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These Notes

• Review the concepts of sets and relations required to work 
with the Alloy language

• Focus on the kind of set operation and definitions used in 
specifications

• Give some small examples of how we will use sets in 
specifications



Sets
A set is a collection of distinct objects

A set’s objects are drawn from a larger domain of objects all of which have 
the same type  --- sets are homogeneous

Examples:

{ 2, 4, 5, 6, … } set of integers

{ red, yellow, blue } set of colors

{ true, false } set of boolean values

{ red, true, 2 } for us, not a set!

domain



Set Values

The value of a set is the collection of its members

Two sets A and B are equal iff
– every member of A is a member of B

– every member of B is a member of A

Notation:

• x є S denotes “x is a member of S”

• Ø denotes the empty set





Defining Sets

We can define a set by enumeration

– PrimaryColors := { red, yellow, blue } 

– Boolean := { true, false }

– Evens := { …, -4, -2, 0, 2, 4, … }

This works fine for finite sets, but

– what do we mean by “…” ?

– remember, we want to be precise



We can define a set by comprehension, that is, by describing a property 
that all and only its elements share

Notation:        { x : D  |  P(x) } 

Form a new set of elements drawn from domain D by including exactly the 
elements that satisfy predicate (i.e., Boolean function) P

Examples:

Defining Sets

Natural numbers less than 10

Even integers

Empty set of natural numbers

{ x :  | x < 10}

{ x :  | (∃ y :  | x = 2y) }

{ x :  | x > x }



Cardinality

The cardinality (#(_) or |_|) of a finite set is the number of its 
elements

Examples:

– #({ 1, 23 }) = |{ 1, 23 }| = 2

– #({ red, yellow, blue }) = 3

– #( )= ? 

Cardinalities are defined for infinite sets too, but we’ll be mostly 
concerned with the cardinality of finite sets



Set Operations

Union (X, Y sets over domain D):  X ∪ Y ≡ { e: D | e ∈ X or e ∈ Y }

– {red} ∪ {blue} = {red, blue}

 Intersection:        X ∩ Y ≡ { e: D | e ∈ X and e ∈ Y }

– {red, blue} ∩ {blue, yellow} = {blue}

 Difference :        X \ Y ≡ { e: D | e ∈ X and e ∉ Y }
– {red, yellow, blue} \ {blue, yellow} = {red}



Subsets

A subset holds elements drawn from another set

X ⊆ Y  iff every element of X is in Y

 Example: { 1, 7, 24 } ⊆ { 1, 7, 17, 24 } ⊆ 

A proper subset is a non-equal subset

Another view of set equality:      A = B  iff (A ⊆ B and B ⊆ A)



Power Sets

The power set of set S, denoted Pow (S), is the set of all subsets 
of S:

Pow (S) ≡ { e | e ⊆ S }

Example:
Pow ({a,b,c}) = { Ø, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

Note: for every S,  Ø ⊆ S and thus Ø ∈ Pow (S)
Note: for every A and S,  A ∈ Pow (S) iff A ⊆ S 



Exercises

These slides include questions that you should be able to solve at 
this point

They may require you to think some

You should spend some effort in solving them
… and may in fact appear on exams



Exercises

1. Specifying using comprehension notation
a) Odd positive integers

b) The squares of integers, i.e., { 0, 1, 4, 9, 16, … }

2. Express the following logic properties on sets without using 
the # operator
a) Set S has no elements 

b) Set S has exactly one element

c) Set S has at least one element 

d) Set S has exactly two elements

e) Set S has at least two elements



Set Partitioning

• Sets are disjoint if they share no elements

• We will often take some set S and divide its members into 
disjoint subsets called blocks or parts

• We call this division a partition 

• Each member of S belongs to exactly one block of the partition

Apple Pie

PizzaSteak

Ice CreamCake

Chips & SalsaSoup

Sweet & Sour Pork



Partition Example

Basic domains: Person, Residence

Partitions:

– Partition Person into Child, Adult

– Partition Residence into Home, DormRoom, Apartment

Model residential scenarios 



Exercises

1. Express the following properties of pairs of sets

a) Two sets are disjoint

b) Two sets form a partition of a third set



Expressing Relationships

It’s useful to be able to refer to structured values

– a group of values that are bound together

– e.g., struct, record, object fields

Alloy is a calculus of relations (sets of tuples)

All of our Alloy models will be built using relations

… but first some basic definitions



Products

Given two sets A and B, the product of A and B, usually denoted A x B, is 
the set of all possible pairs (a, b) where  a ∈ A and b ∈ B

A x B ≡ { (a, b) | a ∈ A, b ∈ B }

Example: 

   PrimaryColor x Boolean =

(red, true), (red, false),

(blue, true), (blue, false),

(yellow, true), (yellow, false)



Binary Relations

A binary relation R between A and B is an element of Pow (A x B), 

i.e., R ⊆ A x B

Examples:  

Parent : Person x Person =     { (John, June), (John, Sam) }

Square : Z x N =         { (1, 1), (-1, 1), (-2, 4) }

ClassGrades : Person x { A, B, C, D, F } = { (Kim, A), (Alex, B) }

domain co-domain

A x B



Binary Relations

The set of first elements is the definition domain of the relation

– Parent : Person x Person = { (John, Autumn), (John, Sam) }

– defdomain (Parent) = { John }     not Person!

