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“Academia” Modeling Example
• We will model an academic enterprise expressing relationships between 

– People 

• Faculty

•  Students 

– Graduate

– Undergraduate

• Instructors – which can be grad students or faculty

– Courses

– Academic departments

– Personal ID numbers
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How should we model these basic domains in Alloy?



Strategy

1. Build and validate your model incrementally
– Start with basic signatures and fields

–Add basic constraints

– Instantiate the model and study the results

–Probe the model with assertions
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Strategy

2. Add groups of features at a time
–Add new signatures and fields

–Add new constraints

–Confirm previous assertions

–Probe new features with assertions 
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Basic Components

• People

– Students: Undergrads and Grads

– Instructors: Faculty and Grads

• Courses

• Relationships

– One instructor teaches a course

– One or more students are taking a course

– Students can be waiting for for course
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Academia Signatures
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abstract sig Person {}

sig Faculty extends Person {}

abstract sig Student extends Person {}

sig Graduate, Undergrad extends Student {}

sig Instructor in Person {}

sig Course {}

…

We are not specifying here that instructors 
can only be graduate students or faculty. 
 
We will do that later with a  fact constraint. 



Academia Fields

• Only one instructor per course

2 choices:

sig Instructor in Person {

 teaches: set Course }

fact oneInstrucPerCourse {

 all c: Course | one teaches.c }

sig Course {

 taughtby: one Instructor }
7

We cannot specify that 
there is exactly one 
instructor per course

We have to add a 
fact specifying this 
constraint



Course Fields

• Only one instructor per course

• One or more students taking a course

• Students can be waiting for a course
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Course Fields

• Only one instructor per course

• One or more students taking a course

• Students can be waiting for a course

sig Course {

  taughtby: one Instructor,

  enrolled: some Student,

  waitlist: set Student

}
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Exactly one instructor per course.

One or more students per course

Zero or more students per course



Dependent Relations

• We may choose to define dependent fields as auxiliary relations instead:

  teaches   (transpose of taughtby)

  taking   (transpose of enrolled)

  waitingfor  (transpose of waitlist)

fun teaches []: Instructor -> Course { ~taughtby }

fun taking []: Student -> Course { ~enrolled }

fun waitingfor []: Student -> Course { ~waitlist }

• Or we may choose not to have them at all:

  if i is an instructor, 

  i.teaches = taughtby.i
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Note

• Let i be an Instructor

• Let taughtby be the following binary relation

– taughtby: Course -> one Instructor 

• The following expressions denote the same set of courses

– taugthby.i

– i.~taugthby

– i[taugthby]
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Academia Constraints

• All instructors are either faculty or graduate students

– Was not expressed in signature definition — although it could have:

  sig Instructor in Graduate + Faculty

• No one is waiting for a course unless someone is enrolled

• No graduate students teach a course they are enrolled in

12



Academia Constraints
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fact {
  -- All instructors are either Faculty or Graduate Students

  all i: Instructor | i in Faculty + Graduate

  Instructor in Faculty + Graduate -- equivalent to the above

    -- not all instructors are faculty
  Instructor !in Faculty
  
}

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …} 
…



Academia Constraints
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fact {
  -- no student is waiting for a course unless someone is enrolled

  all c: Course | some c.waitlist implies some c.enrolled

  -- alternative  

  all c: Course | no c.enrolled implies no c.waitlist  

}

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …} 
…



Academia Constraints

15

fact {
  

    -- graduate students do not teach courses they are enrolled in or waiting to enroll in

  all c: Course | c.taughtby in Graduate implies
                  c.taughtby !in c.enrolled + c.waitlist

  -- Alternative
  no s: Graduate | (some c: s.teaches | s in c.enrolled + c.waitlist)

}

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …} 
…
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fact {
  -- All instructors are either Faculty or Graduate Students

  all i: Instructor | i in Faculty + Graduate + SpecialInstructor 

  some Instructors and some Instructor & SpecialInstructor 

  -- no student is waiting for a course unless someone is enrolled

  all c: Course | some c.waitlist implies some c.enrolled

  -- graduate students do not teach courses they are enrolled in or waiting to enroll in

  all c: Course | c.taughtby in Graduate implies
                   c.taughtby !in c.enrolled + c.waitlist
}

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …} 
…

Academia Constraints
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fact {
  -- All instructors are either Faculty or Graduate Students

  some i: Instructor | i !in (Faculty + Graduate) 

  -- no student is waiting for a course unless someone is enrolled

  no s: Student | some c: s.waitingfor | no c.enrolled

  -- graduate students do not teach courses they are enrolled in or waiting to enroll in

  no s: Graduate | (some c: s.teaches | s in c.enrolled + c.waitlist)
}

An alternative formulation

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …} 
…

Academia Constraints



Academia Realism Constraints

• There is a graduate student who is an instructor

• There are at least:

– Two courses and

– Three undergraduates
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abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …} 
…
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pred RealismConstraints [] {

  -- there is a graduate student who is an instructor
  some Graduate & Instructor 

  -- there are at least two courses
  #Course > 1

  -- there are at least three undergraduates
  #Undergrad > 2
}

Can be added to the model as a fact or put in a run command 
(to instruct the Alloy Analyzer to ignore unrealistic instances)

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …} 
…

Academia Realism Constraints



Academia Assertions

Does the current model have these properties?

