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Alloys Constraints

• Signatures              and fields respectively define: 
classes (of atoms) and relations between them

• Alloy models can be refined further by adding formulas expressing 
additional constraints over those classes and relations

• Several operators are available to express both logical and relational 
constraints
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Logical Operators

The usual logical operators are available, often in two forms:

 not _     ! _   (Boolean) negation

 _ and _    _ && _  conjunction

 _ or _    _ || _  disjunction

 _ implies _  _ => _  implication

 else _        alternative

 _ iff _    _ <=> _ equivalence
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Quantifiers

Alloy includes a rich collection of quantifiers

all x : S | F  states that F holds for every x in S  

some x : S | F  states that F holds for some x in S

no x : S | F  states that F holds for no x in S

lone x : S | F  states that F holds for at most one x in S

one x : S | F  states that F holds for exactly one x in S
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Quantifiers

Alloy includes a rich collection of quantifiers

all x : S | F  (e.g., all m : Man | m in Person ) 

some x : S | F  (e.g., some p : Person | p in Man ) 

no x : S | F  (e.g., no p : Person | p in Man & Woman ) 

lone x : S | F  (e.g., lone m : Man | m in Matt.children )

one x : S | F  (e.g., one w : Woman | w in Matt.children )
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Everything is a Relation in Alloy

There are no scalars 

– We never speak directly about elements (or  tuples) in relations

– Instead, we can use singleton unary relations:

 one sig Matt extends Man {}

Quantified variables always denote singletons

 all x : S | … x …

x = {t}  for some element t of S
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Predefined Set Constants

There are three predefined set constants in Alloy:
• none  :  empty set

• univ  :  universal set of all atoms

• ident  :  identity relation over all atoms

Example. For a model instance with just:
Man = {(M0),(M1),(M2)}   Woman = {(W0),(W1)}

the constants have the values
   none = {}

   univ = {(M0),(M1),(M2),(W0),(W1)}

   ident ={(M0,M0),(M1,M1),(M2,M2),(W0,W0),(W1,W1)}
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Set Operators and Predicates

_ + _    union

 _ & _   intersection

 _ - _    difference

 _ in _  subset

 _ = _    equality

 _ != _   disequality

Example. Matt is a married man: 

            Matt in (Married & Man)
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Relational Operators

_ -> _  arrow (cross product)
~ _    transpose
_ . _   dot join
_[_]       box join 
^ _    transitive closure
* _    reflexive-transitive closure
_ <: _  domain restriction
_ :> _  image restriction
_ ++ _      override
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Arrow Product

p -> q
• p and q are two relations

• p -> q  is the relation you get by taking every combination of a tuple from p and 
a tuple from q and concatenating them (same as flat cross product)

Example.
Name = {(N0),(N1)}  N = {(N0)}

Addr = {(D0),(D1)}      D = {(D1)}

Book = {(B0)}    

Name -> Addr = {(N0,D0),(N0,D1),(N1,D0),(N1,D1)}

Book -> Name -> Addr = {(B0,N0,D0),(B0,N0,D1),(B0,N1,D0),(B0,N1,D1)}

D -> N = {(D1,N0)} 

D -> Name = {(D1,N0),(D1,N1)}
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Transpose

~ p
take the mirror image of the relation p,

i.e., reverse the order of atoms in each tuple

Example.
•  p = {(a0,a1,a2,a3),(b0,b1,b2,b3)}

• ~p = {(a3,a2,a1,a0),(b3,b2,b1,b0)}

How would you use ~ to express the parents relation if you already have the 
children relation?

~children
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Relational Composition (Join)

p.q

• p and q are two relations that are not both unary

• p.q is the relation you get by taking 
every combination of a tuple from p and a tuple from q and 
adding their (dot) join, if it is defined

Note. The . operator is left-associative in Alloy:

  p.q.r = (p.q).r
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How to join tuples?

• What is the (dot) join of theses two tuples?

(a1,...,am) and (b1,...,bn)

–  If am ≠ b1 then the join is undefined
–  If am = b1 then it is: (a1,...,am-1,b2,...,bn)

    Example

– (a,b).(a,c,d) undefined
– (a,b).(b,c,d) = (a,c,d)

• What about (a).(a)?  

 t1 . t2  is not defined if t1 and t2 are both unary tuples
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Examples

• to maps a message to the name(s) it should be sent to

• address maps names to addresses

to = {(M0,N0),(M0,N2),(M1,N2),(M2,N3)}
 

address =
  {(N0,D0),(N0,D1),(N1,D1),(N2,D3)}

 to.address maps a message to the address(es) it 
should be sent to

to.address = 
  {(M0,D0),(M0,D1),(M0,D3),(M1,D3)}
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Exercise

What’s the result of these join applications?

