
CS:5810 Formal Methods in Software Engineering

Introduction to Alloy 6

Part 2

Copyright 2001-25, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Created by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas
State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Alloys Constraints

• Signatures and fields respectively define:
classes (of atoms) and relations between them

• Alloy models can be refined further by adding formulas expressing
additional constraints over those classes and relations

• Several operators are available to express both logical and relational
constraints

1

Logical Operators

The usual logical operators are available, often in two forms:

 not _ ! _ (Boolean) negation

 _ and _ _ && _ conjunction

 _ or _ _ || _ disjunction

 _ implies _ _ => _ implication

 else _ alternative

 _ iff _ _ <=> _ equivalence

2

Quantifiers

Alloy includes a rich collection of quantifiers

all x : S | F states that F holds for every x in S

some x : S | F states that F holds for some x in S

no x : S | F states that F holds for no x in S

lone x : S | F states that F holds for at most one x in S

one x : S | F states that F holds for exactly one x in S

3

Quantifiers

Alloy includes a rich collection of quantifiers

all x : S | F (e.g., all m : Man | m in Person)

some x : S | F (e.g., some p : Person | p in Man)

no x : S | F (e.g., no p : Person | p in Man & Woman)

lone x : S | F (e.g., lone m : Man | m in Matt.children)

one x : S | F (e.g., one w : Woman | w in Matt.children)

4

Everything is a Relation in Alloy

There are no scalars

– We never speak directly about elements (or tuples) in relations

– Instead, we can use singleton unary relations:

 one sig Matt extends Man {}

Quantified variables always denote singletons

 all x : S | … x …

x = {t} for some element t of S

5

Predefined Set Constants

There are three predefined set constants in Alloy:
• none : empty set

• univ : universal set of all atoms

• ident : identity relation over all atoms

Example. For a model instance with just:
Man = {(M0),(M1),(M2)} Woman = {(W0),(W1)}

the constants have the values
 none = {}

 univ = {(M0),(M1),(M2),(W0),(W1)}

 ident ={(M0,M0),(M1,M1),(M2,M2),(W0,W0),(W1,W1)}

6

Set Operators and Predicates

_ + _ union

 _ & _ intersection

 _ - _ difference

 _ in _ subset

 _ = _ equality

 _ != _ disequality

Example. Matt is a married man:

 Matt in (Married & Man)

7

operators

predicates

Relational Operators

_ -> _ arrow (cross product)
~ _ transpose
_ . _ dot join
[] box join
^ _ transitive closure
* _ reflexive-transitive closure
_ <: _ domain restriction
_ :> _ image restriction
_ ++ _ override

8

Arrow Product

p -> q
• p and q are two relations

• p -> q is the relation you get by taking every combination of a tuple from p and
a tuple from q and concatenating them (same as flat cross product)

Example.
Name = {(N0),(N1)} N = {(N0)}

Addr = {(D0),(D1)} D = {(D1)}

Book = {(B0)}

Name -> Addr = {(N0,D0),(N0,D1),(N1,D0),(N1,D1)}

Book -> Name -> Addr = {(B0,N0,D0),(B0,N0,D1),(B0,N1,D0),(B0,N1,D1)}

D -> N = {(D1,N0)}

D -> Name = {(D1,N0),(D1,N1)}

9

Transpose

~ p
take the mirror image of the relation p,

i.e., reverse the order of atoms in each tuple

Example.
• p = {(a0,a1,a2,a3),(b0,b1,b2,b3)}

• ~p = {(a3,a2,a1,a0),(b3,b2,b1,b0)}

How would you use ~ to express the parents relation if you already have the
children relation?

~children

10

Relational Composition (Join)

p.q

• p and q are two relations that are not both unary

• p.q is the relation you get by taking
every combination of a tuple from p and a tuple from q and
adding their (dot) join, if it is defined

Note. The . operator is left-associative in Alloy:

 p.q.r = (p.q).r

11

How to join tuples?

• What is the (dot) join of theses two tuples?

(a1,...,am) and (b1,...,bn)

– If am ≠ b1 then the join is undefined
– If am = b1 then it is: (a1,...,am-1,b2,...,bn)

 Example

– (a,b).(a,c,d) undefined
– (a,b).(b,c,d) = (a,c,d)

• What about (a).(a)?

 t1 . t2 is not defined if t1 and t2 are both unary tuples

12

Not defined !

