CS:5810 Formal Methods in Software Engineering

Sets and Relations

Copyright 2001-25, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.

Created by Cesare Tinelli and Laurence Pilard at the University of lowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

These Notes

 Review the concepts of sets and relations required to work with the Alloy language

 Focus on the kind of set operation and definitions used in specifications

Give some small examples of how we will use sets in specifications

Sets

A set is a *collection* of distinct objects

A set's objects are drawn from a larger *domain* of objects all of which have the same type --- sets are homogeneous

Examples:

```
{ 2, 4, 5, 6, ... }

{ red, yellow, blue }

{ true, false }

{ red, true, 2 }

set of integers

set of colors

set of boolean values
```

Set Values

The value of a set is the collection of its members

Two sets A and B are equal iff

- every member of A is a member of B
- every member of B is a member of A

Notation:

- x ∈ S denotes "x is a member of S"
- Ø denotes the empty set

Defining Sets

We can define a set by *enumeration*

- PrimaryColors := { red, yellow, blue }
- Boolean := { true, false }
- Evens := $\{ ..., -4, -2, 0, 2, 4, ... <math>\}$

This works fine for finite sets, but

- what do we mean by "..."?
- remember, we want to be precise

Defining Sets

We can define a set by *comprehension*, that is, by describing a property that *all and only* its elements share

Notation: $\{x : D \mid P(x)\}$

Form a new set of elements drawn from domain D by including exactly the elements that satisfy predicate (i.e., Boolean function) P

Examples:

```
\{ x : N \mid x < 10 \} Natural numbers less than 10 \{ x : Z \mid (\exists y : Z \mid x = 2y) \} Even integers \{ x : N \mid x > x \} Empty set of natural numbers
```

Cardinality

The *cardinality* (#(_) or |_|) of a finite set is the number of its elements

Examples:

```
- \#(\{ 1, 23 \}) = |\{ 1, 23 \}| = 2
- \#(\{ \text{red, yellow, blue } \}) = 3
- \#(Z) = ?
```

Cardinalities are defined for infinite sets too, but we'll be mostly concerned with the cardinality of finite sets

Set Operations

```
X \cup Y \equiv \{ e : D \mid e \in X \text{ or } e \in Y \}
Union (X, Y sets over domain D):
   — {red} U {blue} = {red, blue}
                                                 X \cap Y \equiv \{ e : D \mid e \in X \text{ and } e \in Y \}
Intersection:
   - {red, blue} \cap {blue, yellow} = {blue}
                                                 X \setminus Y \equiv \{ e: D \mid e \in X \text{ and } e \notin Y \}
Difference:
   - {red, yellow, blue} \ {blue, yellow} = {red}
```

Subsets

A *subset* holds elements drawn from another set

 $X \subseteq Y$ iff every element of X is in Y

Example: $\{1, 7, 24\} \subseteq \{1, 7, 17, 24\} \subseteq Z$

A *proper subset* is a non-equal subset

Another view of set equality: A = B iff $(A \subseteq B \text{ and } B \subseteq A)$

Power Sets

The *power set* of set S, denoted Pow (S), is the set of all subsets of S:

$$Pow(S) \equiv \{ e \mid e \subseteq S \}$$

Example:

 $Pow({a,b,c}) = {\emptyset, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}$

Note: for every S, $\emptyset \subseteq S$ and thus $\emptyset \in Pow(S)$

Note: for every A and S, $A \in Pow(S)$ iff $A \subseteq S$

Exercises

These slides include questions that you should be able to solve at this point

They may require you to think some

You should spend some effort in solving them ... and may in fact appear on exams

Exercises

- 1. Specifying using comprehension notation
 - a) Odd positive integers
 - b) The squares of integers, i.e., { 0, 1, 4, 9, 16, ... }
- 2. Express the following logic properties on sets without using the # operator
 - a) Set S has no elements
 - b) Set S has exactly one element
 - c) Set S has at least one element
 - d) Set S has exactly two elements
 - e) Set S has at least two elements

Set Partitioning

- Sets are disjoint if they share no elements
- We will often take some set S and divide its members into disjoint subsets called *blocks* or *parts*
- We call this division a partition
- Each member of S belongs to exactly one block of the partition