• No instructors are on the waitlist for a course they teach

• No student is enrolled and on the waitlist for the same course

We can check that with assertions

20



Academia Assertions
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-- no instructors are on the waitlist for a course they teach

assert NoWaitingTeacher 
{  
  
}

-- no student is enrolled and on the waitlist for the same course

assert NoEnrolledAndWaiting 
{
  
}

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …} 
…



Academia Assertions
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-- no instructors are on the waitlist for a course they teach

assert NoWaitingTeacher 
{
  all c: Course | no (c.taughtby & c.waitlist)
}

-- no student is enrolled and on the waitlist for the same course

assert NoEnrolledAndWaiting 
{
  all c: Course | no (c.enrolled & c.waitlist)
}

abstract sig Person {}
sig Faculty extends Person {}
abstract sig Student extends Person {}
sig Graduate, Undergrad extends Student {}
sig Instructor in Person {}
sig Course {taughtby: …, enrolled: …, waitlist: …} 
…



Exercises

• Load academia-1.als

• With realism conditions enabled, do any instances exist in the 
default scopes?

– Manipulate the scopes as necessary to obtain an instance under the 
realism conditions

• By looking at various sample instances, do you consider the 
model to be underconstrained in any way?

• Check assertions
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Realism Constraints

• No instances exist in the default scope

• Why ?

– default scope:
   at most 3 tuples in each top-level signature
 

allows: at most 3 Students

– some Graduate & Instructor 
 #Undergrad > 2

 needs at least 4 Students

24
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pred [] RealismConstraints
{
  -- there is a graduate student who’s an instructor
  some Graduate & Instructor 

  -- there are at least two courses
  #Course > 1

  -- there are at least three undergraduates
  #Undergrad > 2
}

run RealismConstraints for 4

Realism Constraints



Instance
#Undergrad > 2     #Undergrad > 1

Instance found:

Signatures:

  Course = {C0,C1}

  Person = {U0,U1,G}

  Faculty = {}

  Student = {U0,U1,G}

  Undergrad = {U0,U1}

  Graduate = {G}

  Instructor = {G}

Relations:

  taughtby = {(C0,G),(C1,G)}

  enrolled = {(C0,U1),(C1,U0)}

  waitlist = {(C1,U1),(C1,U0)}
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Counter-example to assertion
Analyzing NoEnrolledAndWaiting ...

Counterexample found:

Signatures:

  Course = {C}

  Person = {G0,G1,F}

  Faculty = {F}

  Student = {G0,G1}

  Undergrad = {}

  Graduate = {G0,G1}

  Instructor = {G0,G1}

Relations:

  taughtby = {(C,G0)}

  enrolled = {(C,G1)}

  waitlist = {(C,G1)}

27

Need to relate 
enrollment and waiting lists



Academia Assertions

• No student is enrolled and on the waitlist for the same course

– A counterexample has been found, hence 

       we transform this assertion into a fact

• No instructors are on the waitlist for a course they teach

– No counterexample

28



Academia Assertions

NoWaitingTeacher  assertion

– No counterexample within the default scope

– No counterexample within the scope 4, 5, 6, 10

Can we conclude that the assertion is valid?

– No! (It might have conterexamples but out of scope)

But we take comfort in the small scope hypothesis:

– if an assertion is not valid, it usually has a small counterexample

29



Why  NoWaitingTeacher  holds

Assertion

-- no instructors are on the waitlist for a course they teach

assert NoWaitingTeacher {

  all c: Course | no (c.taughtby & c.waitlist)

}

NoWaitingTeacher is implied by signatures and facts below

-- (i) faculty are not students

-- (ii) graduate students do not teach courses they are enrolled in or waiting to enroll in

all c: Course | c.taughtby !in c.waitlist

30



Extension 1

• Add an attribute for students

– Unique ID numbers

– This requires a new signature

• Add student transcripts

• Add prerequisite structure for courses

31



New Relations

32

sig Id {}

abstract sig Student extends Person {
  id: one Id,
  transcript: set Course
}

sig Graduate, Undergrad extends Student {}

sig Instructor in Person {}

sig Course {
  taughtby: one Instructor,
  enrolled: some Student,
  waitlist: set Student, 
  prerequisites: set Course
}



New Constraints

• Each Student is identified by a unique ID
– Exactly one ID per Student 

   already enforced by multiplicities

– No two distinct students have the same ID

   has to be specified as a fact

• A student’s transcript contains a course only if 
it contains the course’s prerequisites

• A course does not have itself as a prerequisite

• Realism constraint: 
there is a course with prerequisites and with students enrolled

33



Academia Constraints

34

fact {

 ...

