents[b, m, w])

Death Operator

pred dies [p: Person] {

isAlive[p]

after isDead|[p]

let g = p.spouse |
spouse' = spouse - (p -> q) - (g -> p)

noChildrenChange[Person]
noLivenessChange[Person - p]

Instance of Death

pred someDeath {
some p: Person | dies[p]

¥

run {
eventually someDeath

¥

run {
some p: Person |
isAlive[p] and after (isAlive[p] and eventually dies[p])

Specifying Transition Systems

* A transition system can be defined as a set of traces
(aka executions):

sequences of states generated by the operators

* |n our family example, for every execution:
— The initial state satisfies some initialization condition

— All pairs of consecutive states are related by
* a birth operation, or
* a death operation, or

* a marriage operation

Initial State Specification

init specifies constraints on the initial state only

pred init {
no children
no spouse
#LivingPeople > 2
#Person > #LivingPeople

fun LivingPeople []
liveness.Alive

}

: Person {

Transition Relation Specification

trans specifies that each transition is a consequence of the application
of one of the operators to some individuals

pred trans [] |
(some m: Man, w: Woman | getMarried [m, w])
or
(some p: Person, m: Man, w: Woman |
isBornFromParents [p, m, w])

or

(some p: Person | dies [p])
or

other 7?77

The Need for a No-op

* For convenience, Alloy considers only infinite traces

* So, we need a do-nothing operator for systems that can have finite
executions

pred other [] {

children' = children
spouse' = spouse
liveness' = liveness

 The operator also allows us to modeling executions where nothing
(relevant) happens for one or more transitions

System Specification

A System predicate specifies that each execution
1. starts in a state satisfying the initial state condition

2. moves from one state to the next as specified by one of the operator
predicates

pred System {
init and always trans

run { System }

System Invariants

Many of the facts that we stated in our static model now become
expected system invariants

These are properties that
— should hold in initial states
— should be preserved by system transitions

We can check that a property is invariant (within a given scope) for a
given system System by
— encoding the property as a formula F and

* checking the assertion System implies always F or
* adding System as a fact and checking the assertion always F

Expected Invariants: Examples

assert al { System implies

always no p: Person | p in p.”parents

}
check al for 6

assert a2 { System implies
always all p: Person |

lone (p.parents & Man) and
lone (p.parents & Woman)

}
check a2 for 8

Exercises

Load family-7-elec.als in Alloy
Execute it

Look at the generated instance

Does it look correct?

What if anything would you change about it?
Check each of the given assertions

Are they all valid?
If not, how would you change the model to fix that?

Exercises

Load dynamic/trash-1-elec.als inAlloy5
Complete the model as instructed there

Execute it

Check each of the assertions you have written

Are they all valid?

If not, how would you change the model to fix that?

	Slide 1: CS:5810 Formal Methods in Software Engineering
	Slide 2: Overview
	Slide 3: Static Models
	Slide 4: Static Model Instances
	Slide 5: Dynamic Models
	Slide 6: Example
	Slide 7: State Transitions
	Slide 8: Modeling State Transitions
	Slide 9: Family Model Signatures
	Slide 10: Family Model Signatures with Time
	Slide 11: Transitions
	Slide 12: Transitions
	Slide 13: Keeping Signatures Static
	Slide 14: Keeping Signatures Static
	Slide 15: Revising Constraints
	Slide 16: Revising Constraints
	Slide 17: Revising Static Constraints
	Slide 18: Revising Static Constraints
	Slide 19: Revising Static Constraints
	Slide 20: Revising Static Constraints
	Slide 22: A Better Approach: Mutable Fields
	Slide 23: Mutable Fields: Example
	Slide 24: From Instances to Traces
	Slide 25: From Instances to Traces
	Slide 26: Temporal Operators in Alloy 6
	Slide 27: Example Traces
	Slide 28: Temporal Operator Precedence
	Slide 29: The Family Model with Mutable Fields
	Slide 30: Revising the Model
	Slide 31: Useful Predicates
	Slide 32: Revising Static Constraints
	Slide 33: Revising Static Constraints
	Slide 34: Adding Temporal Constraints
	Slide 35: Adding Temporal Constraints
	Slide 36: Adding Temporal Constraints
	Slide 37: Exercises
	Slide 38: Dynamics as State Transitions
	Slide 39: Possible Trace
	Slide 40: Transitions
	Slide 41: Expressing State Transitions in Alloy
	Slide 42: Expressing State Transformers
	Slide 43: Example: Marriage
	Slide 44: Frame Condition
	Slide 45: Frame Condition Predicates
	Slide 46: Marriage Operator
	Slide 47: Instance of Marriage
	Slide 48: Birth from Parents Operator
	Slide 49: Birth from Parents Operator
	Slide 50: Instance of Birth
	Slide 51: Death Operator
	Slide 52: Instance of Death
	Slide 53: Specifying Transition Systems
	Slide 54: Initial State Specification
	Slide 55: Transition Relation Specification
	Slide 56: The Need for a No-op
	Slide 57: System Specification
	Slide 58: System Invariants
	Slide 59: Expected Invariants: Examples
	Slide 60: Exercises
	Slide 61: Exercises

