CS:5810 Formal Methods in Software Engineering

Introduction to Alloy 6
Part 2

Copyright 2001-25, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.

Created by Cesare Tinelli and Laurence Pilard at the University of lowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas
State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Alloys Constraints

e Signatures and fields respectively define:
classes (of atoms) and relations between them

* Alloy models can be refined further by adding formulas expressing
additional constraints over those classes and relations

* Several operators are available to express both logical and relational
constraints

Logical Operators

The usual logical operators are available, often in two forms:

not ! (Boolean) negation
and && conjunction
or | | disjunction
implies => implication

else alternative

iff <=> equivalence

Quantifiers

Alloy includes a rich collection of quantifiers
all x : S | F states that F holds for every x in S
some X : S | F states that F holds for some xin S
nox : S| F states that F holds for no xin S
lone x : S | F statesthatF holds for at most one xin S

one x : S | F states that F holds for exactly one xin S

Quantifiers

Alloy includes a rich collection of quantifiers
all x : S | F (e.g., all m : Man | m in Person)
some X : S | F (eg, some p : Person | p in Man)
no x : S | F (e.g., no p : Person | p in Man & Woman)
lone x : S | F (e.g., lone m : Man | m in Matt.children)

one x : S | F (e.g., one w : Woman | w in Matt.children)

Everything is a Relation in Alloy

There are no scalars
— We never speak directly about elements (or tuples) in relations
— Instead, we can use singleton unary relations:
one sig Matt extends Man {}

Quantified variables always denote singletons
all x : S | .. x ..

x = {t} forsomeelementt of S

Predefined Set Constants

There are three predefined set constants in Alloy:

°* hone . empty set
* univ . universal set of all atoms
e ident . identity relation over all atoms

Example. For a model instance with just:
Man = {(M0),(M1),(M2)} Woman = {(WO0),(W1)}
the constants have the values

none = {}
univ = {(MO0),(M1),(M2),(W0),(W1)}
ident ={(MO0O,M0),(M1,M1),(M2,M2),(WO,W0),(W1,W1)}

Set Operators and Predicates

—

+ union

& intersection - operators
- difference i

in subset B

= equality — predicates
| = disequality

Example. Matt is a married man:
Matt in (Married & Man)

++

Relational Operators

arrow (cross product)
transpose

dot join

box join

transitive closure
reflexive-transitive closure
domain restriction

Image restriction

override

Arrow Product

P ->(
* pand g are two relations

* p -> @ isthe relation you get by taking every combination of a tuple from p and
a tuple from g and concatenating them (same as fl/at cross product)

Example.
Name = {(NO),(N1)} N = {(NO)}
Addr = {(D0),(D1)} D= {(D1)}
Book = {(BO)}

Name -> Addr = {(NO,DO),(N0,D1),(N1,D0),(N1,D1)}

Book -> Name -> Addr = {(B0,NO,D0),(BO,NO,D1),(BO,N1,D0),(BO,N1,D1)}
D ->N = {(D1,NO)}

D -> Name = {(D1,N0),(D1,N1)}

Transpose

~Pp
take the mirror image of the relation p,
i.e., reverse the order of atoms in each tuple

Example.
e p={(a0,al,a2,a3),(b0,b1,b2,b3)}
 ~p={(a3,a2,al1,a0),(b3,b2,b1,b0)}

How would you use ~ to express the parents relation if you already have the
children relation?

~children

10

Relational Composition (Join)

P-d

* pand g are two relations that are not both unary

* p.qisthe relation you get by taking
every combination of a tuple from p and a tuple from g and
adding their (dot) join, if it is defined

Note. The . operator is left-associative in Alloy:
p.q.r = (p.q).r

11

How to join tuples?

