
CS:5810 Formal Methods in Software Engineering

Sets and Relations

Copyright 2001-25, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Created by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas
State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

These Notes

• Review the concepts of sets and relations required to work
with the Alloy language

• Focus on the kind of set operation and definitions used in
specifications

• Give some small examples of how we will use sets in
specifications

Sets
A set is a collection of distinct objects

A set’s objects are drawn from a larger domain of objects all of which have
the same type --- sets are homogeneous

Examples:

{ 2, 4, 5, 6, … } set of integers

{ red, yellow, blue } set of colors

{ true, false } set of boolean values

{ red, true, 2 } for us, not a set!

domain

Set Values

The value of a set is the collection of its members

Two sets A and B are equal iff
– every member of A is a member of B

– every member of B is a member of A

Notation:

• x є S denotes “x is a member of S”

• Ø denotes the empty set



Defining Sets

We can define a set by enumeration

– PrimaryColors := { red, yellow, blue }

– Boolean := { true, false }

– Evens := { …, -4, -2, 0, 2, 4, … }

This works fine for finite sets, but

– what do we mean by “…” ?

– remember, we want to be precise

We can define a set by comprehension, that is, by describing a property
that all and only its elements share

Notation: { x : D | P(x) }

Form a new set of elements drawn from domain D by including exactly the
elements that satisfy predicate (i.e., Boolean function) P

Examples:

Defining Sets

Natural numbers less than 10

Even integers

Empty set of natural numbers

{ x :  | x < 10}

{ x :  | (∃ y :  | x = 2y) }

{ x :  | x > x }

Cardinality

The cardinality (#(_) or |_|) of a finite set is the number of its
elements

Examples:

– #({ 1, 23 }) = |{ 1, 23 }| = 2

– #({ red, yellow, blue }) = 3

– #()= ?

Cardinalities are defined for infinite sets too, but we’ll be mostly
concerned with the cardinality of finite sets

Set Operations

Union (X, Y sets over domain D): X ∪ Y ≡ { e: D | e ∈ X or e ∈ Y }

– {red} ∪ {blue} = {red, blue}

 Intersection: X ∩ Y ≡ { e: D | e ∈ X and e ∈ Y }

– {red, blue} ∩ {blue, yellow} = {blue}

 Difference : X \ Y ≡ { e: D | e ∈ X and e ∉ Y }
– {red, yellow, blue} \ {blue, yellow} = {red}

Subsets

A subset holds elements drawn from another set

X ⊆ Y iff every element of X is in Y

 Example: { 1, 7, 24 } ⊆ { 1, 7, 17, 24 } ⊆ 

A proper subset is a non-equal subset

Another view of set equality: A = B iff (A ⊆ B and B ⊆ A)

Power Sets

The power set of set S, denoted Pow (S), is the set of all subsets
of S:

Pow (S) ≡ { e | e ⊆ S }

Example:
Pow ({a,b,c}) = { Ø, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

Note: for every S, Ø ⊆ S and thus Ø ∈ Pow (S)
Note: for every A and S, A ∈ Pow (S) iff A ⊆ S

Exercises

These slides include questions that you should be able to solve at
this point

They may require you to think some

You should spend some effort in solving them
… and may in fact appear on exams

Exercises

1. Specifying using comprehension notation
a) Odd positive integers

b) The squares of integers, i.e., { 0, 1, 4, 9, 16, … }

2. Express the following logic properties on sets without using
the # operator
a) Set S has no elements

b) Set S has exactly one element

c) Set S has at least one element

d) Set S has exactly two elements

e) Set S has at least two elements

Set Partitioning

• Sets are disjoint if they share no elements

• We will often take some set S and divide its members into
disjoint subsets called blocks or parts

• We call this division a partition

• Each member of S belongs to exactly one block of the partition

Apple Pie

PizzaSteak

Ice CreamCake

Chips & SalsaSoup

Sweet & Sour Pork

Partition Example

Basic domains: Person, Residence

Partitions:

