
CS:5810 Formal Methods in Software Engineering

Introduction to Alloy 6

Part 3

Copyright 2001-25, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli. 
Created by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas 
State University. These notes are copyrighted materials and may not be used in other course settings outside of  the University of Iowa in their current form 
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or 
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders. 



Facts

Explicit constraints on signatures and fields are expressed in 
Alloy as facts

fact Name {

  Formula1

  Formula2

  …

}

AA generates only instances that also satisfy all of the fact 
constraints in a model

1



Example Facts

-- No one can be their own ancestor
fact selfAncestor {
  no p: Person | p in p.^parents
}

-- At most one father and mother
fact loneParents {
  all p: Person | lone p.parents & Man   and 
                  lone p.parents & Woman 
}

-- A person's siblings are other persons with the same parents
fact siblingsDefinition {
  all p: Person | 
    p.siblings = {q: Person | p.parents = q.parents} - p
}

2



Example Facts

-- No one can be their own ancestor
fact selfAncestor {
  no p: Person | p in p.^parents
}

-- At most one father and mother
fact loneParents {
  all p: Person { lone p.parents & Man        // alternative syntax for
                  lone p.parents & Woman }    // conjunctive body
}

-- A person's siblings are other persons with the same parents
fact siblingsDefinition {
  all p: Person | 
    p.siblings = {q: Person | p.parents = q.parents} - p
}

3

Formulas separated by white 
space in a  { ... }  block are 
treated conjunctively



Example Facts

fact social {

  -- Every married person has a spouse 

  all p: Married | one p.spouse

  -- One’s spouse can't be one’s sibling

  no p: Married | p.spouse in p.siblings

  -- A person can't be married to a blood relative

  all p: Married | 

     no p.*parents & p.spouse.*parents

}

4

Formulas separated by white 
space in a  { ... }  block are 
treated conjunctively



Run Command

To analyze a model, you add a run command and instruct AA to 
execute it

– the run command

 tells the tool to search for an instance of the model

– you may also give a scope to signatures

 bounds the size of instances that will be considered

AA executes only the first run command in a file, unless you 
specify otherwise

5



Run Command

Used to ask AA to generate an instance of the model

May include run conditions

– Used to guide AA to pick model instances with certain features

– E.g., force certain sets and relations to be non-empty

– In this case, not part of the intended specification

6



Scope

Limits the size of instances considered, to make instance finding 
(by the Alloy Analyzer) feasible

Represents the maximum number of elements in a top-level 
signature

Default value = 3 for each top-level signature

7



Run Examples

8

Family Structure:

-- The simplest run command
-- The scope of every signature is 3 (by default)
run {}

-- The scope scope of every signature is 5
run {} for 5

-- With conditions forcing each set to be populated
-- Setting the scope to 2
run {some Man and some Woman and some Married} for 2

-- Other scenarios with conditions
run {some Woman && no Man} for 7
run {some Man && some Married && no Woman}
 



Run Conditions

We can use run conditions to encode realism constraints 

– e.g., to force generated models to include at least one married 
person, or one married man, etc.

Run conditions and other constraints can be abstracted in 
constraint macros via the definition of predicates (see later)

– This allows common constraints to be shared

9



Exercises

• Load family-2.als

• Execute it

• Analyze the metamodel

• Look at the generated instance

• Does it look correct?

• What if anything would you change about it?

10



Empty Signatures

The analyzer’s favors smaller model instances

– It often produces empty signatures or otherwise trivial instances 

– It is useful to know that these instances satisfy the constraints 
(especially if you do not want them to)

Usually, small instances do not illustrate the interesting behaviors 
that are possible

11



Exercises

• Load family-3.als

• Execute it

• Look at the generated instance

• Does it look correct?

• How can you produce 

– two married couples?

– a non-empty married relation and a non-empty siblings relation ?

12



Assertions

Often, we expect our model to entail additional constraints that 

are not directly expressed

– e.g.,  (some A) and (A in B)   entails   some B

We can define these constraints as assertions and ask the 

analyzer to check if they hold

– e.g.,  some sig A in B {}

   assert BNonEmpty { some B }

   check BNonEmpty 
13



Assertions

If the constraint in an assertion A does not hold (i.e., does not 

follow from the model) the analyzer will produce a 

counterexample instance:  a model instance where A is false

If you expect an assertion to hold but it does not, you can either

1. add it directly to the model as a fact, or 

2. refine your model with other constraints until the assertion holds, or

3. reflect on whether your expectation that it held was correct to begin with!

14



Assertions

• No one has a parent who is also a sibling

  assert a1 { all p: Person | no p.parents & p.siblings }

• A person’s siblings are his/her siblings’ siblings

  assert a2 { all p: Person | p.siblings = p.siblings.siblings }

• No one shares a common ancestor with their spouse 
(i.e., spouses aren’t related by blood)

  assert a3 { 

    no p: Married | some p.*parents & p.spouse.*parents

  }
15



Assertion Scopes

• You can specify a scope explicitly for any signature

• However, if a signature has been given a scope, then

– a scope for its subignatures can be always determined

– sometimes the scope of its supersignatures can be determined as well

• The AA will compute the tightest scopes it can

16



Scope Examples

abstract sig Object {}

 sig Dir extends Object {}

 sig File extend Object {}

 sig Alias in Object {}

Consider some assertion A

• all well-formed commands:
check A for 5 Object

check A for 4 Dir, 3 File

check A for 5 Object, 3 Dir

check A for 3 Dir, 5 File, 3 Alias

• ill-formed, for leaving the scope of File unspecified:
check A for 3 Dir, 3 Alias

