CS:5810 Formal Methods in Software Engineering

Modeling in Alloy: Academia Model

Copyright 2001-25, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.

Created by Cesare Tinelli and Laurence Pilard at the University of lowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas
State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.



“Academia” Modeling Example

* We will model an academic enterprise expressing relationships between

— People
* Faculty

e Students
— Graduate
— Undergraduate

* Instructors — which can be grad students or faculty
— Courses
— Academic departments
— Personal ID numbers

How should we model these basic domains in Alloy?



Strategy

1. Build and validate your model incrementally
— Start with basic signatures and fields
— Add basic constraints
—Instantiate the model and study the results
—Probe the model with assertions



Strategy

2. Add groups of features at a time
— Add new signatures and fields
— Add new constraints
— Confirm previous assertions
—Probe new features with assertions



Basic Components

* People
— Students: Undergrads and Grads
— Instructors: Faculty and Grads

* Courses
e Relationships

— One instructor teaches a course
— One or more students are taking a course

— Students can be waiting for for course



Academia Signatures

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}

sig Graduate, Undergrad extends Student {}

~~
—y
—y
—y
—y
—y
—y
—y
—y
—y
—y
-_—
—y
—y

sig Course {} We are not speC//j//ng here that instructors
can only be graduate students or faculty.

We will do that later with a fact constraint.




Academia Fields

* Only one instructor per course

2 choices:
) . We cannot specify that
sig Instructor in Person { there is exactly one
teaches: set Course } instructor per course
We have to add a
fact onelnstrucPerCourse { fact specifying this
all c: Course | one teaches.c } constraint

sig Course A
taughtby: one Instructor }



Course Fields

* Only oneinstructor per course
* One or more students taking a course
* Students can be waiting for a course



Course Fields

* Only oneinstructor per course
* One or more students taking a course
e Students can be waiting for a course

- | Exactly one instructor per course

sig Course { -

-
-

—
-
—
—
-

enrolled: \some, Student

waitlist:(set?Student

\\\
—~—

= | Zero or more students per course




Dependent Relations

* We may choose to define dependent fields as auxiliary relations instead:

teaches (transpose of taughtby)
taking (transpose of enrolled)
waitingfor (transpose of waitlist)

fun teaches []: Instructor -> Course { ~taughtby }
fun taking []: Student -> Course { ~enrolled }
fun waitingfor []: Student -> Course { ~waitlist }

* Or we may choose not to have them at all:

if 1 is an instructor,
i.teaches = taughtby.1i

10



Note

e Let i be an Instructor

* Let taughtby be the following binary relation
— taughtby: Course -> one Instructor

* The following expressions denote the same set of courses
—taugthby.1
—1.~taugthby
—i[taugthby]

11



Academia Constraints

e All instructors are either faculty or graduate students

— Was not expressed in signature definition — although it could have:

sig Instructor in Graduate + Faculty

* No one is waiting for a course unless someone is enrolled

* No graduate students teach a course they are enrolled in

12



abstract sig Person {}
. . sig Faculty extends Person {}
Aca d e m I a CO n St ra I nts abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: .., enrolled: .., waitlist: ..}

fact {

all i: Instructor | i in Faculty + Graduate

Instructor in Faculty + Graduate

Instructor !in Faculty

13



abstract sig Person {}
. . sig Faculty extends Person {}
Aca d e m I a CO n St ra I nts abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: .., enrolled: .., waitlist: ..}

fact {

all c: Course | some c.waitlist implies some c.enrolled

all c: Course | no c.enrolled implies no c.waitlist

14



Academia Constraints

fact {

abstract sig Person {}

sig Faculty extends Person {}

abstract sig Student extends Person {}

sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}

sig Course {taughtby: .., enrolled: .., waitlist:

.}

all c: Course | c.taughtby in Graduate implies
c.taughtby !in c.enrolled + c.waitlist

no s: Graduate | (some c: s.teaches | s in c.enrolled + c.waitlist)

15




abstract sig Person {}
. . sig Faculty extends Person {}
Aca d e m I a CO n St ra I nts abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}

sig Course {taughtby: .., enrolled: .., waitlist: ..

fact {

all i: Instructor | i in Faculty + Graduate + SpeciallInstructor

some Instructors and some Instructor & Speciallnstructor

all c: Course some c.waitlist implies some c.enrolled

all c: Course | c.taughtby in Graduate implies
c.taughtby !in c.enrolled + c.waitlist