Partition Example

Model residential scenarios

Basic domains: Person, Residence

Partitions:

- Partition Person into Child, Adult
- Partition Residence into Home, DormRoom, Apartment

Exercises

- 1. Express the following properties of pairs of sets
 - a) Two sets are disjoint
 - b) Two sets form a partition of a third set

Expressing Relationships

It's useful to be able to refer to structured values

- a group of values that are bound together
- e.g., struct, record, object fields

Alloy is a calculus of *relations* (sets of tuples)

All of our Alloy models will be built using relations

... but first some basic definitions

Products

Given two sets A and B, the product of A and B, usually denoted A x B, is the set of all possible pairs (a, b) where $a \in A$ and $b \in B$

$$A \times B \equiv \{ (a, b) \mid a \in A, b \in B \}$$

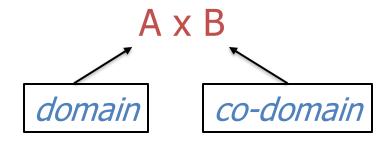
Example:

```
PrimaryColor x Boolean = \begin{cases} \text{(red, true), (red, false),} \\ \text{(blue, true), (blue, false),} \\ \text{(yellow, true), (yellow, false)} \end{cases}
```

Binary Relations

A binary relation R between A and B is an element of Pow (A x B),

i.e., $R \subseteq A \times B$



Examples:

```
Parent : Person x Person = \{ (John, June), (John, Sam) \}

Square : Z x N = \{ (1, 1), (-1, 1), (-2, 4) \}

ClassGrades : Person x \{ A, B, C, D, F \} = \{ (Kim, A), (Alex, B) \}
```

Binary Relations

The set of first elements is the *definition domain* of the relation

- Parent : Person x Person = { (John, Autumn), (John, Sam) }
- defdomain (Parent) = { John } not Person!

The set of second elements is the *image* of the relation

```
-image({(1, 1), (-1, 1), (-2, 4)}) = {(1, 4)} not N!
```

What about { (1, blue), (2, blue), (1, red) } ?

– definition domain? image?

N-ary Relations

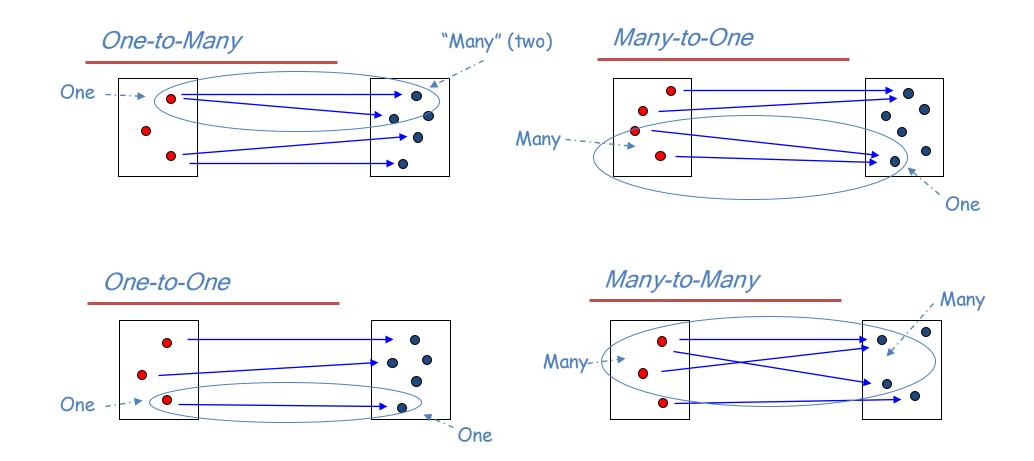
A ternary relation R between A, B and C is an element of Pow (A x B x C)

Example:

```
FavoriteBeerAtPrice: Person x Beer x Price = { (John, Miller, $2), (Ted, Heineken, $4), (Steve, Miller, $2) }
```

n-ary relations with n > 3 are defined analogously
(n is the arity of the relation)