The set of second elements is the image of the relation

– image ({ (1, 1), (-1, 1), (-2, 4) }) = { 1, 4 }            not  !

What about { (1, blue), (2, blue), (1, red) } ?

– definition domain?            image?



N-ary Relations

A ternary relation R between A, B and C is an element of 
Pow (A x B x C)

Example: 
FavoriteBeerAtPrice : Person x Beer x Price 
= { (John, Miller, $2), (Ted, Heineken, $4), (Steve, Miller, $2) }

n-ary relations with n > 3 are defined analogously 
(n is the arity of the relation) 



Common Relation Structures

One-to-Many

One-to-One

Many-to-One

Many-to-Many

One

“Many” (two)

One

One

Many

Many

One

Many



Functional Relations
A function is a relation F of arity n+1 containing no two distinct 
tuples with the same first n elements, 

– i.e., for n = 1,            there is no (a, b1), (a, b2) ∈ F  s.t.  b1 ≠ b2

Examples:
– { (2, red), (3, blue), (5, red) }  ✓

– { (4, 2), (6, 3), (8, 4) }    ✓

– { (2, red), (3, blue), (2, blue) }  ✘

Instead of F: A1 x A2 x … x An x B we write F: A1 x A2 x … x An -> B  



Exercises

Which of the following relations are functions?

1. Parent = { (John, Ann), (John, Sam), (Sam, Joy) }

2. Square = { (1, 1), (-1, 1), (-2, 4) }

3. ClassGrades = { (Todd, A), (Vic, B) }



Relations vs. Functions

JoyJohn

SamLorie

Parent

-2

-1

1 4

1

Square

ATodd

BVic

ClassGrades

Many-to-many

Many-to-one

One-to-one

A function is an

X-to-one relation



Special Kinds of Functions

Consider a function f from S to T

f is total  if defined for all values of S

f is partial if undefined for some values of S

Examples:

– Square : Z -> N  = {…, (-1,1), (0,0), (1, 1), (2,4), …}  total

– SquareRoots : N -> N = { (x, y) : N x N | y2 = x) }  partial



Function Structures

Total Function

Undefined for this inputPartial Function

Note: 
the empty relation over 
a non-empty domain is 
a partial function



Special Kinds of Functions

A function f: S -> T is 

• injective (one-to-one) if no image element is associated with multiple 
domain elements

• surjective (onto) if its image is T

• bijective if it is both injective and surjective 

We’ll see that these come up frequently

– can be used to define properties concisely



Function Structures

Injective Function

Surjective Function



Exercises

1. What kind of function/relation is Abs?

 Abs :  x  = { (x, y) :  x  | (x < 0 and y = -x) or (x ≥ 0 and y = x) }

2. How about Squares?

Squares :  x  = { (x, y) :  x  | y = x⋅x }

3. How about Rel?

Rel :  x  = { (x, y) :  x  | y = 2⋅x if x >= 0,

                                                   y = 2⋅(-x) - 1 if x < 0 }



Special Cases

Relations

Total

Partial Functions

Injective

Surjective

Bijective



Functions as Sets

Functions are relations and hence sets

We can apply to them all the usual operators

– ClassGrades = { (Todd, A), (Jane, B) }

– #(ClassGrades ∪ { (Matt, C) }) = 3



Exercises

In the following, problems if an operator fails to preserve a 
property give an example

1. What operators preserve function-ness?

a) ∩ ?   

b) ∪ ?     

c) \ ?

2. What operators preserve surjectivity?     

3. What operators preserve injectivity?



Relation Composition

Use two relations to produce a new one

– map domain of first to image of second

– Given s: A x B and r: B x C then s ; r : A x C

 s ; r  ≡  { (a,c) | ∃b s.t. (a,b) ∈ s and (b,c) ∈ r }

Example:
– s = { (red,1), (blue,2) }

– r = { (1,2), (2,4), (3,6) }

– s ; r = { (red,2), (blue,4) }

Not limited to 
binary relations



Transitive Closure of a Relation

Intuitively, the transitive closure r+ of a binary relation r: S x S is the 
result of adding a direct link (a,b) to r for every a and b where b is 
reachable from a along r :

r+ ≡ r ∪ (r ; r) ∪ (r ; r ; r) ∪ …

Formally,  r+ ≡ smallest transitive relation containing r

Example:
– GrandParent  =  Parent ; Parent 

– GrandGrandParent  =  Parent ; GrandParent

– Ancestor  =  Parent ∪ GrandParent ∪ GrandGrandParent ∪ … = Parent+



Relation Transpose

Intuitively, the transpose ~r: T x S of a relation r: S x T is the 
relation obtained by reversing all the pairs in r

~r ≡ { (b,a) | (a,b) ∈ r }

Example:
– Child  =  ~Parent

– Descendant  =  (~Parent)+



Exercises

1. What properties, i.e., function-ness, onto-ness, 1-1-ness, are 
preserved by these relation operators?

a) composition (;)

b) closure (+)

c) transpose (~)

2. If an operator fails to preserve a property, provide a 
conterexample
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