CS:5810 Formal Methods in Software Engineering

Introduction to Alloy 6
Part 1

Copyright 2001-25, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.

Created by Cesare Tinelli and Laurence Pilard at the University of lowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas
State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Outline

* Introduction to basic Alloy constructs using a simple example of a static
model
— How to define sets, subsets, relations with multiplicity constraints

— How to use Alloy’s quantifiers and predicate forms

e Basic use of the Alloy Analyzer (AA)
— Loading, compiling, and analyzing a simple Alloy specification
— Adjusting basic tool parameters

— Using the visualization tool to view instances of models

Roadmap

Alloy: Rationale and Use Strategies
— What types of systems have been modeled with Alloy
— What types of questions can AA answer

— What is the purpose of each of the sections in an Alloy specification

Alloy Specifications
— Parameterized conditionals
— Indexed relations
— Graphical representations of Alloy models

— More complex examples

Alloy — Why was it created?

Lightweight

relatively small and easy to use, and capable of expressing common properties
tersely and naturally

Precise

having a simple and uniform mathematical semantics

Tractable

amenable to efficient and fully automated semantic analysis (within scope limits)

Alloy — Comparison
UML

— Has similarities (graphical notation, OCL constraints) but it is neither lightweight,
nor precise

— UML includes many modeling notions omitted from Alloy (use-cases, state-
charts, code architecture specs)

— Alloy’s diagrams and relational navigation are inspired by UML

— Precise, but intractable. Stylized typography makes it harder to work with
— Z is more expressive than Alloy, but more complicated

— Alloy’s set-based semantics is inspired by Z

Alloy — What is it used for?

Alloy is a textual modeling language aimed at expressing:

structural and behavioral properties of software systems

It is not meant for modeling code architecture
(a la class diagrams in UML)

But there may be a close relationship between the Alloy specification
and an implementation in an OO language

Example Applications

The Alloy 6 distribution comes with several example models
that together illustrate the use of Alloy’s constructs

Examples
— Specification of a distributed spanning tree
— Model of a generic file system
— Model of a generic file synchronizer
— Tower of Hanoi model

Alloy in General

Alloy is general enough that it can model
— any (finite) domain of individuals and

— any relations between them

We will then start with a few simple examples
that are not necessarily about about software

Example: Family Structure

We want to ...

Model parent/child relationships as primitive relations
Model spousal relationships as primitive relations
Model relationships such as “siblings” as derived relations

Enforce certain biological constraints via 15t-order constraints
(e.g., people have only one biological mother)

Enforce certain social constraints via 1t-order constraints
(e.g., a wife isn’t a sibling)

Confirm or refute the existence of certain derived relationships
(e.g., no one has a sister who is also their wife)

Example: Address Book

An address book for an email client that maintains
a mapping from names to addresses

FriendBook

Ted -> ted@gmail.com
Ryan -> ryan@hotmail.com

WorkBook

Pilard -> pilard@uiowa.edu
Ryan -> ryan@uiowa.edu

10

Atoms and Relations

In Alloy, everything is built from atoms and relations

An atom is a primitive entity that is
— indivisible: it cannot be broken down into smaller parts
— immutable: it does not change over time
— uninterpreted: it does not have any built-in properties
(the way numbers do, for example)

A relation is a structure that relates atoms
* |tisasetof tuples of the same type

11

Atoms and Relations: Examples

* Unary relations: a set of names, a set of addresses and a set of books

* A binary relation from names to addresses

 Aternary relation from books to nname to addresses

12

Relations

Size of a relation: the number of tuples in the relation

Arity of a relation: the length of the tuples in the relation

relations with arity 1, 2, and 3 are said to be unary, binary, and ternary relations

Examples

— relation of arity 1 and size 1: myName ={(NO) }
— relation of arity 2 and size 3: address ={ (N0,DO), (N1,D1), (N2,D1) }

