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A Truism

Software has become critical to modern life

• Communication (internet, voice, video, . . . )

• Transportation (air traffic control, avionics, cars, . . . )

• Health Care (patient monitoring, device control, . . . )

• Finance (automatic trading, banking, . . . )

• Defense (intelligence, weapons control, . . . )

• Manufacturing (precision milling, assembly, . . . )

• Process Control (oil, gas, water, . . . )

• . . .

2 / 39



Embedded Software
Software is now embedded everywhere Some of it is critical

Failing software costs money and life!
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Software Systems are Growing Very Large
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Software Systems are Growing Very Large

Automotive Software

A typical 2022 car model contains >100M lines of code

How do you verify that?

Current cars admit hundreds of onboard functions

How do you cover their combination?

Ex. does braking when changing the radio station and starting the
windscreen wiper, affect air conditioning?
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Failing Software Costs Money

Expensive recalls of products with embedded software

Lawsuits for loss of life or property damage
• Car crashes (e.g., Toyota Camry 2005)

Thousands of dollars for each minute of down-time
• (e.g., Denver Airport Luggage Handling System)

Huge losses of monetary and intellectual investment
• Rocket boost failure (e.g., Ariane 5)

Business failures associated with buggy software
• (e.g., Ashton-Tate dBase)
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Failing Software Costs Lives

Potential problems are obvious:

• Software used to control nuclear power plants

• Air-traffic control systems

• Spacecraft launch vehicle control

• Embedded software in cars

A well-known and tragic example: Therac-25 radiation machine failures
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The Peculiarity of Software Systems

Software seems particularly prone to faults

Tiny faults can have catastrophic consequences
• Ariane 5
• Mars Climate Orbiter, Mars Sojourner
• Pentium-Bug
• . . .

Rare bugs can occur
• avg. lifetime of a passenger plane: 30 years
• avg. lifetime of a car: < 10 years, but > 1.4B cars in 2022

Logic and implementation errors represent security exploits
• (too many to mention)
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Observation

Building software is what most of you will do after graduation

• You’ll be developing systems in the context above

• Given the increasing importance of software,
• you may be liable for errors
• your job may depend on your ability to produce reliable systems

What are the challenges in building
reliable and secure software?
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Achieving Reliability in Engineering

Some well-known strategies from civil/mechanical engineering:

• Precise calculations/estimations of forces, stress, etc.

• Hardware redundancy (“make it a bit stronger than necessary”)

• Robust design (single fault not catastrophic)

• Clear separation of subsystems (any airplane flies with dozens of known and
minor defects)

• Design follows patterns that are proven to work
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Why This Does Not Work For Software

• Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

• Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

• No physical or modal separation of subsystems
Local failures often affect whole system

• Software designs have very high logic complexity

• Most SW engineers are untrained in correctness

• Cost efficiency more important than reliability

• Design practice for reliable software is not yet mature

13 / 39



Why This Does Not Work For Software

• Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

• Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

• No physical or modal separation of subsystems
Local failures often affect whole system

• Software designs have very high logic complexity

• Most SW engineers are untrained in correctness

• Cost efficiency more important than reliability

• Design practice for reliable software is not yet mature

13 / 39



Why This Does Not Work For Software

• Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

• Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

• No physical or modal separation of subsystems
Local failures often affect whole system

• Software designs have very high logic complexity

• Most SW engineers are untrained in correctness

• Cost efficiency more important than reliability

• Design practice for reliable software is not yet mature

13 / 39



Why This Does Not Work For Software

• Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

• Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

• No physical or modal separation of subsystems
Local failures often affect whole system

• Software designs have very high logic complexity

• Most SW engineers are untrained in correctness

• Cost efficiency more important than reliability

• Design practice for reliable software is not yet mature

13 / 39



Why This Does Not Work For Software

• Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

• Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

• No physical or modal separation of subsystems
Local failures often affect whole system

• Software designs have very high logic complexity

• Most SW engineers are untrained in correctness

• Cost efficiency more important than reliability

• Design practice for reliable software is not yet mature

13 / 39



Why This Does Not Work For Software

• Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

• Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

• No physical or modal separation of subsystems
Local failures often affect whole system

