
CS:5810 Formal Methods in Software Engineering

Modeling in Alloy: Academia Model

Copyright 2001-25, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Created by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas
State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

“Academia” Modeling Example
• We will model an academic enterprise expressing relationships between

– People

• Faculty

• Students

– Graduate

– Undergraduate

• Instructors – which can be grad students or faculty

– Courses

– Academic departments

– Personal ID numbers

2

How should we model these basic domains in Alloy?

Strategy

1. Build and validate your model incrementally
– Start with basic signatures and fields

–Add basic constraints

– Instantiate the model and study the results

–Probe the model with assertions

3

Strategy

2. Add groups of features at a time
–Add new signatures and fields

–Add new constraints

–Confirm previous assertions

–Probe new features with assertions

4

Basic Components

• People

– Students: Undergrads and Grads

– Instructors: Faculty and Grads

• Courses

• Relationships

– One instructor teaches a course

– One or more students are taking a course

– Students can be waiting for for course

5

Academia Signatures

6

abstract sig Person {}

sig Faculty extends Person {}

abstract sig Student extends Person {}

sig Graduate, Undergrad extends Student {}

sig Instructor in Person {}

sig Course {}

…

We are not specifying here that instructors
can only be graduate students or faculty.

We will do that later with a fact constraint.

Academia Fields

• Only one instructor per course

2 choices:

sig Instructor in Person {

 teaches: set Course }

fact oneInstrucPerCourse {

 all c: Course | one teaches.c }

sig Course {

 taughtby: one Instructor }
7

We cannot specify that
there is exactly one
instructor per course

We have to add a
fact specifying this
constraint

Course Fields

• Only one instructor per course

• One or more students taking a course

• Students can be waiting for a course

8

Course Fields

• Only one instructor per course

• One or more students taking a course

• Students can be waiting for a course

sig Course {

 taughtby: one Instructor,

 enrolled: some Student,

 waitlist: set Student

}

9

Exactly one instructor per course.

One or more students per course

Zero or more students per course

Dependent Relations

• We may choose to define dependent fields as auxiliary relations instead:

 teaches (transpose of taughtby)

 taking (transpose of enrolled)

 waitingfor (transpose of waitlist)

fun teaches []: Instructor -> Course { ~taughtby }

fun taking []: Student -> Course { ~enrolled }

fun waitingfor []: Student -> Course { ~waitlist }

• Or we may choose not to have them at all:

 if i is an instructor,

 i.teaches = taughtby.i

10

Note

• Let i be an Instructor

• Let taughtby be the following binary relation

– taughtby: Course -> one Instructor

• The following expressions denote the same set of courses

– taugthby.i

– i.~taugthby

– i[taugthby]

11

Academia Constraints

• All instructors are either faculty or graduate students

– Was not expressed in signature definition — although it could have:

 sig Instructor in Graduate + Faculty

• No one is waiting for a course unless someone is enrolled

• No graduate students teach a course they are enrolled in

12

Academia Constraints

13

fact {
 -- All instructors are either Faculty or Graduate Students

 all i: Instructor | i in Faculty + Graduate

 Instructor in Faculty + Graduate -- equivalent to the above

 -- not all instructors are faculty
 Instructor !in Faculty

}

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …}
…

Academia Constraints

14

fact {
 -- no student is waiting for a course unless someone is enrolled

 all c: Course | some c.waitlist implies some c.enrolled

 -- alternative

 all c: Course | no c.enrolled implies no c.waitlist

}

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …}
…

Academia Constraints

15

fact {

 -- graduate students do not teach courses they are enrolled in or waiting to enroll in

 all c: Course | c.taughtby in Graduate implies
 c.taughtby !in c.enrolled + c.waitlist

 -- Alternative
 no s: Graduate | (some c: s.teaches | s in c.enrolled + c.waitlist)

}

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …}
…

16

fact {
 -- All instructors are either Faculty or Graduate Students

 all i: Instructor | i in Faculty + Graduate + SpecialInstructor

 some Instructors and some Instructor & SpecialInstructor

 -- no student is waiting for a course unless someone is enrolled

 all c: Course | some c.waitlist implies some c.enrolled

 -- graduate students do not teach courses they are enrolled in or waiting to enroll in

 all c: Course | c.taughtby in Graduate implies
 c.taughtby !in c.enrolled + c.waitlist
}