13

Main Components of Alloy Models

Signatures and Fields
Predicates and Functions
Facts

Assertions

Commands and scopes

14

Signatures and Fields

Signatures

— Describe, as sets, classes of entities we want to reason about
— Sets defined by signatures are fixed (we will see how to model dynamic aspects later)

Fields
— Define relations between signatures

Simple constraints

— Multiplicities on signatures
— Multiplicities on relations

15

Signatures

* Asignature introduces a set of atoms (a unary relation over atoms)

e The declaration

sig A {}
introduces a set named A

* Asignature can be declared as an extension of another
sig Al extends A {}
introduces a set name Al thatis a subset of A

16

Signatures

sig A {) —
sig B {} AD
sig Al extends A {}

sig A2 extends A {} B

* Al and A2 are extensions of A

* Asignature declared independently of any other one is a top-level
signature, e.g., A and B above

e Extensions of the same signature are mutually disjoint, as are top-
level signatures

Signatures

abstract sig A {} Al | A2
sig B {} A3
sig Al extends A {}
sig A2 extends A {}

 An abstract signature has no elements except those belonging to
its extensions or subsets

* All extensions of an abstract signature A form a partition of A
* Asignature can be introduced as a subset of another
sig A3 in A {}

18

Example: Family Structure

Alloy Model

abstract sig Person {}

sig Man extends Person {}
sig Woman extends Person {}
sig Married in Person {}

Man Woman

Marr|ed

Person

Graphical Representation

Married
lin
Person
extends extends
Man Woman

19

Model Instances

The Alloy Analyzer will generate instances of models so that we can check if they match our intentions.
Which of the following are instances of our current model?

XP;rson = {(P0), (P1), (P2) } xlj/f‘erson ={(P0), (P1) }
abstract sig Person {} an={(P1), (P2)} an = {(PO) }

sig Man extends Person {} Married = { } Married = { (P1) }
sig woman extends Person {} Woman ={ (P0), (P1) } Woman ={ }
sig Married in Person {}

M Person = { (P0), (P1), (P2) } (Person={(P0),(P1),(P2),(P3)} (Person = {(P0O), (P1) }
Man = { (P1), (P2) } Man = {(PO0), (P1), (P2), (P3) } Man = { (PO) }
Married = { } Married = { (P2), (P3) } Married = { (P1), (PO) }

Woman = { (P0) } Woman ={ } Woman ={ (P1) }

Fields

Relations are declared as fields of signatures

— Writing
sig A {f: e}

introduces a relation ¥ of type A x e,
where e is an expression denoting a product of signatures

Examples (with signatures A, B, C)

— Binary Relation:
sig A { f1: B }

— Ternary Relation:
sig A { f2: B -> C }

21

Example Signatures and Fields

Family Structure:

abstract sig Person {
children: Person,
siblings: Person

¥

sig Man, Woman extends Person {}

sig Married in Person {
spouse: Married

¥

Fields

22

Example: Family Structure

Alloy Model with siblings

abstract sig Person {
siblings: Person

}

sig Man extends Person {}
sig Woman extends Person {}
sig Married in Person {}

siblings is a binary relation
it is a subset of Person x Person

Example instance

Person ={ (PO), (P1) }
Man = { (PO) }
Married = { }
Woman ={(P1) }

siblings = { (PO,P1), (P1,P0) }

Intuition: PO and P1 are siblings

23

Multiplicities

Allow us to constrain the sizes of sets

— A multiplicity keyword placed before a signature declaration constraints
the number of elements in the signature

m sig A {}

— We can also make multiplicities constraints on fields
sig A {f: m e}
sig A {f: el m -> n e2}

There are four multiplicities m:

set :any number one :exactly one
some :one or more lone :zeroorone

24

Multiplicities: Examples

* Afile system in which each directory contains any number of objects, and each alias
points to exactly one object

abstract sig Object {}

sig Folder extends Object { contents: set Object }
sig File extends Object {}

sig Alias in File { to: one Object }

* The default multiplicity for fields is one, so:

sig A {f: e}

are equivalent

and sig A {f: one e}

redundant

25

Cardinality Constraints

Multiplicities can also be applied to expressions denoting
relations

— some e . e 1s non-empty
—Nno e : e l1s empty
— lone e . e has at most one tuple