16




abstract sig Person {}
. . sig Faculty extends Person {}
Aca d e m I a CO n St ra I nts abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: .., enrolled: .., waitlist:

2}

fact {

some i: Instructor | i !in (Faculty + Graduate)

no s: Student | some c: s.waitingfor | no c.enrolled

no s: Graduate | (some c: s.teaches | s in c.enrolled + c.waitlist)

An alternative formulation

17




abstract sig Person {}
cj . I' . sig Faculty extends Person {}
abstract sig Student extends Person {}
Aca emla Rea Ism ConStralntS sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: .., enrolled: .., waitlist: ..}

* There is a graduate student who isaninstructor

e There are at least:

— Two courses and

— Three undergraduates

18



abstract sig Person {}
(j . I' . sig Faculty extends Person {}
abstract sig Student extends Person {}
Aca emla Rea Ism ConStralntS sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: .., enrolled: .., waitlist: ..}

pred RealismConstraints [] {

some Graduate & Instructor

#Course > 1

#Undergrad > 2
}

Can be added to the model as a fact or put in a run command
(to instruct the Alloy Analyzer to ignore unrealistic instances)

19



Academia Assertions

Does the current model have these properties?
* No instructors are on the waitlist for a course they teach

e No student is enrolled and on the waitlist for the same course

We can check that with assertions

20



abstract sig Person {}
. . sig Faculty extends Person {}
Aca d e m I a Asse rt I O n S abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}

sig Course {taughtby: .., enrolled: .., waitlist: ..}

assert NoWaitingTeacher

{

assert NoEnrolledAndWaiting
{

21



abstract sig Person {}
. . sig Faculty extends Person {}
Aca d e m I a Asse rt I O n S abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}

sig Course {taughtby: .., enrolled: .., waitlist: ..}

assert NoWaitingTeacher

1
¥

all c: Course | no (c.taughtby & c.waitlist)

assert NoEnrolledAndWaiting
{

}

all c: Course | no (c.enrolled & c.waitlist)

22



Exercises

Load academia-1.als

With realism conditions enabled, do any instances exist in the
default scopes?

— Manipulate the scopes as necessary to obtain an instance under the
realism conditions

By looking at various sample instances, do you consider the
model to be underconstrained in any way?

Check assertions



Realism Constraints

* No instances exist in the default scope
e Why?

— default scope:
at most 3 tuples in each top-level signature

allows: at most 3 Students

— some Graduate & Instructor
#Undergrad > 2

needs at least 4 Students

24



Realism Constraints

pred [] RealismConstraints

{

some Graduate & Instructor
#Course > 1
#Undergrad > 2

¥

run RealismConstraints for 4

25



Instance

#Undergrad >2  —ftndergrad>-l

Instance found:

Sighatures:
Course = {C0O,C1}
Person = {UO,U1,G}
Faculty = {}
Student = {UO,Ul1,G}
Undergrad = {UO,U1}
Graduate = {G}
Instructor = {G}

Relations:
taughtby = {(C0,G), (C1,G)}
enrolled {(CO,UL1), (C1,U0)}
waitlist {(C1,U1),(C1,U0)}



Counter-example to assertion

Analyzing NoEnrolledAndWaiting ...
Counterexample found:

Signatures:
Course = {(C}
Person = {GO,G1,F}
Faculty = {F}
Student = {GO,G1l}
Undergrad = {}
Graduate = {GO,G1}
Instructor = {GO,G1}

Relations:
taughtby = {(C,G0O)}
enrolled = {(C,G1)} Need to relate

waitlist = {(C,G1)} enrollment and waiting lists



Academia Assertions

e No student is enrolled and on the waitlist for the same course

— A counterexample has been found, hence

we transform this assertion into a fact

* No instructors are on the waitlist for a course they teach

— No counterexample

28



Academia Assertions

NoWaitingTeacher assertion

— No counterexample within the default scope
— No counterexample within the scope 4, 5, 6, 10

Can we conclude that the assertion is valid?