Examples

• to maps a message to the name(s) it should be sent to

• address maps names to addresses

to = {(M0,N0),(M0,N2),(M1,N2),(M2,N3)}

address =
 {(N0,D0),(N0,D1),(N1,D1),(N2,D3)}

 to.address maps a message to the address(es) it
should be sent to

to.address =
 {(M0,D0),(M0,D1),(M0,D3),(M1,D3)}

13

M2M1M0

N3N2N1N0

D3D1D0

to
address
to.address

Exercise

What’s the result of these join applications?

1. {(a,b),(a,c),(c,c)}.{(c)}

2. {(a)}.{(a,b),(a,c),(b,c)}

3. {(a,b)}.{(b),(a)}

4. {(a)}.{(a,b,c)}

5. {(a,b,c)}.{(c,e),(c,d),(b,c)}

6. {(a,b)}.{(a,b,c)}

7. {(a,b,c,d)}.{(d,e,f),(d,a,b)}

8. {(b)}.{(b)}

14

Exercises

1. Given a relation addr of arity 4 that contains the tuple b->n->a->t when book b
maps name n to address a at time t, and given a specific book B and a time T:

– addr = {(B0,N0,D0,T0),(B0,N0,D1,T1),(B0,N1,D2,T0),(B0,N1,D2,T1),
 (B1,N2,D3,T0), (B1,N2,D4,T1)
 }

– T = {(T1)} B = {(B0)}

2. The expression B.addr.T is the name-address mapping of book B at time T.
What is the value of B.addr.T?

3. When p is a binary relation and q is a ternary relation, what is the arity of the
relation p.q ?

4. Join is not associative (i.e., (p.q).r and p.(q.r) are not always equivalent),
why ?

15

Example: Family Structure
abstract sig Person {

 children: set Person,

 siblings: set Person

}

sig Man, Woman extends Person {}

one sig Matt extends Person {}

sig Married in Person {

 spouse: one Married

}

16

Example: Family Structure

• How would you use join to find Matt’s children or grandchildren ?

– Matt.children // Matt’s children

– Matt.children.children // Matt’s grandchildren

• What if we want to find all of Matt’s descendants?

We need the transitive closure of children

17

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
one sig Matt extends Man {}
sig Married in Person { spouse: one Married }

Example: Family Structure

Every married person has a spouse and
everyone with a spouse is married

(all p: Married | some p.spouse) and

(all p: Person | some p.spouse implies p in Married)

One’s spouse can’t be one’s sibling

all p: Person | no p.spouse & p.siblings
 no p: Person | some (p.spouse & p.siblings)

18

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Example: Family Structure

Every married person has a spouse and
everyone with a spouse is married

 (all m : Married | some m.spouse) and

 (all p : Person | some p.spouse => p in Married)

One’s spouse can’t be one’s sibling

 no p : Married | p.spouse in p.siblings

19

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Box Join

p[q]

– Semantically identical to dot join, but takes its arguments in different order

p[q] ≡ q.p

Example. Matt’s children or grandchildren?

– children[Matt] ≡ Matt.children

– children.children[Matt] ≡ (children.children)[Matt]
 ≡ Matt.(children.children)

– children[children[Matt]] ≡ children[Matt.children]
 ≡ (Matt.children).children

20

Transitive Closure

^ r
– Intuitively, the transitive closure of a relation r : S -> S is obtained by adding

to r any pairs of elements connected by r-chains

– Formally, ^r is the smallest transitive relation of type S -> S that contains r

^r = r + r.r + r.r.r + r.r.r.r + …

21

(S0,S1)

(S1,S2)

(S2,S3)

(S4,S7)

r

(S0,S1)

(S1,S2)

(S2,S3)

(S4,S7) ^r
(S0,S2)

(S0,S3)

(S1,S3)

Example: Family Structure

• What if we want to find Matt’s ancestors or descendants ?

• How would you express the constraint
“No one can be their own ancestor ”

22

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Example: Family Structure

• What if we want to find Matt’s descendants or ancestors?