  -- A student’s transcript contains a course only if it contains the course’s prerequisites
  all s: Student |
    s.transcript.prerequisites in s.transcript

  -- A course does not have itself as a prerequisite
  all c: Course | c !in c.prerequisites
}

run {

  ...

  -- there is a course with prerequisites and enrolled students
  some c: Course |
    some c.prerequisites and some c.enrolled
}

not sufficient!



Academia Constraints
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fact {

 ...

  -- A student’s transcript contains a course only if it contains the course’s prerequisites
  all s: Student |
 s.transcript.prerequisites in s.transcript

  -- There are no cycles in the prerequisite dependencies 
  all c: Course | c !in c.^prerequisites
}

run {

  ...

  -- there is a course with prerequisites and enrolled students
  some c: Course |
 some c.prerequisites and some c.enrolled
}



Academia Assertions

Is it this case in our model?

 Students can only wait for courses they already have 
 the prerequisites for

  assert AllWaitsHavePrereqs {

    all s: Student | (waitlist.s).prerequisites in s.transcript

  }

36



Exercises

• Load academia-2.als

• With realism conditions enabled, do any instances exist in the 
default scopes?
– Manipulate the scopes as necessary to obtain an instance under the 

realism conditions

• By looking at various sample instances, do you consider the 
model to be underconstrained in any way?

37



Counter-example
Analyzing AllWaitsHavePrereqs ...

Counterexample found:

Signatures:

  Id = {Id0,Id1,Id2}

  Course = {C0,C1}

  Person = {U,G0,G1}

  Faculty = {}

  Student = {U,G0,G1}

  Undergrad = {U}

  Graduate = {G0,G1}

  Instructor = {G0,G1}

Relations:

  taughtby = {(C0,G0),(C1,G0)}

  enrolled = {(C0,U),(C1,G1)}

  waitlist = {(C1,U)}

  prerequisites = {(C1,C0)}

  transcript = {(G1,C0)}

  id = {(U,Id0),(G0,Id2),(G1,Id1)}
38

U waits for the course C1
and

C0 is a prerequisite for C1
but

U does not have C0

Where is (U,C0)?



New Constraint

Old Assertion: AllWaitsHavePrereqs

 Students can wait only for those courses for which they already have 
the prerequisites

 

Old Fact:

 Students can have a course only if they already have the prerequisites

New Fact:

 Students can have, wait for or take a course only if they already have 
the prerequisites

39



New Constraint

New Fact:

 Students can have, wait for or take a course only if they already have 
the prerequisites

  all s: Student | 
    (s.waitingfor.prerequisites +
     s.taking.prerequisites +
     s.transcript.prerequisites) in s.transcript

  or
 

  all s: Student | 
    (s.waitingfor + s.taking + s.transcript).prerequisites 
    in s.transcript

40



Extension 2

• Add Departments, with
– Instructors

– Courses 

– Required courses

– Student majors

• Add Faculty-Grad student relationships
– Advisor

– Thesis committee

41



Department Relations

• Each instructor is in a single department

– Each department has at least one instructor

• Each department has some courses

– Courses are in a single department

• Each student has a single department as his/her major

42



Faculty-Student Relations

• A graduate student has exactly one faculty member as an 
advisor

• Faculty members serve on graduate students’ committees

43



New Relations
sig Faculty extends Person {
  incommittee: set Graduate
}

abstract sig Student extends
Person {
  major: one Department
}

sig Graduate extends Student {
  advisor: one Faculty
}

sig Instructor in Person {
  department: one Department
}

sig Department {
  course: some Course,
  required: some Course
} 

44

------------------------- Facts -------------------------

  -- Each department has at least one instructor
  all d: Department | some department.d

  -- Each course is in a single department 
  all c: Course | one course.c



New Constraints

• Advisors are on their advisees’ committees

• Students are advised by faculty in their major

• Only faculty can teach required courses

• Faculty members only teach courses in their department

• Required courses for a major are a subset of the courses in that major

• Students must be enrolled in at least one course from their major

45



Exercise

• Express as an Alloy fact each of the new constraints in the 
previous slide

46
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abstract sig Person {}

sig Faculty extends Person {

  incommittee: set Graduate 

}

abstract sig Student extends

Person {
  id: one Id,

  transcript: set Course,
  major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
  advisor: one Faculty 