 Whatis the (dot) join of theses two tuples?
(24y...,a,) and (by,...,b,)

— If a, # b, then the join is undefined
— Ifa,=b,thenitis: (a;,...,a,1,bs,...,b,)

Example

— (a,b).(a,c,d) undefined
— (a,b).(b,c,d) = (a,c,d)

 Whatabout (a).(a)? Not defined !

t, .t, is not defined if t; and t, are both unary tuples

12

Examples

to maps a message to the name(s) it should be sent to
address maps names to addresses

address =
{(NO,D0),(NO,D1),(N1,D1),(N2,D3)}

to.address maps a message to the address(es) it
should be sent to

to.address =
{(M0,D0),(m0,D1),(M0,D3),(M1,D3)}

@

—

NO) | (ND) \(N2
@ @ ©3

—— address
—— to.address

12
®

13

Exercise

What's the result of these join applications?

{(a,b),(a,c),(c,c)}{(c)}
{(a)}.{(a,b),(a,c),(b,c)}
{(a,b)}.{(b),(a)}
{(a)}.{(a,b,c)}
{(a,b,c)}{(c,e),(c,d),(b,c)}
{(a,b)}.{(a,b,c)}
{(a,b,c,d)}.{(d,e,f),(d,a,b)}
{(b)}.{(b)}

0 NO A Wh e

14

Exercises

Given a relation addr of arity 4 that contains the tuple b->n->a->t when book b
maps name n to address a at time t, and given a specific book B and a time T:

— addr = {(B0,NO,D0,T0),(BO,NO,D1,T1),(BO,N1,D2,T0),(BO,N1,D2,T1),
(B1,N2,D3,T0), (B1,N2,D4,T1)
}

— T={(T1)} B ={(BO)}

The expression B.addr . T is the name-address mapping of book B at time T.
What is the value of B.addr . T?

When p is a binary relation and g is a ternary relation, what is the arity of the
relationp.q?

Join is not associative (i.e.,, (p.g).r andp.(qg.r) are notalways equivalent),
why ?

15

Example: Family Structure

abstract sig Person {
children: set Person,
siblings: set Person

sig Man, Woman extends Person {}

one sig Matt extends Person {}

sig Married in Person {
spouse: one Married

16

Example: Family Structure

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
one sig Matt extends Man {}

sig Married in Person { spouse: one Married }

 How would you use join to find Matt’s children or grandchildren ?

— Matt.children
— Matt.children.children

e What if we want to find all of Matt’s descendants?

We need the transitive closure of children

17

Example: Family Structure

abstract sig Person { children: set Person, siblings: set Person }

sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Every married person has a spouse and
everyone with a spouse is married

(all p: Married | some p.spouse) and
(all p: Person | some p.spouse implies p in Married)

One’s spouse can’t be one’s sibling

all p: Person | no p.spouse & p.siblings

no p: Person | some (p.spouse & p.siblings)
18

Example: Family Structure

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Every married person has a spouse and
everyone with a spouse is married

(all m : Married | some m.spouse) and
(all p : Person | some p.spouse => p in Married)

One’s spouse can’t be one’s sibling

no p : Married | p.spouse in p.siblings

19

Box Join

plq]

— Semantically identical to dot join, but takes its arguments in different order

plal = q.p
Example. Matt’s children or grandchildren?

— children[Matt]
— children.children[Matt]

Matt.children

(children.children)[Matt]
Matt.(children.children)

children[Matt.children]
(Matt.children).children

— children[children[Matt]]

20

Transitive Closure

Ap
— Intuitively, the transitive closure of a relationr : S -> Sis obtained by adding
to r any pairs of elements connected by r-chains

(S0,S1)
(S1,S2)
(S2,S3)
(S4,57) Ap
(S0,S2)
(S0,S3)
(S1,3)

— Formally, r is the smallest transitive relation of type S -> S that contains r
"r=pr 4+ r.r+r.r.r+r.r.r.r + ..

21

Example: Family Structure

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

e What if we want to find Matt’s ancestors or descendants ?

* How would you express the constraint

22

Example: Family Structure

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

e What if we want to find Matt’s descendants or ancestors?