— Nol! (It might have conterexamples but out of scope)

But we take comfort in the small scope hypothesis:

— if an assertion is not valid, it usually has a small counterexample

29



Why NoWaitingTeacher holds

Assertion

assert NoWaitingTeacher {
all c: Course | no (c.taughtby & c.waitlist)

¥

NoWaitingTeacher isimplied by signatures and facts below

all c: Course | c.taughtby !in c.waitlist

30



Extension 1

e Add an attribute for students
— Unique ID numbers

— This requires a new sighature

e Add student transcripts

* Add prerequisite structure for courses



New Relations

sig 1d {}

abstract sig Student extends Person {
1d: one Id,
transcript: set Course

¥
sig Graduate, uUndergrad extends Student {}

sig Instructor in Person {}

sig Course {
taughtby: one Instructor,
enrol led: some Student,
wailtlist: set Student,
prerequisites: set Course

}

32



New Constraints

Each Student is identified by a unique ID
— Exactly one ID per Student

already enforced by multiplicities
— No two distinct students have the same ID

has to be specified as a fact

A student’s transcript contains a course only if
it contains the course’s prerequisites

A course does not have itself as a prerequisite

Realism constraint:
there is a course with prerequisites and with students enrolled

33



Academia Constraints

fact {

all s: Student |

s.transcript.prerequisites in s.transcript

all c: Course | c !'in c.prerequisites

}

run {

some c: Course |
some c.prerequisites and some c.enrolled

not sufficient!

34



Academia Constraints

fact {

all s: Student |
s.transcript.prerequisites in s.transcript

all c: Course | c !in c.”prerequisites

}

run {

some c: Course |
some c.prerequisites and some c.enrolled

35



Academia Assertions

Is it this case in our model?

Students can only wait for courses they already have
the prerequisites for

assert AllWaitsHavePreregs {
all s: Student | (waitlist.s).prerequisites in s.transcript

36



Exercises

e Load academia-2.als

e With realism conditions enabled, do any instances exist in the

default scopes?
— Manipulate the scopes as necessary to obtain an instance under the
realism conditions

* By looking at various sample instances, do you consider the
model to be underconstrained in any way?



Counter-example

Analyzing AllWaitsHavePrereqs
Counterexample found:

Signatures:
Id = {IdO,Idl,Id2}
Course = {C0,C1}
Person = {U,GO,G1}
Faculty = {}
Student = {U,GO,G1}
Undergrad = {U}
Graduate = {GO,G1}
Instructor = {GO,G1}

Relations:
taughtby = {(C0,G0), (C1,G0O)}
enrolled = {(CO,U), (C1,G1)}
waitlist = {(C1,U)}

prerequisites = {(C1,C0)}

U waits for the course C1
and
CO is a prerequisite for C1
but
U does not have CO

Where is (U,CO)?

transcript = {(G1,C0)} <

id = {(U,Id0), (GO,Id2), (G1,Idl)}

38



New Constraint

Old Assertion: AllWaitsHavePrereqgs

Students can wait only for those courses for which they already have
the prerequisites

Old Fact:
Students can have a course only if they already have the prerequisites

New Fact:

Students can have, wait for or take a course only if they already have
the prerequisites

39



New Constraint

New Fact:

Students can have, wait for or take a course only if they already have
the prerequisites

all s: Student |
(s.waitingfor.prerequisites +
s.taking.prerequisites +
s.transcript.prerequisites) in s.transcript

or

all s: Student |

(s.waitingfor + s.taking + s.transcript).prerequisites
in s.transcript

40



Extension 2

* Add Departments, with
— |Instructors
— Courses
— Required courses
— Student majors

e Add Faculty-Grad student relationships
— Advisor
— Thesis committee



Department Relations

* Each instructor isin a single department

— Each department has at least one instructor

 Each department has some courses

— Courses are in a single department

* Each student has a single department as his/her major

42



Faculty-Student Relations

* A graduate student has exactly one faculty member as an
advisor

* Faculty members serve on graduate students’ committees

43



New Relations

sig Faculty extends Person {

incommittee: set Graduate sig Instructor in Person {
} department: one Department