Common Relation Structures



Functional Relations

A *function* is a relation F of arity n+1 containing no two distinct tuples with the same first n elements,

```
- i.e., for n = 1, there is no (a, b_1), (a, b_2) \in F s.t. b_1 \neq b_2
```

Examples:

```
- { (2, red), (3, blue), (5, red) }
- { (4, 2), (6, 3), (8, 4) }
- { (2, red), (3, blue), (2, blue) }

X
```

Instead of F: $A_1 \times A_2 \times ... \times A_n \times B$ we write F: $A_1 \times A_2 \times ... \times A_n \rightarrow B$

Exercises

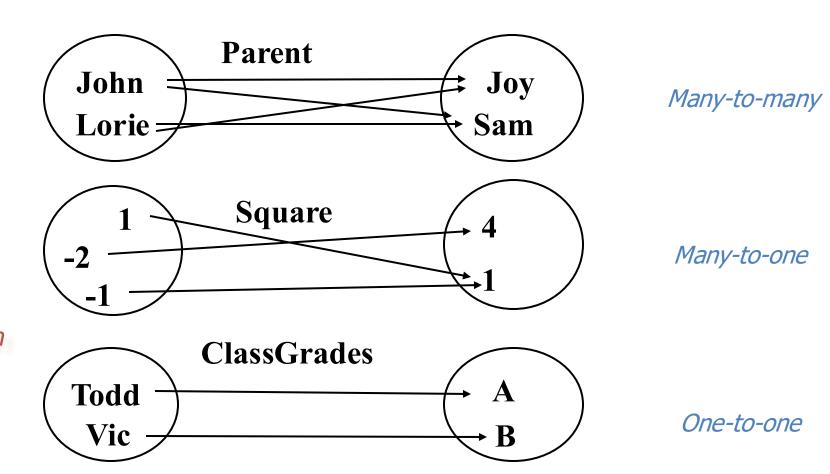
Which of the following relations are functions?

```
1. Parent = { (John, Ann), (John, Sam), (Sam, Joy) }
```

```
2. Square = \{(1, 1), (-1, 1), (-2, 4)\}
```

3. ClassGrades = { (Todd, A), (Vic, B) }

Relations vs. Functions



A function is an X-to-one relation

Special Kinds of Functions

Consider a function f from S to T

```
f is total if defined for all values of S

f is partial if undefined for some values of S
```

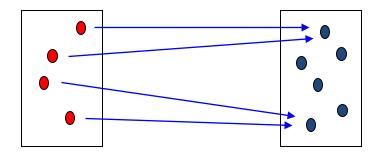
Examples:

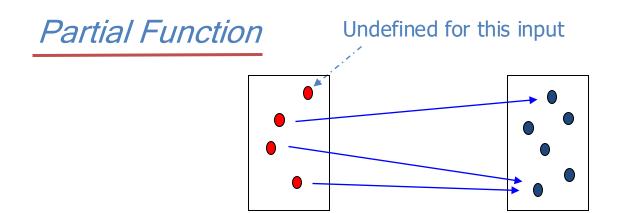
```
- Square : Z \rightarrow N = \{..., (-1,1), (0,0), (1, 1), (2,4), ...\} total

- SquareRoots : N \rightarrow N = \{(x, y) : N \times N \mid y^2 = x)\} partial
```

Function Structures

Total Function





Note:

the empty relation over a non-empty domain is a partial function

Special Kinds of Functions

A function f: S -> T is

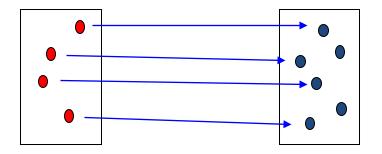
- *injective* (*one-to-one*) if no image element is associated with multiple domain elements
- surjective (onto) if its image is T
- bijective if it is both injective and surjective

We'll see that these come up frequently

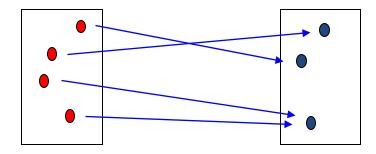
can be used to define properties concisely

Function Structures

Injective Function



Surjective Function



Exercises

1. What kind of function/relation is Abs?

Abs :
$$Z \times N = \{ (x, y) : Z \times N \mid (x < 0 \text{ and } y = -x) \text{ or } (x ≥ 0 \text{ and } y = x) \}$$