• Software designs have very high logic complexity

• Most SW engineers are untrained in correctness

• Cost efficiency more important than reliability

• Design practice for reliable software is not yet mature

13 / 39



Why This Does Not Work For Software

• Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

• Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

• No physical or modal separation of subsystems
Local failures often affect whole system

• Software designs have very high logic complexity

• Most SW engineers are untrained in correctness

• Cost efficiency more important than reliability

• Design practice for reliable software is not yet mature

13 / 39



How to Ensure Software Correctness?

A Central Strategy: Testing
(others: SW processes, reviews, libraries, . . . )

Testing against inherent SW errors (“bugs”)

1. Design test configurations that hopefully are representative
2. Check that the system behaves as intended on them

Testing against external faults

1. Inject faults (memory, communication) by simulation or radiation
2. Check that the system’s performance degrades gracefully
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Limitations of Testing

Testing can show the presence of errors, but not their absence

Exhaustive testing viable only for trivial systems

Representativeness of test cases/injected faults is subjective

How to test for the unexpected? Rare cases?

Testing is labor intensive, hence expensive
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Complementing Testing: Formal Verification

A Sorting Program:

i n t[] sort( i n t[] a) {
...

}

Testing sort:
• sort({3,2,5}) == {2,3,5}

√

• sort({}) == {}
√

• sort({17}) == {17}
√

Typically missed test cases
• sort({2,1,2}) == {1,2,2} ⊠

• sort(null) == exception ⊠

• isPermutation(sort(a),a) ⊠
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Formal Verification as Theorem Proving

Theorem (Correctness of sort) For any given non-null int array a, calling
the program sort(a) returns an int array that is sorted wrt ≤ and is a
permutation of a.

However, methodology differs from mathematics:

1. Formalize the expected property in a logical language

2. Prove the property with the help of an (semi-)automated tool
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Contrasting Testing with Formal Verification
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Formal Methods

Rigorous techniques and tools for the development and analysis of
computational (hardware/software) systems

• Applied at various stages of the development cycle

• Also used in reverse engineering to model and analyze existing systems

• Based on mathematics and symbolic logic (formal)
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Main Artifacts in Formal Methods

1. System requirements
2. System implementation

Formal methods rely on
a. some formal specification of (1)

b. some formal execution model of (2)

They use tools to verify mechanically that implementation satisfies (a)
according to (b)
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Why Use Formal Methods

1. Contribute to the overall quality of the final product thanks to
mathematical modeling and formal analysis

2. Increase confidence in the correctness/robustness/security of a system

3. Find more flaws and sooner (i.e., during specification and design vs. testing
and maintenance)
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Why Use Formal Methods
Relative cost to fix an error, by development phase

Finding errors earlier reduces development costs
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Formal Methods: The Vision

• Complement other analysis and design methods

• Help find bugs in code and specification

• Reduce development, and testing, cost

• Ensure certain properties of the formal system model

• Should be highly automated
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Formal Methods and Testing

• Run the system at chosen inputs and observe its behavior

• Randomly chosen
• Intelligently chosen (by hand: expensive!)
• Automatically chosen (need formalized spec)

• What about other inputs? (test coverage)

• What about the observation? (test oracle)

Challenges can be addressed by/require formal methods
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A Warning

• The notion of “formality” is often misunderstood (formal vs. rigorous)

• The effectiveness of FMs is still debated

• There are persistent myths about their practicality and cost

• FMs are not yet as widespread in industry as they could be

• They are mostly used in the development of safety-, business-, or
mission-critical software, where the cost of faults is high
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The Main Point of Formal Methods is Not

• To show “correctness” of entire systems
• What is correctness? Go for specific properties!

• To replace testing entirely
• FMs typically do not go below byte code level
• Some properties are not formalizable

• To replace good design practices

There is no silver bullet!

