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Alloys Constraints

e Signatures and fields respectively define:
classes (of atoms) and relations between them

* Alloy models can be refined further by adding formulas expressing
additional constraints over those classes and relations

* Several operators are available to express both logical and relational
constraints



Logical Operators

The usual logical operators are available, often in two forms:

not ! (Boolean) negation
and && conjunction
or | | disjunction
implies => implication

else alternative

iff <=> equivalence



Quantifiers

Alloy includes a rich collection of quantifiers
all x : S | F states that F holds for every x in S
some X : S | F  states that F holds for some xin S
nox : S| F states that F holds for no xin S
lone x : S | F statesthatF holds for at most one xin S

one x : S | F states that F holds for exactly one xin S



Quantifiers

Alloy includes a rich collection of quantifiers
all x : S | F (e.g., all m : Man | m in Person)
some X : S | F (eg, some p : Person | p in Man)
no x : S | F (e.g., no p : Person | p in Man & Woman)
lone x : S | F (e.g., lone m : Man | m in Matt.children)

one x : S | F (e.g., one w : Woman | w in Matt.children)



Everything is a Relation in Alloy

There are no scalars
— We never speak directly about elements (or tuples) in relations
— Instead, we can use singleton unary relations:
one sig Matt extends Man {}

Quantified variables always denote singletons
all x : S | .. x ..

x = {t} forsomeelementt of S



Predefined Set Constants

There are three predefined set constants in Alloy:

°* hone . empty set
* univ . universal set of all atoms
e ident . identity relation over all atoms

Example. For a model instance with just:
Man = {(M0),(M1),(M2)} Woman = {(WO0),(W1)}
the constants have the values

none = {}
univ = {(MO0),(M1),(M2),(W0),(W1)}
ident ={(MO0O,M0),(M1,M1),(M2,M2),(WO,W0),(W1,W1)}



Set Operators and Predicates

—

+ union

& intersection - operators
- difference i

in subset B

= equality — predicates
| = disequality

Example. Matt is a married man:
Matt in (Married & Man)



++

Relational Operators

arrow (cross product)
transpose

dot join

box join

transitive closure
reflexive-transitive closure
domain restriction

Image restriction

override



Arrow Product

P ->(
* pand g are two relations

* p -> @ isthe relation you get by taking every combination of a tuple from p and
a tuple from g and concatenating them (same as fl/at cross product)

Example.
Name = {(NO),(N1)} N = {(NO)}
Addr = {(D0),(D1)} D= {(D1)}
Book = {(BO)}

Name -> Addr = {(NO,DO),(N0,D1),(N1,D0),(N1,D1)}

Book -> Name -> Addr = {(B0,NO,D0),(BO,NO,D1),(BO,N1,D0),(BO,N1,D1)}
D ->N = {(D1,NO)}

D -> Name = {(D1,N0),(D1,N1)}



Transpose

~Pp
take the mirror image of the relation p,
i.e., reverse the order of atoms in each tuple

Example.
e p={(a0,al,a2,a3),(b0,b1,b2,b3)}
 ~p={(a3,a2,al1,a0),(b3,b2,b1,b0)}

How would you use ~ to express the parents relation if you already have the
children relation?

~children
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Relational Composition (Join)

P-d

* pand g are two relations that are not both unary

* p.qisthe relation you get by taking
every combination of a tuple from p and a tuple from g and
adding their (dot) join, if it is defined

Note. The . operator is left-associative in Alloy:
p.q.r = (p.q).r
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How to join tuples?

 Whatis the (dot) join of theses two tuples?
(24y...,a,) and (by,...,b,)

— If a, # b, then the join is undefined
— Ifa,=b,thenitis: (a;,...,a,1,bs,...,b,)

Example

— (a,b).(a,c,d) undefined
— (a,b).(b,c,d) = (a,c,d)

 Whatabout (a).(a)? Not defined !

t, .t, is not defined if t; and t, are both unary tuples
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Examples

to maps a message to the name(s) it should be sent to
address maps names to addresses

address =
{(NO,D0),(NO,D1),(N1,D1),(N2,D3)}

to.address maps a message to the address(es) it
should be sent to

to.address =
{(M0,D0),(m0,D1),(M0,D3),(M1,D3)}

@

—

NO) | (ND) \(N2
@ @ ©3

—— address
—— to.address

12
®
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Exercise

What's the result of these join applications?