}

abstract sig Student extends _
Person { sig Department {

major: one Department cour§e. some Course,
} required: some Course

}
sig Graduate extends Student {

advisor: one Faculty

}

all d: Department | some department.d

all c: Course | one course.c

44



New Constraints

Advisors are on their advisees’ committees

Students are advised by faculty in their major

Only faculty can teach required courses

Faculty members only teach courses in their department

Required courses for a major are a subset of the courses in that major

Students must be enrolled in at least one course from their major



Exercise

* Express as an Alloy fact each of the new constraints in the
previous slide



Advisors are on their advisees’ committees

—————————————————— Signatures and Fields ---------------—-—-

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}
sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}
sig 1d {}
sig Department {

courses: some Course,
required: some Course

}

47



Students are advised by faculty in their major

—————————————————— Signatures and Fields ---------------—-—-

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}
sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}
sig 1d {}

sig Department {
courses: some Course,
required: some Course

}

48



Required courses for a major are a subset of the courses in that major

—————————————————— Signatures and Fields ---------------—-—-

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}
sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}
sig 1d {}
sig Department {

courses: some Course,
required: some Course

}

49



Only faculty teach required courses

—————————————————— Signatures and Fields ---------------—-—-

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}
sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}
sig 1d {}

sig Department {
courses: some Course,
required: some Course

}

50



Faculty members only teach courses in their department

—————————————————— Signatures and Fields ---------------—-—-

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}
sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}
sig 1d {}

sig Department {
courses: some Course,
required: some Course

}

51



Students must be enrolled in at least one course from their major

—————————————————— Signatures and Fields ---------------—-—-

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}
sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}
sig 1d {}
sig Department {

courses: some Course,
required: some Course

}

52



There are at least two departments and some required courses

—————————————————— Signatures and Fields ---------------—-—-

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}
sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}
sig 1d {}
sig Department {

courses: some Course,
required: some Course

}

53



A student’s committee members are faculty in his/her major

—————————————————— Signatures and Fields ---------------—-—-

abstract sig Person {}

sig Faculty extends Person {
incommittee: set Graduate

}

abstract sig Student extends
Person {
id: one Id,
transcript: set Course,
major: one Department

}
sig Undergrad extends Student {}

sig Graduate extends Student {
advisor: one Faculty

}

sig Instructor in Person {
department: one Department

}

sig Course {
taughtby: one Instructor,
enrolled: some Student,
waitlist: set Student,
prerequisites: set Course

}
sig 1d {}

sig Department {
courses: some Course,
required: some Course

}

54



Assertions

e Realism constraints:
There are at least two departments and some required courses

* Administrative constraint:
A student’s committee members are faculty in his/her major



Exercises

Load academia-3.als

With realism conditions enabled, do any instances exist in the default
scopes?

Manipulate the scopes as necessary to obtain an instance under the
realism conditions

— This requires some thought since constraints may interact in subtle ways

— For example, adding a department requires at least one faculty member for that
department

Can you think of any more questions about the model?

— Formulate them as assertions and see if the properties are already enforced by
the constraints



	Slide 1: CS:5810 Formal Methods in Software Engineering
	Slide 2: “Academia” Modeling Example
	Slide 3: Strategy
	Slide 4: Strategy
	Slide 5: Basic Components
	Slide 6: Academia Signatures
	Slide 7: Academia Fields
	Slide 8: Course Fields
	Slide 9: Course Fields
	Slide 10: Dependent Relations
	Slide 11: Note
	Slide 12: Academia Constraints
	Slide 13: Academia Constraints
	Slide 14: Academia Constraints
	Slide 15: Academia Constraints
	Slide 16: Academia Constraints
	Slide 17: Academia Constraints
	Slide 18: Academia Realism Constraints
	Slide 19: Academia Realism Constraints
	Slide 20: Academia Assertions
	Slide 21: Academia Assertions
	Slide 22: Academia Assertions
	Slide 23: Exercises
	Slide 24: Realism Constraints
	Slide 25: Realism Constraints
	Slide 26: Instance
	Slide 27: Counter-example to assertion
	Slide 28: Academia Assertions
	Slide 29: Academia Assertions
	Slide 30: Why  NoWaitingTeacher  holds
	Slide 31: Extension 1
	Slide 32: New Relations
	Slide 33: New Constraints
	Slide 34: Academia Constraints
	Slide 35: Academia Constraints
	Slide 36: Academia Assertions
	Slide 37: Exercises
	Slide 38: Counter-example
	Slide 39: New Constraint
	Slide 40: New Constraint
	Slide 41: Extension 2
	Slide 42: Department Relations
	Slide 43: Faculty-Student Relations
	Slide 44: New Relations
	Slide 45: New Constraints
	Slide 46: Exercise
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Assertions
	Slide 56: Exercises

