CS:5810
Formal Methods in Software Engineering

Course Introduction

Cesare Tinelli

Fall 2025

L

ThE ﬁ

UNIVERSITY
OF lowa

Copyright 2025, C. Tinelli, P.-L. Garoche, R. Hanle, and S. Miller. These notes are copyrighted materials and may not be used in other course settings outside of

the University of lowa in their current form or modified form without the express written permission of one of the copyright holders.

1/8



Instructional Staff

Prof. Cesare Tinelli, instructor

Arnold Yu, TA

2/8



Course Info and Material

¢ All information, including the syllabus, class notes and additional readings,
available on website at:

http://www.cs.uiowa.edu/~tinelli/classes/5810/Fall25

Textbooks:

1. Practical Alloy by A. Cunha, N. Macedo, J. Brunel, and D. Chemouil, 2025.
2. Program Proofs by R. Leino, MIT Press, 2023

Recorded lectures on UlCapture

¢ Announcements and discussions on Piazza

Submissions and grades on ICON

Check the course website and the Piazza website regularly!

3/8


http://www.cs.uiowa.edu/~tinelli/classes/5810/Fall25

Course Design Goals

—_

. Learn about formal methods (FMs) in software engineering
2. Understand how FMs help produce high-quality software

3. Learn about formal modeling and specification languages
4. Write and understand formal requirement specifications

5. Learn about main approaches in formal software verification
6. Know which formal methods to use and when

7. Use automated and interactive tools to verify models and code

4/8



Course Topics

Software Specification
¢ High-level design
e Code-level design

Main Software Validation Techniques
Model Checking: often automatic, abstract
Deductive Verification: typically semi-automatic, precise (source code level)
Abstract Interpretation: automatic, correct, incomplete, terminating

5/8



Course Organization

Course organized by level of specification

Emphasis on tool-based specification and validation methods
A number of ungraded exercises, in class and at home
Hands-on homework where you specify, design, and verify

3 introductory homework assignments (individually)

3 mini projects (in teams)

1 midterm, 1 final exam

More details in the syllabus on the website

6/8



Part I: High-level Design

Language: Alloy
e Lightweight modeling language for software design
e Amenable to a fully automated analysis
¢ Aimed at expressing complex structural and behavioral constraints for a software
system
¢ Intuitive modeling tool based on relational logic
e Automatic analyzer based on automated reasoning technology

7/8



Part I: High-level Design

Language: Alloy
e Lightweight modeling language for software design
e Amenable to a fully automated analysis
¢ Aimed at expressing complex structural and behavioral constraints for a software
system
¢ Intuitive modeling tool based on relational logic
e Automatic analyzer based on automated reasoning technology

Learning Outcomes
¢ Design and model software systems in the Alloy language
e Check models and their properties with the Alloy Analyzer
¢ Understand what can and cannot be expressed in Alloy

7/8



Part Il: Code-level Specification

Language: Dafny

Programming language with built-in specification constructs

Automated static (i.e., compile-time) verification of specs

Compilation to many other programming languages

Sophisticated verification engines based on theorem proving techniques
Auxiliary spec constructs to help verification engines complete their proofs

8/8



Part Il: Code-level Specification

Language: Dafny
® Programming language with built-in specification constructs
e Automated static (i.e., compile-time) verification of specs
Compilation to many other programming languages
Sophisticated verification engines based on theorem proving techniques
¢ Auxiliary spec constructs to help verification engines complete their proofs

Learning Outcomes:
¢ Write formal specifications and contracts in Dafny
¢ Verify functional properties of Dafny programs with an automated tool
¢ Understand what can and cannot be expressed in Dafny

8/8