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …}
…

Academia Constraints

17

fact {
 -- All instructors are either Faculty or Graduate Students

 some i: Instructor | i !in (Faculty + Graduate)

 -- no student is waiting for a course unless someone is enrolled

 no s: Student | some c: s.waitingfor | no c.enrolled

 -- graduate students do not teach courses they are enrolled in or waiting to enroll in

 no s: Graduate | (some c: s.teaches | s in c.enrolled + c.waitlist)
}

An alternative formulation

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …}
…

Academia Constraints

Academia Realism Constraints

• There is a graduate student who is an instructor

• There are at least:

– Two courses and

– Three undergraduates

18

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …}
…

19

pred RealismConstraints [] {

 -- there is a graduate student who is an instructor
 some Graduate & Instructor

 -- there are at least two courses
 #Course > 1

 -- there are at least three undergraduates
 #Undergrad > 2
}

Can be added to the model as a fact or put in a run command
(to instruct the Alloy Analyzer to ignore unrealistic instances)

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …}
…

Academia Realism Constraints

Academia Assertions

Does the current model have these properties?

• No instructors are on the waitlist for a course they teach

• No student is enrolled and on the waitlist for the same course

We can check that with assertions

20

Academia Assertions

21

-- no instructors are on the waitlist for a course they teach

assert NoWaitingTeacher
{

}

-- no student is enrolled and on the waitlist for the same course

assert NoEnrolledAndWaiting
{

}

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …}
…

Academia Assertions

22

-- no instructors are on the waitlist for a course they teach

assert NoWaitingTeacher
{
 all c: Course | no (c.taughtby & c.waitlist)
}

-- no student is enrolled and on the waitlist for the same course

assert NoEnrolledAndWaiting
{
 all c: Course | no (c.enrolled & c.waitlist)
}

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …}
…

Exercises

• Load academia-1.als

• With realism conditions enabled, do any instances exist in the
default scopes?

– Manipulate the scopes as necessary to obtain an instance under the
realism conditions

• By looking at various sample instances, do you consider the
model to be underconstrained in any way?

• Check assertions

23

Realism Constraints

• No instances exist in the default scope

• Why ?

– default scope:
 at most 3 tuples in each top-level signature

allows: at most 3 Students

– some Graduate & Instructor
 #Undergrad > 2

 needs at least 4 Students

24

25

pred [] RealismConstraints
{
 -- there is a graduate student who’s an instructor
 some Graduate & Instructor

 -- there are at least two courses
 #Course > 1

 -- there are at least three undergraduates
 #Undergrad > 2
}

run RealismConstraints for 4

Realism Constraints

Instance
#Undergrad > 2 #Undergrad > 1

Instance found:

Signatures:

 Course = {C0,C1}

 Person = {U0,U1,G}

 Faculty = {}

 Student = {U0,U1,G}

 Undergrad = {U0,U1}

 Graduate = {G}

 Instructor = {G}

Relations:

 taughtby = {(C0,G),(C1,G)}

 enrolled = {(C0,U1),(C1,U0)}

 waitlist = {(C1,U1),(C1,U0)}

26

Counter-example to assertion
Analyzing NoEnrolledAndWaiting ...

Counterexample found:

Signatures:

 Course = {C}

 Person = {G0,G1,F}

 Faculty = {F}

 Student = {G0,G1}

 Undergrad = {}

 Graduate = {G0,G1}

 Instructor = {G0,G1}

Relations:

 taughtby = {(C,G0)}

 enrolled = {(C,G1)}

 waitlist = {(C,G1)}

27

Need to relate
enrollment and waiting lists

Academia Assertions

• No student is enrolled and on the waitlist for the same course

– A counterexample has been found, hence

 we transform this assertion into a fact

• No instructors are on the waitlist for a course they teach

– No counterexample

28

Academia Assertions

NoWaitingTeacher assertion

– No counterexample within the default scope

– No counterexample within the scope 4, 5, 6, 10

Can we conclude that the assertion is valid?