1. {(a,b),(a,c),(c,c)}.{(c)}

2. {(a)}.{(a,b),(a,c),(b,c)}

3. {(a,b)}.{(b),(a)}

4. {(a)}.{(a,b,c)}

5. {(a,b,c)}.{(c,e),(c,d),(b,c)}

6. {(a,b)}.{(a,b,c)}

7. {(a,b,c,d)}.{(d,e,f),(d,a,b)}

8. {(b)}.{(b)}
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Exercises

1. Given a relation addr  of arity 4 that contains the tuple b->n->a->t when book b 
maps name n to address a at time t, and given a specific book B and a time T:

– addr = {(B0,N0,D0,T0),(B0,N0,D1,T1),(B0,N1,D2,T0),(B0,N1,D2,T1),
        (B1,N2,D3,T0), (B1,N2,D4,T1)
       }

– T = {(T1)}         B = {(B0)}

2. The expression B.addr.T is the name-address mapping of book B at time T. 
What is the value of B.addr.T?

3. When p is a binary relation and q is a ternary relation, what is the arity of the 
relation p.q ? 

4. Join is not associative (i.e., (p.q).r and p.(q.r) are not always equivalent), 
why ? 
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Example: Family Structure
abstract sig Person {

 children: set Person,

 siblings: set Person

}

sig Man, Woman extends Person {}

one sig Matt extends Person {}

sig Married in Person {

 spouse: one Married 

}
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Example: Family Structure

• How would you use join to find Matt’s children or grandchildren ?

– Matt.children     // Matt’s children

– Matt.children.children  // Matt’s grandchildren

• What if we want to find all of Matt’s descendants?

We need the transitive closure of children

17

abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
one sig Matt extends Man {}
sig Married in Person { spouse: one Married }



Example: Family Structure

Every married person has a spouse and 
everyone with a spouse is married

(all p: Married | some p.spouse) and 

(all p: Person | some p.spouse implies p in Married)

One’s spouse can’t be one’s sibling 

all p: Person |   no p.spouse & p.siblings
 no p: Person | some (p.spouse & p.siblings)
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abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }



Example: Family Structure

Every married person has a spouse and 
everyone with a spouse is married

 (all m : Married | some m.spouse) and

  (all p : Person | some p.spouse => p in Married)

One’s spouse can’t be one’s sibling

 no p : Married | p.spouse in p.siblings
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abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }



Box Join

p[q]

– Semantically identical to dot join, but takes its arguments in different order

p[q] ≡ q.p

Example. Matt’s children or grandchildren?

– children[Matt]           ≡ Matt.children

– children.children[Matt]  ≡ (children.children)[Matt]
                       ≡ Matt.(children.children)

– children[children[Matt]] ≡ children[Matt.children]
                         ≡ (Matt.children).children
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Transitive Closure

^ r
– Intuitively, the transitive closure of a relation r : S -> S is obtained by adding 

to r any pairs of elements connected by r-chains

– Formally, ^r is the smallest transitive relation of type S -> S that contains r 

^r = r + r.r + r.r.r + r.r.r.r + …
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Example: Family Structure

• What if we want to find Matt’s ancestors or descendants ?

• How would you express the constraint 
“No one can be their own ancestor ”
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abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }



Example: Family Structure

• What if we want to find Matt’s descendants or ancestors?

– Matt.^children       // Matt’s descendants

– Matt.^(~children)    // Matt’s ancestors

– (^children).Matt     // also Matt’s ancestors

• How would you express the constraint 
“No one can be their own ancestor ”

no p : Person | p in p.^(~children)
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abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }



Domain and Image Restrictions
The restriction operators are used to restrict relations to a given domain or 
image

If s is a set and r is a relation then
• s <: r contains tuples of r starting with an element in s

• r :> s contains tuples of r ending with an element in s

Example.
Man = {(M0),(M1),(M2),(M3)}           Woman = {(W0),(W1)}

children = {(W0,M1),(W0,W1),(M3,W0),(M2,M1)}

// mother-child

Woman <: children = {(W0,M1),(W0,W1),(M3,W0),(M2,M1)} = {(W0,M1),(W0,W1)}   

// parent-son

children :> Man = {(W0,M1),(W0,W1),(M3,W0),(M2,M1)} = {(W0,M1),(M2,M1)}
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Reflexive-transitive closure

*r  ≡ ^r + (iden :> S)     for r : S -> S
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*r is the smallest reflexive and transitive relation of type S -> S that contains r 

S =  { S0, …, S5 }



Override

p ++ q

– p and q are two relations of the same type and arity > 1

– The result is like the union between p and q except that tuples of q can replace 

tuples of p:  you drop a tuple (a,…) in p if there is a tuple in q starting with a

p ++ q ≡ p – (defdomain(q) <: p) + q

Example
– oldAddr = {(N0,D0),(N1,D1),(N1,D2)}

– newAddr = {(N1,D4),(N3,D3)}

– oldAddr ++ newAddr = {(N0,D0),(N1,D4),(N3,D3)}
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Operator Precedence
~  *  ^

.