— Matt.”children
— Matt.~(~children)
— (~children).Matt

* How would you express the constraint

ho p : Person | p in p.~(~children)

23

Domain and Image Restrictions

The restriction operators are used to restrict relations to a given domain or
Image

If s isasetand risarelation then

°* S <: r contains tuples of r starting with an elementin s
°* 1 :> s contains tuples of r ending with an elementin s

Example.
Man = {(M0),(M1),(M2),(M3)} Woman = {(W0),(W1)}

children = {{(W0,M1),(W0,W1),(M3,W0),(M2,M1)}

Woman <: children = {(W0,M1),(WO0,W1),{3 W0} M} = {(W0,M1),(WO,W1)}

children :> Man = {(W0,M1),fA0:WH, M3 W}, (M2,M1)} = {(WO0,M1),(M2,M1)}

24

Reflexive-transitive closure

Ar + (iden :> S) for r : S -> S

(S0,S1)
(S1,52) *p
(S2,53) (S1,83)
(54.55) (0,50

(S1,S1)

(S2,S2) .)
S = {S0,..55) (s3,83) | tden > S
)
)

(S4,S4
(S5,S5

*r is the smallest reflexive and transitive relation of type S -> S that contains r

25

Override

p ++ (
— p and g are two relations of the same type and arity > 1

— The result is like the union between p and g except that tuples of g can replace
tuples of p: you drop a tuple (a,...) in p if there is a tuple in g starting with a

D ++ @ p - (defdomain(g) <: p) + ¢

Example
— oldAddr = {(NO,DO0),(N1,D1),(N1,D2)}
— newAddr = {(N1,D4),(N3,D3)}
— oldAddr ++ newAddr = {(NO,D0),(N1,D4),(N3,D3)}

26

High

Low

Operator Precedence

<:

->

&

++

#

+ -

no some lone one set
= I= 1in !in

I not

&& and

=> 1implies else
<=> 1iff

|| or

let all no some 1lone

one

J\

S—

S—

relations

formulas

27

Parsing Conventions

All binary operators associate to the left
except for implication (=>, implies) which associates to the right

Examples
- X.y.Z isparsedas (x.y).z
— a&b&c isparsedas (a & b) & c

— p =>q =>r isparsedas p => (g => r)

28

Parsing Conventions

In an implication, an else clause is associated with its closest then clause

Example
— p =>qg =>r else s isparsedas p => (g => r else s)

The scope of a quantifier extends as far as possible to the right

Example
—all x : A| p&& gq=>r is parsed as
all x : A | (p & q => r)

29

Example: Family Structure

How would you express the constraint

abstract sig Person {
children: set Person
siblings: set Person

}

sig Man extends Person {}

sig Woman extends Person {}

one sig Matt extends Man {}

sig Married in Person {
spouse: one Married

}

30

Example: Family Structure

How would you express the constraint
“No one can have more than one father and mother ”?

abstract sig Person {

all p- Person | children: set Person

((lone (children.p & Man)) and | siblings: set persor

(lone (children.p & Woman))) sig Man extends Person {}
sig Woman extends Person {}
one sig Matt extends Man {}

Equivalently: sig Married in Person {

spouse: one Married

}

all p: Person |
((lone (Man <: children).p) and
(lone (Woman <: children).p))

31

Example: Family Structure

How would you express the constraint
“No one can have more than one father and mother ”?

abstract sig Person {

all p- Person | children: set Person

lone Childr‘en,p & Man and }siblings: set Person

lone children.p & Woman sig Man extends Person {}
sig Woman extends Person {}
one sig Matt extends Man {}

EqUivalently: sig Married in Person {

spouse: one Married

all p: Person |
lone (Man <: children).p and
lone (Woman <: children).p

32

High

Low

Operator Precedence

<:

->

&

++

#

+ -

no some lone one set
= I= 1in !in

I not

&& and

=> 1implies else
<=> 1iff

|| or

let all no some 1lone

one

J\

S—

S—

relations

formulas

33

Set Comprehension

{x:S | F}

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify
the set of people with the same parents as Matt?

34

Set Comprehension

{x:S | F}

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify
the set of people with the same parents as Matt?

{ q: Person | g.parents = Matt.parents }

35

Set Comprehension

{x:S | F}

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify
the set of people with the same parents as Matt and have no children?