– Matt.^children // Matt’s descendants

– Matt.^(~children) // Matt’s ancestors

– (^children).Matt // also Matt’s ancestors

• How would you express the constraint
“No one can be their own ancestor ”

no p : Person | p in p.^(~children)

23

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Domain and Image Restrictions
The restriction operators are used to restrict relations to a given domain or
image

If s is a set and r is a relation then
• s <: r contains tuples of r starting with an element in s

• r :> s contains tuples of r ending with an element in s

Example.
Man = {(M0),(M1),(M2),(M3)} Woman = {(W0),(W1)}

children = {(W0,M1),(W0,W1),(M3,W0),(M2,M1)}

// mother-child

Woman <: children = {(W0,M1),(W0,W1),(M3,W0),(M2,M1)} = {(W0,M1),(W0,W1)}

// parent-son

children :> Man = {(W0,M1),(W0,W1),(M3,W0),(M2,M1)} = {(W0,M1),(M2,M1)}

24

Reflexive-transitive closure

*r ≡ ^r + (iden :> S) for r : S -> S

25

(S0,S1)

(S1,S2)

(S2,S3)

(S4,S5)

r *r

(S0,S1)

(S1,S2)

(S2,S3)

(S4,S5)
(S0,S2)

(S0,S3)

(S1,S3)
(S0,S0)

(S1,S1)

(S2,S2)

(S3,S3)

(S4,S4)
(S5,S5)

^r

iden :> S

*r is the smallest reflexive and transitive relation of type S -> S that contains r

S = { S0, …, S5 }

Override

p ++ q

– p and q are two relations of the same type and arity > 1

– The result is like the union between p and q except that tuples of q can replace

tuples of p: you drop a tuple (a,…) in p if there is a tuple in q starting with a

p ++ q ≡ p – (defdomain(q) <: p) + q

Example
– oldAddr = {(N0,D0),(N1,D1),(N1,D2)}

– newAddr = {(N1,D4),(N3,D3)}

– oldAddr ++ newAddr = {(N0,D0),(N1,D4),(N3,D3)}

26

Operator Precedence
~ * ^

.

[]

<: :>

->

&

++

#

+ -

no some lone one set // multiplicities

= != in !in

! not

&& and

=> implies else

<=> iff

|| or

let all no some lone one // binders

27

Low

High

relations

formulas

Parsing Conventions

All binary operators associate to the left
except for implication (=>, implies) which associates to the right

Examples

– x.y.z is parsed as (x.y).z

– a & b & c is parsed as (a & b) & c

– p => q => r is parsed as p => (q => r)

28

Parsing Conventions

In an implication, an else clause is associated with its closest then clause

Example

– p => q => r else s is parsed as p => (q => r else s)

The scope of a quantifier extends as far as possible to the right

Example

– all x : A | p && q => r is parsed as
all x : A | (p && q => r)

29

Example: Family Structure

How would you express the constraint

“No one can have more than one father and mother ”?

30

abstract sig Person {
 children: set Person
 siblings: set Person
}
sig Man extends Person {}
sig Woman extends Person {}
one sig Matt extends Man {}
sig Married in Person {
 spouse: one Married
}

Example: Family Structure

How would you express the constraint

“No one can have more than one father and mother ”?

 all p: Person |
 ((lone (children.p & Man)) and
 (lone (children.p & Woman)))

Equivalently:

 all p: Person |
 ((lone (Man <: children).p) and
 (lone (Woman <: children).p))

31

abstract sig Person {
 children: set Person
 siblings: set Person
}
sig Man extends Person {}
sig Woman extends Person {}
one sig Matt extends Man {}
sig Married in Person {
 spouse: one Married
}

Example: Family Structure

How would you express the constraint

“No one can have more than one father and mother ”?

 all p: Person |
 lone children.p & Man and
 lone children.p & Woman

Equivalently:

 all p: Person |
 lone (Man <: children).p and
 lone (Woman <: children).p

32

abstract sig Person {
 children: set Person
 siblings: set Person
}
sig Man extends Person {}
sig Woman extends Person {}
one sig Matt extends Man {}
sig Married in Person {
 spouse: one Married
}

Operator Precedence
~ * ^

.

[]

<: :>

->

&

++

#

+ -

no some lone one set // multiplicities

= != in !in

! not

&& and

=> implies else

<=> iff

|| or

let all no some lone one // binders

33

Low

High

relations

formulas

Set Comprehension

{ x : S | F }

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify
the set of people with the same parents as Matt?

34

Set Comprehension

{ x : S | F }

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify
the set of people with the same parents as Matt?