– No! (It might have conterexamples but out of scope)

But we take comfort in the small scope hypothesis:

– if an assertion is not valid, it usually has a small counterexample

29

Why NoWaitingTeacher holds

Assertion

-- no instructors are on the waitlist for a course they teach

assert NoWaitingTeacher {

 all c: Course | no (c.taughtby & c.waitlist)

}

NoWaitingTeacher is implied by signatures and facts below

-- (i) faculty are not students

-- (ii) graduate students do not teach courses they are enrolled in or waiting to enroll in

all c: Course | c.taughtby !in c.waitlist

30

Extension 1

• Add an attribute for students

– Unique ID numbers

– This requires a new signature

• Add student transcripts

• Add prerequisite structure for courses

31

New Relations

32

sig Id {}

abstract sig Student extends Person {
 id: one Id,
 transcript: set Course
}

sig Graduate, Undergrad extends Student {}

sig Instructor in Person {}

sig Course {
 taughtby: one Instructor,
 enrolled: some Student,
 waitlist: set Student,
 prerequisites: set Course
}

New Constraints

• Each Student is identified by a unique ID
– Exactly one ID per Student

 already enforced by multiplicities

– No two distinct students have the same ID

 has to be specified as a fact

• A student’s transcript contains a course only if
it contains the course’s prerequisites

• A course does not have itself as a prerequisite

• Realism constraint:
there is a course with prerequisites and with students enrolled

33

Academia Constraints

34

fact {

 ...

 -- A student’s transcript contains a course only if it contains the course’s prerequisites
 all s: Student |
 s.transcript.prerequisites in s.transcript

 -- A course does not have itself as a prerequisite
 all c: Course | c !in c.prerequisites
}

run {

 ...

 -- there is a course with prerequisites and enrolled students
 some c: Course |
 some c.prerequisites and some c.enrolled
}

not sufficient!

Academia Constraints

35

fact {

 ...

 -- A student’s transcript contains a course only if it contains the course’s prerequisites
 all s: Student |
 s.transcript.prerequisites in s.transcript

 -- There are no cycles in the prerequisite dependencies
 all c: Course | c !in c.^prerequisites
}

run {

 ...

 -- there is a course with prerequisites and enrolled students
 some c: Course |
 some c.prerequisites and some c.enrolled
}

Academia Assertions

Is it this case in our model?

 Students can only wait for courses they already have
 the prerequisites for

 assert AllWaitsHavePrereqs {

 all s: Student | (waitlist.s).prerequisites in s.transcript

 }

36

Exercises

• Load academia-2.als

• With realism conditions enabled, do any instances exist in the
default scopes?
– Manipulate the scopes as necessary to obtain an instance under the

realism conditions

• By looking at various sample instances, do you consider the
model to be underconstrained in any way?

37

Counter-example
Analyzing AllWaitsHavePrereqs ...

Counterexample found:

Signatures:

 Id = {Id0,Id1,Id2}

 Course = {C0,C1}

 Person = {U,G0,G1}

 Faculty = {}

 Student = {U,G0,G1}

 Undergrad = {U}

 Graduate = {G0,G1}

 Instructor = {G0,G1}

Relations:

 taughtby = {(C0,G0),(C1,G0)}

 enrolled = {(C0,U),(C1,G1)}

 waitlist = {(C1,U)}

 prerequisites = {(C1,C0)}

 transcript = {(G1,C0)}

 id = {(U,Id0),(G0,Id2),(G1,Id1)}
38

U waits for the course C1
and

C0 is a prerequisite for C1
but

U does not have C0

Where is (U,C0)?