No correct system w/o clear requirements & good design
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Overall Benefits of Using Formal Methods

1. Forces developers to think systematically about issues

2. Improves the quality of specifications, even without formal verification

3. Leads to better design

4. Provides a precise reference to check requirements against

5. Provides rigorous documentation within a team of developers

6. Gives direction to later development phases

7. Provides a basis for reuse via specification matching

8. Can replace (infinitely) many test cases

9. Facilitates automatic analysis and test case generation
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Specifications: What the system should do

• Individual properties
• Safety properties: something bad will never happen
• Liveness properties: something good will happen eventually
• Non-functional properties: runtime, memory, usability, . . .

• Complete behavior specification
• Equivalence requirements
• Refinement requirements
• Data consistency
• . . .
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Formal Specification

The expression in some formal language and at some
level of abstraction of a collection of properties that some
system should satisfy [van Lamsweerde]
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Formal Specification
The expression in some formal language and at some level of abstraction of
a collection of properties that some system should satisfy [van Lamsweerde]

formal language:
• syntax can be mechanically processed and checked
• semantics is defined unambiguously by mathematical means

abstraction:
• at or above the level of source code
• several levels possible

properties:
• expressed in some formal logic
• have a well-defined semantics

satisfaction:
• ideally (but not always) decided mechanically
• based on automated deduction and/or model checking techniques
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Formalization Helps to Find Bugs in Specs

• Well-formedness and consistency of formal specs are
machine-checkable

• Fixed signature (set of symbols) helps spot incomplete specs

• Failed verification of implementation against specs provides feedback on
errors

• in the implementation or
• in the (formalization of the) spec
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A Fundamental Fact

Formalizing system requirements is hard
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Difficulties in Creating Formal Models

Real World

Formal
Execution Model

Formal
Requirements
Specification

Abstraction

wrong assumption

e.g., zero delay

misunderstood problem

e.g., wrong integer model

33 / 39



Difficulties in Creating Formal Models

Real World

Formal
Execution Model

Formal
Requirements
Specification

Abstraction

wrong assumption

e.g., zero delay

misunderstood problem

e.g., wrong integer model

33 / 39



Difficulties in Creating Formal Models

Real World

Formal
Execution Model

Formal
Requirements
Specification

Abstraction

wrong assumption

e.g., zero delay

missing requirement

e.g., stack overflow

misunderstood problem

e.g., wrong integer model

33 / 39



Difficulties in Creating Formal Models

Real World

Formal
Execution Model

Formal
Requirements
Specification

Abstraction

wrong assumption

e.g., zero delay

missing requirement

e.g., stack overflow

misunderstood problem

e.g., wrong integer model

33 / 39



Another Fundamental Fact

Proving properties of systems can be hard
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Level of System Description

High level (modeling/programming language level)
• Complex datatypes and control structures, general

programs
• Easier to program

...

Low level (machine level)
• Finitely many states
• Tedious to program, worse to maintain
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Expressiveness of Specification

High
• General properties
• High precision, tight modeling
• Automatic proofs (in general) impossible!

...

Low
• Finitely many cases
• Approximation, low precision
• Automatic proofs are (in principle) possible
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Current and Future Trends

Slowly but surely formal methods are finding increased used in industry

• Designing for formal verification

• Combining semi-automatic methods
with SAT/SMT solvers, theorem provers

• Combining static analysis of programs
with automatic methods and with theorem provers

• Combining testing and formal verification

• Integration of formal methods into software development process
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Current and Future Trends

Need for secure systems is increasing the use of FMs

• Security is intrinsically hard

• Redundant fault-tolerant systems are often used to meet safety
requirements

• Fault-tolerance depends on the independence of component failures

• Security attacks are intelligent, coordinated and malicious

• Formal methods provides a systematic way to meet stringent security
requirements

38 / 39



Summary

Software is becoming pervasive and very complex

Current development techniques are inadequate

Formal methods
• are not a panacea, but will be increasingly necessary
• are (more and more) used in practice
• can shorten development time
• can push the limits of feasible complexity
• can increase product reliability
• can improve system security

We will learn to use different formal methods, for different development
stages
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