– Partition Person into Child, Adult

– Partition Residence into Home, DormRoom, Apartment

Model residential scenarios

Exercises

1. Express the following properties of pairs of sets

a) Two sets are disjoint

b) Two sets form a partition of a third set

Expressing Relationships

It’s useful to be able to refer to structured values

– a group of values that are bound together

– e.g., struct, record, object fields

Alloy is a calculus of relations (sets of tuples)

All of our Alloy models will be built using relations

… but first some basic definitions

Products

Given two sets A and B, the product of A and B, usually denoted A x B, is
the set of all possible pairs (a, b) where a ∈ A and b ∈ B

A x B ≡ { (a, b) | a ∈ A, b ∈ B }

Example:

 PrimaryColor x Boolean =

(red, true), (red, false),

(blue, true), (blue, false),

(yellow, true), (yellow, false)

Binary Relations

A binary relation R between A and B is an element of Pow (A x B),

i.e., R ⊆ A x B

Examples:

Parent : Person x Person = { (John, June), (John, Sam) }

Square : Z x N = { (1, 1), (-1, 1), (-2, 4) }

ClassGrades : Person x { A, B, C, D, F } = { (Kim, A), (Alex, B) }

domain co-domain

A x B

Binary Relations

The set of first elements is the definition domain of the relation

– Parent : Person x Person = { (John, Autumn), (John, Sam) }

– defdomain (Parent) = { John } not Person!

The set of second elements is the image of the relation

– image ({ (1, 1), (-1, 1), (-2, 4) }) = { 1, 4 } not !

What about { (1, blue), (2, blue), (1, red) } ?

– definition domain? image?

N-ary Relations

A ternary relation R between A, B and C is an element of
Pow (A x B x C)

Example:
FavoriteBeerAtPrice : Person x Beer x Price
= { (John, Miller, $2), (Ted, Heineken, $4), (Steve, Miller, $2) }

n-ary relations with n > 3 are defined analogously
(n is the arity of the relation)

Common Relation Structures

One-to-Many

One-to-One

Many-to-One

Many-to-Many

One

“Many” (two)

One

One

Many

Many

One

Many

Functional Relations
A function is a relation F of arity n+1 containing no two distinct
tuples with the same first n elements,

– i.e., for n = 1, there is no (a, b1), (a, b2) ∈ F s.t. b1 ≠ b2

Examples:
– { (2, red), (3, blue), (5, red) } ✓

– { (4, 2), (6, 3), (8, 4) } ✓

– { (2, red), (3, blue), (2, blue) } ✘

Instead of F: A1 x A2 x … x An x B we write F: A1 x A2 x … x An -> B

Exercises

Which of the following relations are functions?

1. Parent = { (John, Ann), (John, Sam), (Sam, Joy) }

2. Square = { (1, 1), (-1, 1), (-2, 4) }

3. ClassGrades = { (Todd, A), (Vic, B) }

Relations vs. Functions

JoyJohn

SamLorie

Parent

-2

-1

1 4

1

Square

ATodd

BVic

ClassGrades

Many-to-many

Many-to-one

One-to-one

A function is an

X-to-one relation

Special Kinds of Functions

Consider a function f from S to T

f is total if defined for all values of S

f is partial if undefined for some values of S

Examples:

– Square : Z -> N = {…, (-1,1), (0,0), (1, 1), (2,4), …} total

– SquareRoots : N -> N = { (x, y) : N x N | y2 = x) } partial

Function Structures

Total Function

Undefined for this inputPartial Function

Note:
the empty relation over
a non-empty domain is
a partial function

Special Kinds of Functions

A function f: S -> T is

• injective (one-to-one) if no image element is associated with multiple
domain elements