{(a,b),(a,c),(c,c)}{(c)}
{(a)}.{(a,b),(a,c),(b,c)}
{(a,b)}.{(b),(a)}
{(a)}.{(a,b,c)}
{(a,b,c)}{(c,e),(c,d),(b,c)}
{(a,b)}.{(a,b,c)}
{(a,b,c,d)}.{(d,e,f),(d,a,b)}
{(b)}.{(b)}

0 NO A Wh e
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Exercises

Given a relation addr of arity 4 that contains the tuple b->n->a->t when book b
maps name n to address a at time t, and given a specific book B and a time T:

— addr = {(B0,NO,D0,T0),(BO,NO,D1,T1),(BO,N1,D2,T0),(BO,N1,D2,T1),
(B1,N2,D3,T0), (B1,N2,D4,T1)
}

— T={(T1)} B ={(BO)}

The expression B.addr . T is the name-address mapping of book B at time T.
What is the value of B.addr . T?

When p is a binary relation and g is a ternary relation, what is the arity of the
relationp.q?

Join is not associative (i.e.,, (p.g).r andp.(qg.r) are notalways equivalent),
why ?
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Example: Family Structure

abstract sig Person {
children: set Person,
siblings: set Person

sig Man, Woman extends Person {}

one sig Matt extends Person {}

sig Married in Person {
spouse: one Married
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Example: Family Structure

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
one sig Matt extends Man {}

sig Married in Person { spouse: one Married }

 How would you use join to find Matt’s children or grandchildren ?

— Matt.children
— Matt.children.children

e What if we want to find all of Matt’s descendants?

We need the transitive closure of children

17



Example: Family Structure

abstract sig Person { children: set Person, siblings: set Person }

sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Every married person has a spouse and
everyone with a spouse is married

(all p: Married | some p.spouse) and
(all p: Person | some p.spouse implies p in Married)

One’s spouse can’t be one’s sibling

all p: Person | no p.spouse & p.siblings

no p: Person | some (p.spouse & p.siblings)
18



Example: Family Structure

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Every married person has a spouse and
everyone with a spouse is married

(all m : Married | some m.spouse) and
(all p : Person | some p.spouse => p in Married)

One’s spouse can’t be one’s sibling

no p : Married | p.spouse in p.siblings
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Box Join

plq]

— Semantically identical to dot join, but takes its arguments in different order

plal = q.p
Example. Matt’s children or grandchildren?

— children[Matt]
— children.children[Matt]

Matt.children

(children.children)[Matt]
Matt.(children.children)

children[Matt.children]
(Matt.children).children

— children[children[Matt]]

20



Transitive Closure

Ap
— Intuitively, the transitive closure of a relationr : S -> Sis obtained by adding
to r any pairs of elements connected by r-chains

(S0,S1)
(S1,S2)
(S2,S3)
(S4,57)  Ap
(S0,S2)
(S0,S3)
(S1,3)

— Formally, r is the smallest transitive relation of type S -> S that contains r
"r=pr 4+ r.r+r.r.r+r.r.r.r + ..
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Example: Family Structure

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

e What if we want to find Matt’s ancestors or descendants ?

* How would you express the constraint

22



Example: Family Structure

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

e What if we want to find Matt’s descendants or ancestors?

— Matt.”children
— Matt.~(~children)
— (~children).Matt

* How would you express the constraint

ho p : Person | p in p.~(~children)
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Domain and Image Restrictions

The restriction operators are used to restrict relations to a given domain or
Image

If s isasetand risarelation then

°* S <: r contains tuples of r starting with an elementin s
°* 1 :> s contains tuples of r ending with an elementin s

Example.
Man = {(M0),(M1),(M2),(M3)}  Woman = {(W0),(W1)}

children = {{(W0,M1),(W0,W1),(M3,W0),(M2,M1)}

Woman <: children = {(W0,M1),(WO0,W1),{3 W0} M} = {(W0,M1),(WO,W1)}

children :> Man = {(W0,M1),fA0:WH, M3 W}, (M2,M1)} = {(WO0,M1),(M2,M1)}
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Reflexive-transitive closure

Ar + (iden :> S) for r : S -> S

(S0,S1)
(S1,52) *p
(S2,53) (S1,83)
(54.55) (0,50

(S1,S1)

(S2,S2) . )
S = {S0,..55) (s3,83) | tden > S
)
)

(S4,S4
(S5,S5

*r is the smallest reflexive and transitive relation of type S -> S that contains r
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Override

p ++ (
— p and g are two relations of the same type and arity > 1

— The result is like the union between p and g except that tuples of g can replace
tuples of p: you drop a tuple (a,...) in p if there is a tuple in g starting with a

D ++ @ p - (defdomain(g) <: p) + ¢

Example
— oldAddr = {(NO,DO0),(N1,D1),(N1,D2)}
— newAddr = {(N1,D4),(N3,D3)}
— oldAddr ++ newAddr = {(NO,D0),(N1,D4),(N3,D3)}
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High

Low

Operator Precedence

<:

