
CS:5810 Formal Methods in Software Engineering

Dynamic Models in Alloy

Copyright 2001-23, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Created by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer, John Hatcliff, Rod Howell at Kansas
State University. These notes are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form
or modified form without the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or
being paid for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

• Basics of dynamic models
– Modeling a system’s states and state transitions
– Modeling operations causing transitions

• Simple example of operations

Overview

Static Models

• So far, we’ve used Alloy to define the allowable values of state
components
– values of sets
– values of relations

• A model instance is a set of state component values that
– Satisfies the constraints defined by multiplicities, fact, “realism”

conditions, …

Static Model Instances

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

siblings = {}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

siblings = {}

Dynamic Models

• Static models let us describe the legal states of a dynamic
system

• However, we’d like also to be able to describe possible
transitions between states
E.g.
– Two unmarried people become each other’s spouses once they get married
– People go from being alive to not being alive when the die
– A person becomes someone’s child after being born

Example

abstract sig Person {
 children: set Person,
 siblings: set Person
}

sig Man, Woman extends Person {}

sig Married in Person {
 spouse: one Married
}

Family Model

State Transitions
Two people get married

– At time t, spouse = {}
– At time t’, spouse = {(Matt, Sue), (Sue, Matt)}

!We can add the notion of time in the spouse relation

Person = {Matt,Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}

children = {}

siblings = {}
Time t Time t’

Modeling State Transitions

• Until version 6, Alloy had no predefined notion of time and of
state transition

• This is not really a problem since there are several ways to
model dynamic aspects of a system in Alloy

• A general and relatively simple way is to:
1. introduce a Time signature expressing time
2. add a time component to each relation that changes over time

Family Model Signatures

abstract sig Person {
 children: set Person,
 siblings: set Person
}

sig Man, Woman extends Person {}

sig Married in Person {
 spouse: one Married
}

Family Model Signatures with Time

sig Time {}

abstract sig Person {
 children: Person set -> Time,
 siblings: Person set -> Time
}

sig Man, Woman extends Person {}

sig Married in Person {
 spouse: Married one -> Time
}

Transitions
Two people get married

– At time t, Married = {}
– At time t’, Married = {Matt, Sue}

Person = {Matt,Sue}

Man = {Matt}

Woman = {Sue}

Married = {}

spouse = {}

children = {}

siblings = {}

Person = {Matt, Sue}

Man = {Matt}

Woman = {Sue}

Married = {Matt, Sue}

spouse = {(Matt, Sue), (Sue, Matt)}

children = {}

siblings = {}Time t Time t’

Transitions
A person is born
– At time t, Person = {}
– At time t’, Person = {Sue}

Person = {}

Man = {}

Woman = {}

spouse = {}

children = {}

siblings = {}

Person = {Sue}

Man = {}

Woman = {Sue}

spouse = {}

children = {}

siblings = {}Time t Time t’

For simplicity, we will not use time-dependent signatures

Keeping Signatures Static

abstract sig Person {
 children: Person set -> Time,
 siblings: Person set -> Time,
 spouse: Person lone -> Time
}
sig Man, Woman extends Person {}

sig Married in Person {
 spouse: Married one -> Time
}

Keeping Signatures Static

abstract sig Person {
 children: Person set -> Time,
 siblings: Person set -> Time,
 spouse: Person lone -> Time,
 alive: set Time
}

sig Man, Woman extends Person {}

Revising Constraints

abstract sig Person {
 children: Person set -> Time,
 siblings: Person set -> Time,
 spouse: Person lone -> Time,
 alive: set Time,
 parents: Person set -> Time
}
sig Man, Woman extends Person {}
fun parents[] : Person->Person { ~children }
fact parentsDef {

all t: Time | parents.t = ~(children.t)
}

Revising Constraints
-- Time-dependent parents relation

fact parentsDef {
all t: Time | parents.t = ~(children.t)

}

-- Two persons are blood relatives (at time t) iff
-- they have a common ancestor (at time t)
pred BloodRelatives [p, q: Person, t: Time]
{
 some p.*(parents.t) & q.*(parents.t)
}

Revising Static Constraints
-- People cannot be their own ancestors (at any time)
all t: Time | no p: Person |
 p in p.^(parents.t)

-- No one can have more than one father or mother (at any time)
all t: Time | all p: Person |
 lone (p.parents.t & Man)
 and
 lone (p.parents.t & Woman)

...