New Constraint

Old Assertion: AllWaitsHavePrereqs

 Students can wait only for those courses for which they already have
the prerequisites

Old Fact:

 Students can have a course only if they already have the prerequisites

New Fact:

 Students can have, wait for or take a course only if they already have
the prerequisites

39

New Constraint

New Fact:

 Students can have, wait for or take a course only if they already have
the prerequisites

 all s: Student |
 (s.waitingfor.prerequisites +
 s.taking.prerequisites +
 s.transcript.prerequisites) in s.transcript

 or

 all s: Student |
 (s.waitingfor + s.taking + s.transcript).prerequisites
 in s.transcript

40

Extension 2

• Add Departments, with
– Instructors

– Courses

– Required courses

– Student majors

• Add Faculty-Grad student relationships
– Advisor

– Thesis committee

41

Department Relations

• Each instructor is in a single department

– Each department has at least one instructor

• Each department has some courses

– Courses are in a single department

• Each student has a single department as his/her major

42

Faculty-Student Relations

• A graduate student has exactly one faculty member as an
advisor

• Faculty members serve on graduate students’ committees

43

New Relations
sig Faculty extends Person {
 incommittee: set Graduate
}

abstract sig Student extends
Person {
 major: one Department
}

sig Graduate extends Student {
 advisor: one Faculty
}

sig Instructor in Person {
 department: one Department
}

sig Department {
 course: some Course,
 required: some Course
}

44

------------------------- Facts -------------------------

 -- Each department has at least one instructor
 all d: Department | some department.d

 -- Each course is in a single department
 all c: Course | one course.c

New Constraints

• Advisors are on their advisees’ committees

• Students are advised by faculty in their major

• Only faculty can teach required courses

• Faculty members only teach courses in their department

• Required courses for a major are a subset of the courses in that major

• Students must be enrolled in at least one course from their major

45

Exercise

• Express as an Alloy fact each of the new constraints in the
previous slide

46

47

abstract sig Person {}

sig Faculty extends Person {

 incommittee: set Graduate

}

abstract sig Student extends

Person {
 id: one Id,

 transcript: set Course,
 major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
 advisor: one Faculty

}

sig Instructor in Person {

 department: one Department
}

sig Course {
 taughtby: one Instructor,

 enrolled: some Student,
 waitlist: set Student,

 prerequisites: set Course

}

sig Id {}

sig Department {

 courses: some Course,
 required: some Course

}

------------------ Signatures and Fields -----------------

Advisors are on their advisees’ committees

48

abstract sig Person {}

sig Faculty extends Person {

 incommittee: set Graduate

}

abstract sig Student extends

Person {
 id: one Id,

 transcript: set Course,
 major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
 advisor: one Faculty

}

sig Instructor in Person {

 department: one Department
}

sig Course {
 taughtby: one Instructor,

 enrolled: some Student,
 waitlist: set Student,

 prerequisites: set Course

}

sig Id {}

sig Department {

 courses: some Course,
 required: some Course

}

------------------ Signatures and Fields -----------------

Students are advised by faculty in their major

49

abstract sig Person {}

sig Faculty extends Person {

 incommittee: set Graduate

}

abstract sig Student extends

Person {
 id: one Id,

 transcript: set Course,
 major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
 advisor: one Faculty

}

sig Instructor in Person {

 department: one Department
}

sig Course {
 taughtby: one Instructor,

 enrolled: some Student,
 waitlist: set Student,

 prerequisites: set Course

}

sig Id {}

sig Department {

 courses: some Course,
 required: some Course

}

------------------ Signatures and Fields -----------------

Required courses for a major are a subset of the courses in that major

50

abstract sig Person {}

sig Faculty extends Person {

 incommittee: set Graduate

}

abstract sig Student extends

Person {
 id: one Id,

 transcript: set Course,
 major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
 advisor: one Faculty

}

sig Instructor in Person {

 department: one Department
}

sig Course {
 taughtby: one Instructor,

 enrolled: some Student,
 waitlist: set Student,

 prerequisites: set Course

}

sig Id {}

sig Department {

 courses: some Course,
 required: some Course

}

------------------ Signatures and Fields -----------------

Only faculty teach required courses

51

abstract sig Person {}

sig Faculty extends Person {

 incommittee: set Graduate

}

abstract sig Student extends

Person {
 id: one Id,

 transcript: set Course,
 major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
 advisor: one Faculty