 { q: Person | q.parents = Matt.parents }

35

Set Comprehension

{ x : S | F }

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify
the set of people with the same parents as Matt and have no children?

 { q: Person | q.parents = Matt.parents }

36

Set Comprehension

{ x : S | F }

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify
the set of people with the same parents as Matt and have no children?

 { q: Person | q.parents = Matt.parents and no q.children }

37

Example: Family Structure

How would you express the constraint

“A person P’s siblings are people, other than P, with the same parents as P”

38

Example: Family Structure

How would you express the constraint

“A person P’s siblings are people, other than P, with the same parents as P”

all p: Person |

 p.siblings = { q: Person | p.parents = q.parents } – p

Also

all p: Person |

 p.siblings = { q: Person - p | p.parents = q.parents }

39

Let

You can factor expressions out:

let x = e | A

– Each occurrence of the variable x in A will be replaced by the expression e

Example. Every married man has a wife, and every married woman has a husband

40

Let

You can factor expressions out:

let x = e | A

– Each occurrence of the variable x in A will be replaced by the expression e

Example. Every married man has a wife, and every married woman has a husband

 all p: Married |

 let s = p.spouse |

 (p in Man => s in Woman) and

 (p in Woman => s in Man)

41

Let

You can factor expressions out:

 let x = e { A1 … An }

– Each occurrence of the variable x in A will be replaced by the expression e

Example. Every married man has a wife, and every married woman has a husband

 all p: Married |

 let s = p.spouse {

 p in Man => s in Woman

 p in Woman => s in Man

 }

42

Exercise

43

Write constraints stating the following:

1. Not all people married to each other have the same children

2. Siblings have the same father and the same mother

All p: Person | let q = p.siblings |
 p.~children = q.~children

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Exercise

44

Write constraints stating the following:

1. Not all people married to each other have the same children

 not all p: Married | p.children = p.spouse.children

2. Siblings have the same father and mother

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Exercise

45

Write constraints stating the following:

1. Not all people married to each other have the same children

2. Siblings have the same father and mother

 all p: Person | all q: p.siblings {
 children.p & Man = children.q & Man
 children.p & Woman = children.q & Woman
 }

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Exercise

46

Write constraints stating the following:

1. Jane is Ann’s mother
2. Jane is married to Ann’s father
3. Ann's parents have one sibling each
4. Ann is Jane’s only daughter
5. Unmarried people can have children
6. Everybody is somebody’s child

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }
one sig Ann, Jane extends Woman {}

Acknowledgements

47

The family structure example is based on an example
by Daniel Jackson distributed with the Alloy Analyzer

	Slide 0: CS:5810 Formal Methods in Software Engineering
	Slide 1: Alloys Constraints
	Slide 2: Logical Operators
	Slide 3: Quantifiers
	Slide 4: Quantifiers
	Slide 5: Everything is a Relation in Alloy
	Slide 6: Predefined Set Constants
	Slide 7: Set Operators and Predicates
	Slide 8: Relational Operators
	Slide 9: Arrow Product
	Slide 10: Transpose
	Slide 11: Relational Composition (Join)
	Slide 12: How to join tuples?
	Slide 13: Examples
	Slide 14: Exercise
	Slide 15: Exercises
	Slide 16: Example: Family Structure
	Slide 17: Example: Family Structure
	Slide 18: Example: Family Structure
	Slide 19: Example: Family Structure
	Slide 20: Box Join
	Slide 21: Transitive Closure
	Slide 22: Example: Family Structure
	Slide 23: Example: Family Structure
	Slide 24: Domain and Image Restrictions
	Slide 25: Reflexive-transitive closure
	Slide 26: Override
	Slide 27: Operator Precedence
	Slide 28: Parsing Conventions
	Slide 29: Parsing Conventions
	Slide 30: Example: Family Structure
	Slide 31: Example: Family Structure
	Slide 32: Example: Family Structure
	Slide 33: Operator Precedence
	Slide 34: Set Comprehension
	Slide 35: Set Comprehension
	Slide 36: Set Comprehension
	Slide 37: Set Comprehension
	Slide 38: Example: Family Structure
	Slide 39: Example: Family Structure
	Slide 40: Let
	Slide 41: Let
	Slide 42: Let
	Slide 43: Exercise
	Slide 44: Exercise
	Slide 45: Exercise
	Slide 46: Exercise
	Slide 47: Acknowledgements