Revising Static Constraints
-- (At all times) your siblings are those people other than you
-- who have the same parents you have
all t: Time | all p: Person |
 p.siblings.t = { q: Person - p | some q.parents.t and
 p.parents.t = q.parents.t }

-- (At all times) the spouse relation is symmetric
all t: Time |
 spouse.t = ~(spouse.t)

Revising Static Constraints
-- (At all times) a spouse can't be a sibling

all t: Time | no p: Person |
 some p.spouse.t and p.spouse.t in p.siblings.t

-- (At all times) people can't be married to a blood relative
 all t: Time | no p: Person |
 let s = p.spouse.t |
 some s and BloodRelatives[p, s, t]

Revising Static Constraints
-- (At all times) a person can't have children with a blood relative
all t: Time | all p, q: Person |
 (some (p.children.t & q.children.t) and p != q)
 implies
 not BloodRelatives[p, q, t]

A Better Approach: Mutable Relations

Alloy 6 incorporates an implicit, built-in notion of (discrete) time

• The meaning of an Alloy model is actually an infinite sequence of
instances, or a trace

• Each instance in a trace corresponds to a state of a dynamic system
• Signatures/relations can change from state to state
• A set of temporal operators allows us to express properties over time

as properties over traces

Mutable Fields: Relations that Change Over Time

abstract sig Color {}

one sig Green, Yellow, Red extends Color {}

one sig TrafficLight
{
 var col: Color -- value here can change over time
}

fun c : Color { TrafficLight.col }

Mutable Fields: Relations that Change Over Time

-- enum abbreviates a partition of a signature into singletons
enum Color { Green, Yellow, Red }

one sig TrafficLight
{
 var col: Color -- value here can change over time
}

fun c : Color { TrafficLight.col }

From Instances to Traces

• Models with mutable signatures and/or fields represent
dynamic systems, systems that change over time

• Instead of standing for a set of instances, a dynamic model
stands for a set of traces

• A trace is an infinite sequence of instances
– An instance now describes just one possible state of a system
– A trace describes a particular sequence of state transitions for the

system

From Instances to Traces

An Alloy model captures the behavior of a system over time
by means of constraints containing temporal operators

Temporal operators implicitly talk about (properties of) traces

Temporal Operators in Alloy 6
Formula Intuitive meaning
always p p holds from current state/instance forward in a trace
historically p p holds from current state backward
after p p holds in next state (after the current one)
before p p holds in previous state (before the current one)
eventually p p holds in current state or a later one
once p p holds in current state or an earlier one
p until q q holds eventually and p holds continuously until then
p since q p has held continuously since last time q held
e’ denotes the value of e in next state

Example Traces
Time steps 1 2 3 4 5 6 7 8 9 …
p (state prop.) ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
q (state prop.) ⦁ ⦁ ⦁ …
always p ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
historically p ⦁ ⦁ ⦁ ⦁ ⦁ …
after p ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
before p ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
eventually q ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
once q ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
p until q ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …
p since q ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ ⦁ …

⦁ = true

Temporal Operator Precedence

! _ not _
always _ eventually _ after _
historically _ once _ before _
_ until _ _ since _
_ && _ _ and _
_ => _ _ implies _ _ else _
_ <=> _ _ iff _
_ || _ _ or _
let _ | _ no _ | _ some _ | _ lone _ | _ one _ | _

Low

High

The Family Model with Mutable Fields

enum Liveness { Alive, Dead, Unborn }

abstract sig Person {
 var children: set Person,
 var parents: set Person,
 var siblings: set Person,
 var spouse: lone Person,
 var liveness: Liveness
}
sig Man, Woman extends Person {}

Revising the Model

enum Liveness { Alive, Dead, Unborn }

abstract sig Person {
 var children: set Person,
 var spouse: lone Person,
 var liveness: Liveness
}
sig Man, Woman extends Person {}

fun parents : Person -> Person { ~children }
fun siblings [p: Person]: Person { {q: Person | … } }

Revising Constraints
pred BloodRelatives [p, q: Person] {
 some p.*parents & q.*parents
}
pred isAlive [p: Person] { p.liveness = Alive }
pred isDead [p: Person] { p.liveness = Dead }
pred isUnborn [p: Person] { p.liveness = Unborn }

-- a newborn is someone who has just been born
pred newBorn[p: Person] {
 isAlive[p] and before isUnborn[p]
}

pred isMarried [p: Person] { some p.spouse }

Revising Static Constraints
-- People cannot be their own ancestors

always no p: Person | p in p.^parents

-- No one can have more than one father or mother
always all p: Person |
 lone (p.parents & Man) and lone (p.parents & Woman)