—onhe e . e has exactly one tuple

26

Multiplicities: Examples

Without multiplicity:
A set of colors, each of which is a red, yellow or green color

abstract sig Color {}
sig Red, Yellow, Green extends Color {}

(can have more than one red, one yellow and one green color)

With multiplicity:

An enumeration of colors .
abbreviation

abstract sig Color {}

one sig Red, Yellow, Green extends Color {} } enum Color {Red, Yellow, Green}

(exactly one red, one yellow and one green color)

27

Multiplicities: Examples

* An address book maps names to addresses
* In each book

— there is at most one address per name

— an address is associated to at least one name

sig Name, Addr {}
sig AddressBook {
addr: Name some -> lone Addr

28

Multiplicities: Examples

* A collection of weather forecasts, each of which has a field weather associating
every city with exactly one weather condition

sig Forecast { weather: City -> one Weather }
sig City {}

abstract sig Weather {}

one sig Rainy, Sunny, Cloudy extends Weather {}

* |nstance

City = { (lowa City), (Chicago) }

Rainy ={ (rainy) }

Sunny = { (sunny) }

Cloudy = { (cloudy) }

Forecast = { (fc1), (fc2) }

weather = { (fcl, lowa City, rainy), (fc1, Chicago, rainy), (fc2, lowa City, rainy), (fc2, Chicago, sunny) }

29

Multiplicities and Binary Relations

esig S { f: lone T }

— says that, for each element s of S, ¥ maps s to at most one valuein T

* Potential instances of f: Conventional name: partial function

Aost—tt X ost—t1 d st 11 X st— 11
52 7Z 12 s2— 12 2 12 52>/<i 12
s3 /T3 s3 / 13 s3 13 s3 13
s4 t4 s4 —— 14 s4 t4 s4 —— 14

Multiplicities and Binary Relations

esig S { f: one T }

— says that, for each element s of S, ¥ maps s to exactly one valuein T

* Potential instances of f: Conventional name: total function
A sl —— 11 x sl—— t1 x sl t1 x sl — 11
s2 d 12 s2—— 12 s2 12 s2< $2
s3 713 s3 13 s3 13 s3 13

s4 t4 s4 — 14 s4 t4 s4 —— 14

Multiplicities and Ternary Relations

esig S { f: T ->oneV }

— For each element s of S, over the triples that start with s:
+ maps each T-element to exactly one V-element

e Potential instances of f:

/\./ﬂ*vl 7 11— c./n—»u x/
si 12 7ZV2 51/1'2 7ZV2 51/71'2 —~ ve si

13 v3
/ 52§f3/VB <2 13 v3

4 v4 v4

t4 v4

t1— vl
12 v2
t3 v3
14— v4

32

Multiplicities and Ternary Relations

esig S { f: T lone -> V }
— For each element s of S, over the triples that start with s:
 maps at most one T-element to the same V-element

e Potential instances of f:

7. Atl— vl x t1 — v1 C./ﬂ—’ﬂ X/ﬂ—’vl
leva — V2 s1 12 7Zv2 s1/>1'2~->v2 51/1'2\\ v2
+3 \V3 S 13 /v3 <2 13 v3 <2 t37/*v3
+4 va t47 v4 t4 v4 t4 v4

Multiplicities and Relations

e Other kinds of relational structures can be specified using multiplicities

 Examples:
—sig S { f: some T } total relation
—sig S { f: set T } partial relation

—sig S { f: T set -> set V }
—sig S { f: T one ->V }

34

Example: Family Structure

* How would you use multiplicities to define the children relation?
sig Person { children: set Person }

— Intuition: each person has zero or more children

* How would you use multiplicities to define the spouse relation?

sig Married { spouse: one Married }

— Intuition: each married person has exactly one spouse

35

Summarizing

Alloy Model

abstract sig Person {
children: set Person,
siblings: set Person

}

sig Man, Woman extends Person {}

sig Married in Person {
spouse: one Married

}

36

Exercises

Start the Alloy Analyzer

Load file family-1.als from the Resources section of the course
website

Execute it

Analyze the model instance

Look at the generated instance

Does it look correct?