->

&

++

#

+ -

no some lone one set
= I= 1in !in

I not

&& and

=> 1implies else
<=> 1iff

|| or

let all no some 1lone

one

J\

S—

S—

relations

formulas
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Parsing Conventions

All binary operators associate to the left
except for implication (=>, implies) which associates to the right

Examples
- X.y.Z isparsedas  (x.y).z
— a&b&c isparsedas (a & b) & c

— p =>q =>r isparsedas p => (g => r)
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Parsing Conventions

In an implication, an else clause is associated with its closest then clause

Example
— p =>qg =>r else s isparsedas p => (g => r else s)

The scope of a quantifier extends as far as possible to the right

Example
—all x : A| p&& gq=>r is parsed as
all x : A | (p & q => r)
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Example: Family Structure

How would you express the constraint

abstract sig Person {
children: set Person
siblings: set Person

}

sig Man extends Person {}

sig Woman extends Person {}

one sig Matt extends Man {}

sig Married in Person {
spouse: one Married

}
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Example: Family Structure

How would you express the constraint
“No one can have more than one father and mother ”?

abstract sig Person {

all p- Person | children: set Person

((lone (children.p & Man)) and | siblings: set persor

(lone (children.p & Woman))) sig Man extends Person {}
sig Woman extends Person {}
one sig Matt extends Man {}

Equivalently: sig Married in Person {

spouse: one Married

}

all p: Person |
((lone (Man <: children).p) and
(lone (Woman <: children).p))
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Example: Family Structure

How would you express the constraint
“No one can have more than one father and mother ”?

abstract sig Person {

all p- Person | children: set Person

lone Childr‘en,p & Man and }siblings: set Person

lone children.p & Woman sig Man extends Person {}
sig Woman extends Person {}
one sig Matt extends Man {}

EqUivalently: sig Married in Person {

spouse: one Married

all p: Person |
lone (Man <: children).p and
lone (Woman <: children).p
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High

Low

Operator Precedence

<:

->

&

++

#

+ -

no some lone one set
= I= 1in !in

I not

&& and

=> 1implies else
<=> 1iff

|| or

let all no some 1lone

one

J\

S—

S—

relations

formulas
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Set Comprehension

{x:S | F}

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify
the set of people with the same parents as Matt?
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Set Comprehension

{x:S | F}

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify
the set of people with the same parents as Matt?

{ q: Person | g.parents = Matt.parents }

35



Set Comprehension

{x:S | F}

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify
the set of people with the same parents as Matt and have no children?

{ q: Person | g.parents = Matt.parents }

36



Set Comprehension

{x:S | F}

The set of values drawn from set S for which F holds

Assuming Person had a parents field, how would use comprehensions to specify
the set of people with the same parents as Matt and have no children?

{ gq: Person | g.parents = Matt.parents and no q.children }

37



Example: Family Structure

How would you express the constraint



Example: Family Structure

How would you express the constraint

all p: Person |
p.siblings = { q: Person | p.parents = g.parents } - p

Also
all p: Person |
p.siblings = { q: Person - p | p.parents = g.parents }
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Let

You can factor expressions out:

let x = e | A
— Each occurrence of the variable x in A will be replaced by the expression e

Example.

40



Let

You can factor expressions out:

let x = e | A
— Each occurrence of the variable x in A will be replaced by the expression e

Example.

all p: Married |
let s = p.spouse |
(p in Man => s in Woman) and
(p in Woman => s in Man)
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Let

You can factor expressions out:

let x = e { A1 .. An }
— Each occurrence of the variable x in A will be replaced by the expression e

Example.

all p: Married |
let s = p.spouse {
p in Man => s in Woman
p in Woman => s in Man

42



Exercise

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Write constraints stating the following:
1. Not all people married to each other have the same children
2. Siblings have the same father and the same mother

All p: Person | let q = p.siblings |
p.~children = g.~children
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Exercise

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Write constraints stating the following:

1. Not all people married to each other have the same children

not all p: Married | p.children = p.spouse.children

2. Siblings have the same father and mother
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Exercise

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}
sig Married in Person { spouse: one Married }

Write constraints stating the following:

1. Not all people married to each other have the same children

2. Siblings have the same father and mother

all p: Person | all qg: p.siblings {
children.p & Man = children.q & Man
children.p & Woman = children.q & Woman

¥
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Exercise

abstract sig Person { children: set Person, siblings: set Person }
sig Man, Woman extends Person {}

sig Married in Person { spouse: one Married }

one sig Ann, Jane extends Woman {}

Write constraints stating the following:

. Jane is Ann’s mother

. Jane is married to Ann’s father
Ann's parents have one sibling each
Ann is Jane’s only daughter
Unmarried people can have children
Everybody is somebody’s child

v R wWN R
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