2. How about Squares?

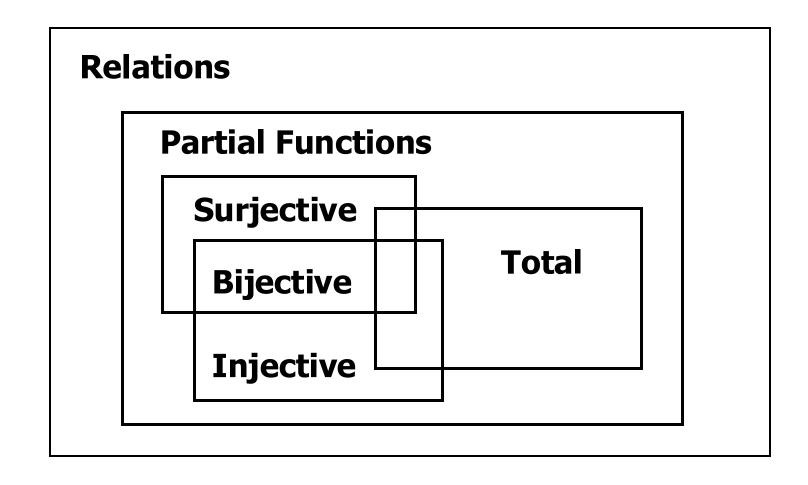
Squares :
$$Z \times N = \{ (x, y) : Z \times N \mid y = x \cdot x \}$$

3. How about Rel?

Rel :
$$Z \times N = \{ (x, y) : Z \times N \mid y = 2 \cdot x \text{ if } x >= 0,$$

 $y = 2 \cdot (-x) - 1 \text{ if } x < 0 \}$

Special Cases



Functions as Sets

Functions are relations and hence sets

We can apply to them all the usual operators

- ClassGrades = { (Todd, A), (Jane, B) }
- #(ClassGrades U { (Matt, C) }) = 3

Exercises

In the following, problems if an operator fails to preserve a property give an example

- 1. What operators preserve function-ness?
 - a) ∩?
 - b) U?
 - c) \?
- 2. What operators preserve surjectivity?
- 3. What operators preserve injectivity?

Relation Composition

Use two relations to produce a new one

- map domain of first to image of second
- Given s: A x B and r: B x C then s; r: A x C

```
s ; r \equiv \{ (a,c) \mid \exists b \text{ s.t. } (a,b) \in s \text{ and } (b,c) \in r \}
```

Example:

```
- s = { (red,1), (blue,2) }

- r = { (1,2), (2,4), (3,6) }

- s; r = { (red,2), (blue,4) }
```

Not limited to binary relations

Transitive Closure of a Relation

Intuitively, the *transitive closure* r^+ of a binary relation $r: S \times S$ is the result of adding a direct link (a,b) to r for every a and b where b is reachable from a along r:

$$r^+ \equiv r \cup (r; r) \cup (r; r; r) \cup ...$$

Formally, $r^+ \equiv$ smallest transitive relation containing r

Example:

- GrandParent = Parent; Parent
- GrandGrandParent = Parent ; GrandParent
- Ancestor = Parent U GrandParent U GrandGrandParent U ... = Parent⁺

Relation Transpose

Intuitively, the *transpose* \sim r: T x S of a relation r: S x T is the relation obtained by reversing all the pairs in r

```
r \equiv \{ (b,a) \mid (a,b) \in r \}
```

Example:

- Child = ~Parent
- Descendant = ($^{\sim}$ Parent) $^{+}$

Exercises

- 1. What properties, i.e., function-ness, onto-ness, 1-1-ness, are preserved by these relation operators?
 - a) composition (;)
 - b) closure (+)
 - c) transpose (~)
- 2. If an operator fails to preserve a property, provide a conterexample

Acknowledgements

Some of these slides are adapted from

David Garlan's slides from Lecture 3 of his course of Software Models entitled "Sets, Relations, and Functions"

(http://www.cs.cmu.edu/afs/cs/academic/class/15671-f97/www/)