What, if anything, would you change about it?

Instance found:

Person = {Man0®,Manl,Man2} }
Man = {Man®,Manl,Man2}

Woman = {}

Married = {Man0®,Manl,Man2} ;

Model Instance

abstract sig Person {
children: set Person,
siblings: set Person

sig Man, wWoman extends Person {}
sig Married in Person {
spouse: one Married

children = { (Man®,Man0®), (Man®,Manl), (Manl,Man0®), (Man2,Manl),

(Man2,Man2) }

siblings = { (Man®,Man0®), (Man®,Manl), (Manl,Man®), (Manl,Man2),

(Man2,Man2) }

spouse = { (Manl,Man0®), (Man®,Man2), (Man2,Man0®) }

38

Instance found:

Person =
Man = {M
Woman =
Married

children

siblings

spouse =

{Man®,Manl,Man2}
an®,Manl,Man2}

{}
= {Man0®,Manl,Man2}

No Women?

abstract sig Person {
children: set Person,
siblings: set Person
}
sig Man, woman extends Person {}
sig Married in Person {
spouse: one Married
}

= { (Man®,Man0®), (Man®,Manl), (Manl,Man®), (Man2,Manl),

(Man2,Man2) }

= { (Man®,Man®), (Man®,Manl), (Manl,Man®), (Manl,Man2),

(Man2,Man2) }

{ (Manl,Man®), (Man®,Man2), (Man2,Man0) }

39

Man is his own child ?

Instance found:

Person = {Man0®,Manl,Man2}
Man = {Man®,Manl,Man2}

Woman = {}
Married = {Man0®,Manl,Man2}

children = { (Man®,Man0®), (Man®,Manl), (Manl,Man0®), (Man2,Manl),
(Man2,Man2) }

siblings = { (Man®,Man0®), (Man®,Manl), (Manl,Man®), (Manl,Man2),
(Man2,Man2) }

spouse = { (Manl,Man0®), (Man®,Man2), (Man2,Man®) }

Instance found:

Person = {Man0®,Manl,Man2} }
Man = {Man®,Manl,Man2}

Woman = {}

Married = {Man0®,Manl,Man2} ;

Multiple Fathers?

abstract sig Person {
children: set Person,
siblings: set Person

sig Man, wWoman extends Person {}
sig Married in Person {
spouse: one Married

children = { (Man®,Man0®), (Man®,Manl), (Manl,Man0®), (Man2,Manl),

(Man2,Man2) }

siblings = { (Man®,Man0®), (Man®,Manl), (Manl,Man®), (Manl,Man2),

(Man2,Man2) }

spouse = { (Manl,Man0®), (Man®,Man2), (Man2,Man0®) }

41

Instance found:

Person
Man
Woman
Married

{M

children

siblings

spouse

Own-Siblings?

{Man®,Manl,Man2}
an®,Manl,Man2}

{}

{Man®,Manl,Man2}

abstract sig Person {
children: set Person,
siblings: set Person
}
sig Man, wWoman extends Person {}
sig Married in Person {
spouse: one Married
}

(Man2,Man2) }

(Man2,Man2) }

{ (Manl1,Man®), (Man®,Man2), (Man2,Man0)

{ (Man®,Man®), (Man®,Manl), (Manl,Man®), (Man2,Manl),

{ (Man®,Man®), (Man®,Manl), (Manl,Man®), (Manl,Man2),

}

42

Instance found:

Person =
Woman = {
Married =
children

siblings

spouse =

{Man®,Manl,Man2}
Man = {Man®,Manl,Man2}

}

{

Asymmetric Siblings?