17

Dir File

Alias

Object



Scope Examples

abstract sig Object {}

 sig Dir extends Object {}

 sig File extend Object {}

 sig Alias in Object {}

• check A for 5   or   run {} for 5

places a bound of 5 on each top-level signature (in this case just Object)

• check A for 5 but 3 Dir

places a bound of 3 just on Dir, and a bound of 2 on File by implication

• check A for exactly 3 Dir, exactly 3 Alias, 5 File

limits File to at most 5 tuples, but requires Dir and Alias to have exactly 3 
tuples each

18

Dir File

Alias

Object



Size Determination

Size determined by a signature declaration has priority over size 
determined in scope

Example:

abstract sig Color {}

one sig red, yellow, green extends Color {}

sig Pixel { color: one Color }

check A for 2

 limits the signature Pixel to 2 elements, but assigns a size of exactly 3 to Color

19



Exercises

• Load family-4.als

• Execute it

• Look at the generated counterexamples

• Why is SiblingsSibling false?

• Why is NoIncest false?

20



Problems with Assertions

Analyzing SiblingSiblings  
--(Your siblings are the same as your siblings’ siblings)

Scopes: Person(3)
Counterexample found:

  Person = {(M),(W0),(W1)}
  Man = {(M)}
  Woman = {(W0),(W1)}
  Married = {(M),(W1)}

  children = {(W0,W1)}
  siblings = {(M,W0),(W0,M)}
  spouse = {(M,W1),(W1,M)}

21

M.siblings = {(W0)}

M.siblings.siblings = {(M)}



Problems with Assertions

Analyzing NoIncest ...
(No one has an ancestor in common with their spouse)

Scopes: Person(3)
Counterexample found:

  Person = {(M0),(M1),(W)}
  Man = {(M0),(M1)}
  Woman = {(W)}
  Married = {(M1),(W)}

  children = {(M0,W),(W,M1)}
  siblings = {}
  spouse = {(M1,W),(W,M1)}

22

( M0 is an ancestor of M1
and

M0 is an ancestor of W )
and

M1 and W are married



Exercises

• Fix the specification in family-4.als

– If the model is under-constrained, add appropriate constraints

– If the assertion is not correct, modify it

• Demonstrate that your fixes yield no counterexamples

– Does varying the scope make a difference?

– Does this mean that the assertions hold for all models?

23



Functions and Predicates

Parametrized macros for relational expressions and formulas
– Can be named and reused in different contexts

(facts, assertions, and run conditions)

– Can have zero or more parameters

– Used to abstract and factor out common patterns

Functions are good for:
– relational expressions you want to reuse in different contexts

Predicates are good for:
– formulas you want to reuse in different contexts

24



Predicates

A named formula template, with zero or more parameters

Examples:

– Two people are blood relatives iff they have a common ancestor

pred BloodRelated [p1: Person, p2: Person] {
 some (p1.*parents & p2.*parents)
}

– A person can't be married to a blood relative

no p: Married | BloodRelated[p, p.spouse]
                some (p.*parents & p.spouse.*parents)

Note: Predicates affect the model only when applied to terms in a fact or assertion
25



Functions
A named relation expression template, with zero or more parameters

Examples:

– The sisters function
fun sisters [p: Person] : set Woman {
  { w: Woman | w in p.siblings } 
}

– The parents relation defined as a constant function
fun parents [] : Person -> Person {
  ~children
}

– fact { all q: Person | 
         not (q in q.^parents or q in sisters[q]) }

26

q.^parents
=

q.^~children

q in sisters[q]
=

q in {w: Woman | w in q.siblings}



Predicate or Fact ?

• Predicates are (parametrized) definitions of constraints

• Facts are assumed constraints

Note: You can package constraints as predicates and then instantiate those 
predicates in facts

pred IsSingle[p: Person] { p !in Married }
pred IsFather[p: Man] { some p.children }

fact { some q: Man | IsSingle[q] && IsFather[q] }

27



Exercises

1. Define a predicate IsChildless that characterizes the notion of not 
having children

2. Define a function father that returns the father of a given person

28



Exercises

1. Define a binary predicate that characterizes the notion of “in-law” 
(mother/father/brother/sister/son/daugther) for the family example

2. Write a fact stating that a person is an in-law of their in-laws

3. Add these to one of the family examples and run it through AA

4. Can you express this same notion in another way in the Alloy model?

a) Do so and run it through AA

b) Which approach is better?  Why?

29



Exercises

1. Add an assertion stating that a person has no married in-laws

2. What is the minimum scope for set Person for which AA can find a 
counterexample?

3. How would you use AA to prove that your answer is truly the 
minimum scope?

4. Prove it!

30



Acknowledgements

31

The family structure example is based on an example by 
Daniel Jackson distributed with the Alloy Analyzer


	Slide 0: CS:5810 Formal Methods in Software Engineering
	Slide 1: Facts
	Slide 2: Example Facts
	Slide 3: Example Facts
	Slide 4: Example Facts
	Slide 5: Run Command
	Slide 6: Run Command
	Slide 7: Scope
	Slide 8: Run Examples
	Slide 9: Run Conditions
	Slide 10: Exercises
	Slide 11: Empty Signatures
	Slide 12: Exercises
	Slide 13: Assertions
	Slide 14: Assertions
	Slide 15: Assertions
	Slide 16: Assertion Scopes
	Slide 17: Scope Examples
	Slide 18: Scope Examples
	Slide 19: Size Determination
	Slide 20: Exercises
	Slide 21: Problems with Assertions
	Slide 22: Problems with Assertions
	Slide 23: Exercises
	Slide 24:  Functions and Predicates
	Slide 25: Predicates
	Slide 26: Functions
	Slide 27: Predicate or Fact ?
	Slide 28: Exercises
	Slide 29: Exercises
	Slide 30: Exercises
	Slide 31: Acknowledgements