-- The spouse relation is symmetric
always spouse = ~spouse

Revising Static Constraints
-- A spouse can't be a sibling
always no p: Person |
 some p.spouse and p.spouse in p.siblings

-- People can't be married to a blood relative

always no p: Person | let s = p.spouse |
 some s and BloodRelatives[p, s]

-- A person can't have children with a blood relative
always all disj p, q: Person |
 some (p.children & q.children) implies
 not BloodRelatives[p, q]

Adding Temporal Constraints

-- Dead people stay dead
always all p: Person |
 isDead[p] implies after isDead[p]

-- Dead people were once alive
always all p: Person |
 isDead[p] implies once isAlive[p]

-- No one lives forever
always all p: Person |
 isAlive[p] implies eventually isDead[p]

Adding Temporal Constraints
-- Living people don’t become unborn
always all p: Person |
 isAlive[p] implies always not isUnborn[p]

-- Living people stay alive until they die
always all p: Person |
 isAlive[p] implies (isAlive[p] until isDead[p])

-- Newborns have a father and a mother
always all p: Person | newBorn[p] implies
 some m: Man | some w: Woman | p.parents = m + w

Adding Temporal Constraints
-- Children were born from previously alive parents
always all p, q: Person |
 p in q.children implies
 once (newBorn[p] and once isAlive[q])

-- People with parents have had those parents since birth
always all p, q: Person |
 p in q.children implies
 (p in q.children since newBorn[p])

Exercises

• Load family-6-elec.als in Alloy
• Execute it
• Analyze the model
• Look at the generated instance
• Does it look correct?
• What, if anything, would you change about it?

Dynamics as State Transitions

Recall
• The evolution of a dynamic system can be modeled as a set of traces
• Each trace is a sequence of transitions from one state to another

A transition can be thought of as caused by the application of a state
transformer

A state transformer is an operator that modifies the current state

Possible Trace

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

liveness = {(Matt,U),
(Sue,U),(Sean,U)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {}

children = {}

liveness = {(Matt, U),
(Sue,A),(Sean,U)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue),(Sue,Matt)}

children = {}

liveness = {(Matt,A),(Sue,A),(Sean,U)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue),(Sue,Matt)}

children = {(Matt,Sean),(Sue,Sean)}

liveness = {(Matt,A),(Sue,A),(Sean,A)}

Transitions
A person is born from parents

State transformer that
modifies the children and
liveness relations

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {}

liveness = {(Matt,Alive), (Sue,Alive),
 (Sean,Unborn)}

Person = {Matt, Sue, Sean}

Man = {Matt, Sean}

Woman = {Sue}

spouse = {(Matt,Sue), (Sue,Matt)}

children = {(Matt,Sean), (Sue,Sean)}

liveness = {(Matt,Alive), (Sue,Alive),
 (Sean,Alive)}

Expressing State Transitions in Alloy

A state transformer is modeled as a predicate over two states:
1. the state right before the transition (current state) and
2. the state right after it (next state)

We use the temporal operators of Alloy to express constraints on
the current and the next state

(Single) primed field names refer to values in the next state

Expressing State Transformers
Pre-condition constraints
– Describe the states to which the transformer applies

Post-condition constraints
– Describes the effects of the transformer in generating the next state

Frame-condition constraints
– Describes what does not change between current state and next

state of a transition

Distinguishing the pre-, post- and frame-conditions
in comments provides useful documentation

Example: Marriage
pred getMarried [p, q: Person] {
-- preconditions

-- p and q are both alive
isAlive[p] and isAlive[q]

 -- neither is married
no (p + q).spouse

 -- they are not blood relatives
not BloodRelatives[p, q]

-- post-conditions
 -- p and q are each other’s spouses

p.spouse' = q
q.spouse' = p

-- frame conditions

}
??

enum Liveness { Alive, Dead, Unborn }
abstract sig Person {
 var children: set Person,
 var spouse: lone Person,
 var liveness: Liveness }
sig Man,Woman extends Person {}
pred isAlive [p: Person] {

p.liveness = Alive
}
fun parents : Person -> Person { ~children }
fun siblings [p: Person]: Person {

{q: Person | … }
}

spouse' is the next version of spouse

Frame Condition

How is each relation impacted by marriage?
• 5 relations :
– children, parents, siblings
– spouse
– liveness

• The parents and siblings relations are defined in terms of the
children relation