}

sig Instructor in Person {

 department: one Department
}

sig Course {
 taughtby: one Instructor,

 enrolled: some Student,
 waitlist: set Student,

 prerequisites: set Course

}

sig Id {}

sig Department {

 courses: some Course,
 required: some Course

}

------------------ Signatures and Fields -----------------

Faculty members only teach courses in their department

52

abstract sig Person {}

sig Faculty extends Person {

 incommittee: set Graduate

}

abstract sig Student extends

Person {
 id: one Id,

 transcript: set Course,
 major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
 advisor: one Faculty

}

sig Instructor in Person {

 department: one Department
}

sig Course {
 taughtby: one Instructor,

 enrolled: some Student,
 waitlist: set Student,

 prerequisites: set Course

}

sig Id {}

sig Department {

 courses: some Course,
 required: some Course

}

------------------ Signatures and Fields -----------------

Students must be enrolled in at least one course from their major

53

abstract sig Person {}

sig Faculty extends Person {

 incommittee: set Graduate

}

abstract sig Student extends

Person {
 id: one Id,

 transcript: set Course,
 major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
 advisor: one Faculty

}

sig Instructor in Person {

 department: one Department
}

sig Course {
 taughtby: one Instructor,

 enrolled: some Student,
 waitlist: set Student,

 prerequisites: set Course

}

sig Id {}

sig Department {

 courses: some Course,
 required: some Course

}

------------------ Signatures and Fields -----------------

There are at least two departments and some required courses

54

abstract sig Person {}

sig Faculty extends Person {

 incommittee: set Graduate

}

abstract sig Student extends

Person {
 id: one Id,

 transcript: set Course,
 major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
 advisor: one Faculty

}

sig Instructor in Person {

 department: one Department
}

sig Course {
 taughtby: one Instructor,

 enrolled: some Student,
 waitlist: set Student,

 prerequisites: set Course

}

sig Id {}

sig Department {

 courses: some Course,
 required: some Course

}

------------------ Signatures and Fields -----------------

A student’s committee members are faculty in his/her major

Assertions

• Realism constraints:
There are at least two departments and some required courses

• Administrative constraint:
A student’s committee members are faculty in his/her major

55

Exercises

• Load academia-3.als

• With realism conditions enabled, do any instances exist in the default
scopes?

• Manipulate the scopes as necessary to obtain an instance under the
realism conditions
– This requires some thought since constraints may interact in subtle ways

– For example, adding a department requires at least one faculty member for that
department

• Can you think of any more questions about the model?
– Formulate them as assertions and see if the properties are already enforced by

the constraints

56

	Slide 1: CS:5810 Formal Methods in Software Engineering
	Slide 2: “Academia” Modeling Example
	Slide 3: Strategy
	Slide 4: Strategy
	Slide 5: Basic Components
	Slide 6: Academia Signatures
	Slide 7: Academia Fields
	Slide 8: Course Fields
	Slide 9: Course Fields
	Slide 10: Dependent Relations
	Slide 11: Note
	Slide 12: Academia Constraints
	Slide 13: Academia Constraints
	Slide 14: Academia Constraints
	Slide 15: Academia Constraints
	Slide 16: Academia Constraints
	Slide 17: Academia Constraints
	Slide 18: Academia Realism Constraints
	Slide 19: Academia Realism Constraints
	Slide 20: Academia Assertions
	Slide 21: Academia Assertions
	Slide 22: Academia Assertions
	Slide 23: Exercises
	Slide 24: Realism Constraints
	Slide 25: Realism Constraints
	Slide 26: Instance
	Slide 27: Counter-example to assertion
	Slide 28: Academia Assertions
	Slide 29: Academia Assertions
	Slide 30: Why NoWaitingTeacher holds
	Slide 31: Extension 1
	Slide 32: New Relations
	Slide 33: New Constraints
	Slide 34: Academia Constraints
	Slide 35: Academia Constraints
	Slide 36: Academia Assertions
	Slide 37: Exercises
	Slide 38: Counter-example
	Slide 39: New Constraint
	Slide 40: New Constraint
	Slide 41: Extension 2
	Slide 42: Department Relations
	Slide 43: Faculty-Student Relations
	Slide 44: New Relations
	Slide 45: New Constraints
	Slide 46: Exercise
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Assertions
	Slide 56: Exercises