• surjective (onto) if its image is T

• bijective if it is both injective and surjective

We’ll see that these come up frequently

– can be used to define properties concisely

Function Structures

Injective Function

Surjective Function

Exercises

1. What kind of function/relation is Abs?

 Abs :  x  = { (x, y) :  x  | (x < 0 and y = -x) or (x ≥ 0 and y = x) }

2. How about Squares?

Squares :  x  = { (x, y) :  x  | y = x⋅x }

3. How about Rel?

Rel :  x  = { (x, y) :  x  | y = 2⋅x if x >= 0,

 y = 2⋅(-x) - 1 if x < 0 }

Special Cases

Relations

Total

Partial Functions

Injective

Surjective

Bijective

Functions as Sets

Functions are relations and hence sets

We can apply to them all the usual operators

– ClassGrades = { (Todd, A), (Jane, B) }

– #(ClassGrades ∪ { (Matt, C) }) = 3

Exercises

In the following, problems if an operator fails to preserve a
property give an example

1. What operators preserve function-ness?

a) ∩ ?

b) ∪ ?

c) \ ?

2. What operators preserve surjectivity?

3. What operators preserve injectivity?

Relation Composition

Use two relations to produce a new one

– map domain of first to image of second

– Given s: A x B and r: B x C then s ; r : A x C

 s ; r ≡ { (a,c) | ∃b s.t. (a,b) ∈ s and (b,c) ∈ r }

Example:
– s = { (red,1), (blue,2) }

– r = { (1,2), (2,4), (3,6) }

– s ; r = { (red,2), (blue,4) }

Not limited to
binary relations

Transitive Closure of a Relation

Intuitively, the transitive closure r+ of a binary relation r: S x S is the
result of adding a direct link (a,b) to r for every a and b where b is
reachable from a along r :

r+ ≡ r ∪ (r ; r) ∪ (r ; r ; r) ∪ …

Formally, r+ ≡ smallest transitive relation containing r

Example:
– GrandParent = Parent ; Parent

– GrandGrandParent = Parent ; GrandParent

– Ancestor = Parent ∪ GrandParent ∪ GrandGrandParent ∪ … = Parent+

Relation Transpose

Intuitively, the transpose ~r: T x S of a relation r: S x T is the
relation obtained by reversing all the pairs in r

~r ≡ { (b,a) | (a,b) ∈ r }

Example:
– Child = ~Parent

– Descendant = (~Parent)+

Exercises

1. What properties, i.e., function-ness, onto-ness, 1-1-ness, are
preserved by these relation operators?

a) composition (;)

b) closure (+)

c) transpose (~)

2. If an operator fails to preserve a property, provide a
conterexample

Acknowledgements

Some of these slides are adapted from

David Garlan’s slides from Lecture 3 of his course of Software Models entitled
“Sets, Relations, and Functions”
(http://www.cs.cmu.edu/afs/cs/academic/class/15671-f97/www/)

http://www.cs.cmu.edu/afs/cs/academic/class/15671-f97/www/
http://www.cs.cmu.edu/afs/cs/academic/class/15671-f97/www/
http://www.cs.cmu.edu/afs/cs/academic/class/15671-f97/www/

	Slide 0: CS:5810 Formal Methods in Software Engineering
	Slide 1: These Notes
	Slide 2: Sets
	Slide 3: Set Values
	Slide 4: Defining Sets
	Slide 5: Defining Sets
	Slide 6: Cardinality
	Slide 7: Set Operations
	Slide 8: Subsets
	Slide 9: Power Sets
	Slide 10: Exercises
	Slide 11: Exercises
	Slide 12: Set Partitioning
	Slide 13: Partition Example
	Slide 14: Exercises
	Slide 15: Expressing Relationships
	Slide 16: Products
	Slide 17: Binary Relations
	Slide 18: Binary Relations
	Slide 19: N-ary Relations
	Slide 20: Common Relation Structures
	Slide 21: Functional Relations
	Slide 22: Exercises
	Slide 23: Relations vs. Functions
	Slide 24: Special Kinds of Functions
	Slide 25: Function Structures
	Slide 26: Special Kinds of Functions
	Slide 27: Function Structures
	Slide 28: Exercises
	Slide 29: Special Cases
	Slide 30: Functions as Sets
	Slide 31: Exercises
	Slide 32: Relation Composition
	Slide 33: Transitive Closure of a Relation
	Slide 34: Relation Transpose
	Slide 35: Exercises
	Slide 36: Acknowledgements