• Thus, the frame condition has only to consider children, spouse and
liveness

Frame Condition Predicates
pred noChildrenChange [Ps: set Person] {

all p: Ps |
p.children' = p.children

}

pred noSpouseChange [Ps: set Person] {
all p: Ps |

p.spouse' = p.spouse
}

pred noLivenessChange [Ps: set Person] {
all p: Ps |

p.liveness' = p.liveness
}

Marriage Operator

pred getMarried [p, q: Person]
{
-- preconditions
 isAlive[p] and isAlive[q]

no (p + q).spouse
not BloodRelatives[p, q]

-- post-conditions
p.spouse' = q and q.spouse' = p

-- frame conditions
noSpouseChange[Person – (p + q)]
noChildrenChange[Person]
noLivenessChange[Person]

}

Instance of Marriage
…
pred someMarriage {
 some m: Man | some w: Woman | getMarried[m, w]
}

-- there is a marriage initially
run { someMarriage }
-- there is a marriage initially or later
run { eventually someMarriage }
-- there is a marriage eventually but not initially
run { not someMarriage and eventually someMarriage }

Birth from Parents Operator

pred isBornFromParents [p: Person, m: Man, w: Woman] {
-- Pre-conditions

isUnborn[p]
isAlive[w]
once isAlive[m]

-- Post-condition
liveness’ = liveness + p

-- Post-condition and frame condition
children' = children + (m -> p) + (w -> p)

-- Frame conditions
noLivenessChange[Person - p]
noSpouseChange[Person]
noChildrenChange[Person – (m + w)] // redundant

}

Instance of Birth

pred someBirth {
 some b: Person, m: Man, w: Woman |
 isBornFromParents[b, m, w]
}

run { eventually someBirth }

run { some b: Person, m: Man, w: Woman |
 eventually (getMarried[m, w] and
 eventually isBornFromParents[b, m, w])

Death Operator

pred dies [p: Person] {
-- Pre-condition

isAlive[p]

-- Post-condition
after isDead[p]

-- Post-condition and frame condition
let q = p.spouse |

spouse' = spouse - ((p -> q) + (q -> p))

-- Frame conditions
noChildrenChange[Person]
noLivenessChange[Person - p]

}

Instance of Death

pred someDeath {
 some p: Person | dies[p]
}

run {
 eventually someDeath
}

run {
 some p: Person |
 isAlive[p] and after (isAlive[p] and eventually dies[p])
}

Specifying Transition Systems

• A transition system can be defined as a set of traces
(aka executions):

sequences of states generated by the operators

• In our family example, for every execution:
– The initial state satisfies some initialization condition
– All pairs of consecutive states are related by
• a birth operation, or
• a death operation, or
• a marriage operation

Initial State Specification
init specifies constraints on the initial state

pred init {
no children
no spouse
#LivingPeople > 2
#Person > #LivingPeople

}

fun LivingPeople [] : Person {
liveness.Alive

}

Transition Relation Specification
trans specifies that each transition is a consequence of the application

of one of the operators to some individuals

pred trans [] {
 (some m: Man, w: Woman | getMarried [m, w])
 or
 (some p: Person, m: Man, w: Woman |
 isBornFromParents [p, m, w])
 or
 (some p: Person | dies [p])
 or
 other
}

???

The Need for a No-op

• For convenience, Alloy considers only infinite traces
• So, we need a do-nothing operator for systems that can have

finite executions

 pred other [] {
 -- the relevant relations stay the same
 children' = children
 spouse' = spouse
 liveness' = liveness
 }

System Specification

A System predicate specifies that each execution
• starts in a state satisfying the initial state condition and
• moves from one state to the next as specified

by one of the operator predicates

 pred System {
 init and always trans
 }

 run { System }

System Invariants
• Many of the facts that we stated in our static model now become

expected system invariants

• These are properties that
– should hold in initial states
– should be preserved by system transitions

• We can check that a property is invariant for a given system System
(within a given scope) by
– encoding the property as a formula F and
– checking the assertion System implies always F

Expected Invariants: Examples
-- People cannot be their own ancestors
assert a1 { System implies
 always no p: Person | p in p.^parents
}
check a1 for 6

-- No one can have more than one father or mother
assert a2 { System implies
 always all p: Person |
 lone (p.parents & Man) and
 lone (p.parents & Woman)
}
check a2 for 8

Exercises
• Load family-7-elec.als in Alloy
• Execute it
• Look at the generated instance
• Does it look correct?
• What if anything would you change about it?
• Check each of the given assertions
• Are they all valid?
• If not, how would you change the model to fix that?

Exercises
• Load dynamic/trash-1-elec.als in Alloy 5
• Complete the model as instructed there
• Execute it
• Check each of the assertions you have written
• Are they all valid?
• If not, how would you change the model to fix that?