{ q: Person | g.parents = Matt.parents }

36

Set Comprehension

{x:S | F}

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify
the set of people with the same parents as Matt and have no children?

{ gq: Person | g.parents = Matt.parents and no q.children }

37

Example: Family Structure

How would you express the constraint

Example: Family Structure

How would you express the constraint

all p: Person |
p.siblings = { q: Person | p.parents = g.parents } - p

Also
all p: Person |
p.siblings = { q: Person - p | p.parents = g.parents }

39

Let

You can factor expressions out:

let x = e | A
— Each occurrence of the variable x in A will be replaced by the expression e

Example.

40

Let

You can factor expressions out:

let x = e | A
— Each occurrence of the variable x in A will be replaced by the expression e

Example.

all p: Married |
let s = p.spouse |
(p in Man => s in Woman) and
(p in Woman => s in Man)

41

Let

You can factor expressions out:

let x = e { A1 .. An }
— Each occurrence of the variable x in A will be replaced by the expression e

Example.

all p: Married |
let s = p.spouse {
p in Man => s in Woman
p in Woman => s in Man

42

Exercise

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Write constraints stating the following:
1. Not all people married to each other have the same children
2. Siblings have the same father and the same mother

All p: Person | let q = p.siblings |
p.~children = g.~children

43

Exercise

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Write constraints stating the following:

1. Not all people married to each other have the same children

not all p: Married | p.children = p.spouse.children

2. Siblings have the same father and mother

44

Exercise

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Write constraints stating the following:

1. Not all people married to each other have the same children

2. Siblings have the same father and mother

all p: Person | all qg: p.siblings {
children.p & Man = children.q & Man
children.p & Woman = children.q & Woman

¥

45

Exercise

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}

sig Married in Person { spouse: one Married }

one sig Ann, Jane extends Woman {}

Write constraints stating the following:

. Jane is Ann’s mother

. Jane is married to Ann’s father
Ann's parents have one sibling each
Ann is Jane’s only daughter
Unmarried people can have children
Everybody is somebody’s child

v R wWN R

46

Acknowledgements

The family structure example is based on an example
by Daniel Jackson distributed with the Alloy Analyzer

	Slide 0: CS:5810 Formal Methods in Software Engineering
	Slide 1: Alloys Constraints
	Slide 2: Logical Operators
	Slide 3: Quantifiers
	Slide 4: Quantifiers
	Slide 5: Everything is a Relation in Alloy
	Slide 6: Predefined Set Constants
	Slide 7: Set Operators and Predicates
	Slide 8: Relational Operators
	Slide 9: Arrow Product
	Slide 10: Transpose
	Slide 11: Relational Composition (Join)
	Slide 12: How to join tuples?
	Slide 13: Examples
	Slide 14: Exercise
	Slide 15: Exercises
	Slide 16: Example: Family Structure
	Slide 17: Example: Family Structure
	Slide 18: Example: Family Structure
	Slide 19: Example: Family Structure
	Slide 20: Box Join
	Slide 21: Transitive Closure
	Slide 22: Example: Family Structure
	Slide 23: Example: Family Structure
	Slide 24: Domain and Image Restrictions
	Slide 25: Reflexive-transitive closure
	Slide 26: Override
	Slide 27: Operator Precedence
	Slide 28: Parsing Conventions
	Slide 29: Parsing Conventions
	Slide 30: Example: Family Structure
	Slide 31: Example: Family Structure
	Slide 32: Example: Family Structure
	Slide 33: Operator Precedence
	Slide 34: Set Comprehension
	Slide 35: Set Comprehension
	Slide 36: Set Comprehension
	Slide 37: Set Comprehension
	Slide 38: Example: Family Structure
	Slide 39: Example: Family Structure
	Slide 40: Let
	Slide 41: Let
	Slide 42: Let
	Slide 43: Exercise
	Slide 44: Exercise
	Slide 45: Exercise
	Slide 46: Exercise
	Slide 47: Acknowledgements