[ ]

<:  :>

->

&

++

#

+  -

no  some  lone  one  set // multiplicities

=  !=  in  !in

!  not

&&  and

=>  implies  else

<=>  iff

||  or

let  all  no  some  lone  one // binders
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Parsing Conventions

All binary operators associate to the left 
except for implication (=>, implies) which associates to the right

Examples

– x.y.z    is parsed as (x.y).z 

– a & b & c  is parsed as (a & b) & c 

– p => q => r is parsed as p => (q => r)
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Parsing Conventions

In an implication, an else clause is associated with its closest then clause

Example

– p => q => r else s  is parsed as  p => (q => r else s)
 

The scope of a quantifier extends as far as possible to the right

Example

– all x : A |  p && q => r  is parsed as 
all x : A | (p && q => r)
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Example: Family Structure

How would you express the constraint 

“No one can have more than one father and mother ”?
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abstract sig Person { 
  children: set Person
  siblings: set Person
} 
sig Man extends Person {}
sig Woman extends Person {}
one sig Matt extends Man {}
sig Married in Person { 
   spouse: one Married 
}



Example: Family Structure

How would you express the constraint 

“No one can have more than one father and mother ”?

 all p: Person | 
  ((lone (children.p & Man)) and
   (lone (children.p & Woman)))

Equivalently:

 all p: Person | 
  ((lone (Man <: children).p) and
   (lone (Woman <: children).p))
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abstract sig Person { 
  children: set Person
  siblings: set Person
} 
sig Man extends Person {}
sig Woman extends Person {}
one sig Matt extends Man {}
sig Married in Person { 
   spouse: one Married 
}



Example: Family Structure

How would you express the constraint 

“No one can have more than one father and mother ”?

 all p: Person | 
   lone children.p & Man and
   lone children.p & Woman 

Equivalently:

 all p: Person | 
   lone (Man <: children).p and
   lone (Woman <: children).p 
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abstract sig Person { 
  children: set Person
  siblings: set Person
} 
sig Man extends Person {}
sig Woman extends Person {}
one sig Matt extends Man {}
sig Married in Person { 
   spouse: one Married 
}



Operator Precedence
~  *  ^

.

[ ]

<:  :>

->

&

++

#

+  -

no  some  lone  one  set // multiplicities

=  !=  in  !in

!  not

&&  and

=>  implies  else

<=>  iff

||  or

let  all  no  some  lone  one // binders
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Set Comprehension

{ x : S | F }

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify 
the set of people with the same parents as Matt? 
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Set Comprehension

{ x : S | F }

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify 
the set of people with the same parents as Matt? 

 { q: Person | q.parents = Matt.parents }
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Set Comprehension

{ x : S | F }

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify 
the set of people with the same parents as Matt and have no children? 

 { q: Person | q.parents = Matt.parents }
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Set Comprehension

{ x : S | F }

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify 
the set of people with the same parents as Matt and have no children? 

 { q: Person | q.parents = Matt.parents and no q.children }
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Example: Family Structure

How would you express the constraint 

“A person P’s siblings are people, other than P, with the same parents as P”
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Example: Family Structure

How would you express the constraint 

“A person P’s siblings are people, other than P, with the same parents as P”

all p: Person | 

  p.siblings = { q: Person | p.parents = q.parents } – p

Also

all p: Person | 

  p.siblings = { q: Person - p | p.parents = q.parents }
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Let 

You can factor expressions out:

let x = e | A

– Each occurrence of the variable x in A will be replaced by the expression e

Example. Every married man has a wife, and every married woman has a husband
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Let 

You can factor expressions out:

let x = e | A

– Each occurrence of the variable x in A will be replaced by the expression e

Example. Every married man has a wife, and every married woman has a husband

  all p: Married |

    let s = p.spouse | 

      (p in Man => s in Woman) and

      (p in Woman => s in Man)
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Let 

You can factor expressions out:

      let x = e { A1 … An }

– Each occurrence of the variable x in A will be replaced by the expression e

Example. Every married man has a wife, and every married woman has a husband

  all p: Married |

    let s = p.spouse { 

       p in Man => s in Woman

       p in Woman => s in Man

    }
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Exercise

43

Write constraints stating the following:

1. Not all people married to each other have the same children

2. Siblings have the same father and the same mother

All p: Person | let q = p.siblings | 
   p.~children = q.~children 

abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }



Exercise

44

Write constraints stating the following:

1. Not all people married to each other have the same children

   not all p: Married | p.children = p.spouse.children

2. Siblings have the same father and mother

abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }



Exercise
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Write constraints stating the following:

1. Not all people married to each other have the same children

2. Siblings have the same father and mother

   all p: Person | all q: p.siblings {
     children.p & Man = children.q & Man
     children.p & Woman = children.q & Woman 
   } 

abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }



Exercise
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Write constraints stating the following:

1. Jane is Ann’s mother
2. Jane is married to Ann’s father
3. Ann's parents have one sibling each
4. Ann is Jane’s only daughter
5. Unmarried people can have children
6. Everybody is somebody’s child

abstract sig Person { children: set Person, siblings: set Person } 
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }
one sig Ann, Jane extends Woman {}
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