}

sig Instructor in Person {

  department: one Department
}

sig Course {
  taughtby: one Instructor,

  enrolled: some Student,
  waitlist: set Student, 

  prerequisites: set Course

}

sig Id {}

sig Department { 

  courses: some Course, 
  required: some Course 

}

------------------ Signatures and Fields -----------------

Advisors are on their advisees’ committees
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abstract sig Person {}

sig Faculty extends Person {

  incommittee: set Graduate 

}

abstract sig Student extends

Person {
  id: one Id,

  transcript: set Course,
  major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
  advisor: one Faculty 

}

sig Instructor in Person {

  department: one Department
}

sig Course {
  taughtby: one Instructor,

  enrolled: some Student,
  waitlist: set Student, 

  prerequisites: set Course

}

sig Id {}

sig Department { 

  courses: some Course, 
  required: some Course 

}

------------------ Signatures and Fields -----------------

Students are advised by faculty in their major
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abstract sig Person {}

sig Faculty extends Person {

  incommittee: set Graduate 

}

abstract sig Student extends

Person {
  id: one Id,

  transcript: set Course,
  major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
  advisor: one Faculty 

}

sig Instructor in Person {

  department: one Department
}

sig Course {
  taughtby: one Instructor,

  enrolled: some Student,
  waitlist: set Student, 

  prerequisites: set Course

}

sig Id {}

sig Department { 

  courses: some Course, 
  required: some Course 

}

------------------ Signatures and Fields -----------------

Required courses for a major are a subset of the courses in that major
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abstract sig Person {}

sig Faculty extends Person {

  incommittee: set Graduate 

}

abstract sig Student extends

Person {
  id: one Id,

  transcript: set Course,
  major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
  advisor: one Faculty 

}

sig Instructor in Person {

  department: one Department
}

sig Course {
  taughtby: one Instructor,

  enrolled: some Student,
  waitlist: set Student, 

  prerequisites: set Course

}

sig Id {}

sig Department { 

  courses: some Course, 
  required: some Course 

}

------------------ Signatures and Fields -----------------

Only faculty teach required courses
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abstract sig Person {}

sig Faculty extends Person {

  incommittee: set Graduate 

}

abstract sig Student extends

Person {
  id: one Id,

  transcript: set Course,
  major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
  advisor: one Faculty 

}

sig Instructor in Person {

  department: one Department
}

sig Course {
  taughtby: one Instructor,

  enrolled: some Student,
  waitlist: set Student, 

  prerequisites: set Course

}

sig Id {}

sig Department { 

  courses: some Course, 
  required: some Course 

}

------------------ Signatures and Fields -----------------

Faculty members only teach courses in their department
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abstract sig Person {}

sig Faculty extends Person {

  incommittee: set Graduate 

}

abstract sig Student extends

Person {
  id: one Id,

  transcript: set Course,
  major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
  advisor: one Faculty 

}

sig Instructor in Person {

  department: one Department
}

sig Course {
  taughtby: one Instructor,

  enrolled: some Student,
  waitlist: set Student, 

  prerequisites: set Course

}

sig Id {}

sig Department { 

  courses: some Course, 
  required: some Course 

}

------------------ Signatures and Fields -----------------

Students must be enrolled in at least one course from their major
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abstract sig Person {}

sig Faculty extends Person {

  incommittee: set Graduate 

}

abstract sig Student extends

Person {
  id: one Id,

  transcript: set Course,
  major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
  advisor: one Faculty 

}

sig Instructor in Person {

  department: one Department
}

sig Course {
  taughtby: one Instructor,

  enrolled: some Student,
  waitlist: set Student, 

  prerequisites: set Course

}

sig Id {}

sig Department { 

  courses: some Course, 
  required: some Course 

}

------------------ Signatures and Fields -----------------

There are at least two departments and some required courses
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abstract sig Person {}

sig Faculty extends Person {

  incommittee: set Graduate 

}

abstract sig Student extends

Person {
  id: one Id,

  transcript: set Course,
  major: one Department

}

sig Undergrad extends Student {}

sig Graduate extends Student {
  advisor: one Faculty 

}

sig Instructor in Person {

  department: one Department
}

sig Course {
  taughtby: one Instructor,

  enrolled: some Student,
  waitlist: set Student, 

  prerequisites: set Course

}

sig Id {}

sig Department { 

  courses: some Course, 
  required: some Course 

}

------------------ Signatures and Fields -----------------

A student’s committee members are faculty in his/her major



Assertions

• Realism constraints: 
There are at least two departments and some required courses

• Administrative constraint: 
A student’s committee members are faculty in his/her major
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Exercises

• Load academia-3.als

• With realism conditions enabled, do any instances exist in the default 
scopes?

• Manipulate the scopes as necessary to obtain an instance under the 
realism conditions
– This requires some thought since constraints may interact in subtle ways

– For example, adding a department requires at least one faculty member for that 
department

• Can you think of any more questions about the model?
– Formulate them as assertions and see if the properties are already enforced by 

the constraints
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