{Man®,Manl,Man2}

{ (Man®,Man®), (Man®,Manl), (Manl,Man®), (Man2,Manl),

(Man2,Man2) }

{ (Man®,Man®), (Man®,Manl), (Manl,Man®), (Manl,Man2),

(Man2,Man2) }

(Manl,Man®), (Man®,Man2), (Man2,Man0) }

No (Man2,Manl)?

Child and Sibling?

Instance found:

Person = {Man0®,Manl,Man2}
Man = {Man®,Manl,Man2}

Woman = {}
Married = {Man0®,Manl,Man2}

children = { (Man®,Man0®), (Man®,Manl), (Manl,Man®), (Man2,Manl),
(Man2,Man2) }

siblings = { (Man®,Man0®), (Man®,Manl), (Manl,Man®), (Manl,Man2),
(Man2,Man2) }

spouse = { (Manl,Man0®), (Man®,Man2), (Man2,Man®) }

Instance found:

Person =
Man =
Woman = {
Married =

children

siblings

spouse =

{Man®,Manl,Man2}
{Man®,Manl,Man2}

}

{

Asymmetric Marriage?

{Man®,Manl,Man2}

{ (Man®,Man®), (Man®,Manl), (Manl,Man®), (Man2,Manl),

(Man2,Man2) }

{ (Man®,Man®), (Man®,Manl), (Manl,Man®), (Manl,Man2),

(Man2,Man2) }

(Manl,Man®), (Man®,Man2), (Man2,Man®) }

where is (Man®,Manl)?

Model Weaknesses

e The model is underconstrained
— It doesn’t fully match our domain knowledge
— We can add constraints to enrich the model

* Under-constrained models are common early on
in the development process

— The Alloy Analizer gives quick feedback on weaknesses in our model
— We can incrementally add constraints until we are satisfied with it

46

Adding Constraints

We'd like to enforce the following constraints
which are simply matters of biology

Adding Constraints

We'd like to enforce the following social constraints

	Slide 1: CS:5810 Formal Methods in Software Engineering
	Slide 2: Outline
	Slide 3: Roadmap
	Slide 4: Alloy – Why was it created?
	Slide 5: Alloy – Comparison
	Slide 6: Alloy – What is it used for?
	Slide 7: Example Applications
	Slide 8: Alloy in General
	Slide 9: Example: Family Structure
	Slide 10: Example: Address Book
	Slide 11: Atoms and Relations
	Slide 12: Atoms and Relations: Examples
	Slide 13: Relations
	Slide 14: Main Components of Alloy Models
	Slide 15: Signatures and Fields
	Slide 16: Signatures
	Slide 17: Signatures
	Slide 18: Signatures
	Slide 19: Example: Family Structure
	Slide 20: Model Instances
	Slide 21: Fields
	Slide 22: Example Signatures and Fields
	Slide 23: Example: Family Structure
	Slide 24: Multiplicities
	Slide 25: Multiplicities: Examples
	Slide 26: Cardinality Constraints
	Slide 27: Multiplicities: Examples
	Slide 28: Multiplicities: Examples
	Slide 29: Multiplicities: Examples
	Slide 30: Multiplicities and Binary Relations
	Slide 31: Multiplicities and Binary Relations
	Slide 32: Multiplicities and Ternary Relations
	Slide 33: Multiplicities and Ternary Relations
	Slide 34: Multiplicities and Relations
	Slide 35: Example: Family Structure
	Slide 36: Summarizing
	Slide 37: Exercises
	Slide 38: Model Instance
	Slide 39: No Women?
	Slide 40: Man is his own child ?
	Slide 41: Multiple Fathers?
	Slide 42: Own-Siblings?
	Slide 43: Asymmetric Siblings?
	Slide 44: Child and Sibling?
	Slide 45: Asymmetric Marriage?
	Slide 46: Model Weaknesses
	Slide 47: Adding Constraints
	Slide 48: Adding Constraints

