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Overview

Introduction to contract-based compositional reasoning and its
advantages

Introduction of new specification language aimed at facilitating

• modular development and

• compositional reasoning

Discussion of

• implementation in Kind 2 model checker

• examples of contract-based specifications



Compositional Reasoning in Kind 2

Based on Assume/Guarantee Paradigm

Every component C [x, y] with inputs x and outputs y has a
contract:

• a set A[x] of assumptions on C ’s environment

• a set G[x, y] guarantees on how C must behave,
provided assumptions A[x] hold

C respects its contract 〈A, G〉 if all of its executions satisfy2

�A ⇒ �G

2Formula �ϕ is true iff ϕ is true at all times
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Assume/Guarantee Reasoning (simplified form)

Def. A component C1[x1, y1] uses a component C2[x2, y2] if it
feeds C2 some input a and reads the corresponding output in b

Let (A[xi ],G[xi , yi ]) be the contract of Ci for i = 1, 2

Def. C1 uses C2 safely if C1’s executions satisfy �A2[a]

Note If C1 uses C2 safely and C2 respects its contract, one can
assume �G2[a,b] to prove that C1 respects its contract

Effectively, this means that C2 can be abstracted by its contract
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Modularity in Lustre

Components defined as nodes parametrized by inputs

Can have several outputs

Can be understood as macros

node MinMaxSoFar ( X : real ) returns ( Min, Max : real );
let

Min = X -> if (X < pre Min) then X else pre Min ;
Max = X -> if (X > pre Max) then X else pre Max ;

tel

node MinMaxAverageSoFar ( X: real ) returns ( Y: real ) ;
var Min, Max: real ;
let

Min, Max = MinMax(X) ;
Y = (Min + Max)/2.0 ;

tel



CocoSpec Contract Language

An extension of Lustre with contracts

Objectives:

• compatibility with the widespread assume / guarantee
paradigm

• ease the process of writing and reading formal specifications

• facilitate automatic verification of specs

• improve feedback to user after analysis

• partition information for specification-driven test generation



Contract-based specification

Contracts over components

• describe their behavior under some assumptions

• correspond to requirements from the specification documents



Contract Example

stopwatch(toggle, reset) → count

Assumptions:
• legit input ¬(reset ∧ toggle)

Guarantees:
• output range count ≥ 0
• resetting reset implies count is 0
• running ¬reset ∧ on implies count increases by one
• stopped ¬reset ∧ ¬on implies count does not change



Contract Example

node stopwatch(toggle, reset: bool) returns (c: int);
(*@contract

var on: bool = toggle ->
(pre on and not toggle) or (not pre on and toggle) ;

assume not (reset and toggle) ;
guarantee c >= 0 ;

guarantee reset => c = 0 ;
guarantee (not reset and on) => c = (1 -> pre c + 1) ;
guarantee (not reset and not on) => c = (0 -> pre c) ;

*)
let ... tel



Contracts as an Abstraction Mechanism

A component’s contract is usually simpler than the component’s
definition

A contract is a declarative over-approximation of the component

Contracts enable modular and compositional analyses in alternative
to a monolithic one

In compositional analyses we abstract away the complexity of a
component by its contract



Monolithic Analysis

Monolithic:

• analyze the top level

• considering the whole system

But

• complete system might be too complex

• changing subcomponents voids old results

• correctness of subcomponents is not
addressed

1 2

3

4



Modular Analysis

Modular:

• analyze all components bottom-up

• reusing results from subcomponents

But

• changing subcomponents voids old results

• complexity can explode as we go up
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Compositional Analysis

Compositional:

• analyze the top level

• abstracting subnodes by their contracts

• complexity of the system analyzed is reduced

• changing subcomponents preserves old results
(as long as new versions are correct)

But

• counterexamples might be spurious

• correctness of subcomponents is assumed

1 2
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Compositional and Modular

Compositional and modular:

• no abstraction for the leaf components

• as we move up, we abstract subcomponents

In case of failure we can restart the analysis
after refining by removing the abstraction,
possibly repeatedly

• all components are checked

• changing subcomponents preserves old results
(as long as new versions are correct)

• results for subcomponents are reused

• refining identifies spurious counterexamples
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Compositional and Modular: Benefits

If all components are valid, without refinement:

• the system as a whole is correct

• changing a component by a different, correct
one does not impact the correctness of the
whole system 1 2

3

4



Compositional and Modular: Benefits

If all components are valid, with refinement:

• the system as a whole is correct

• but the contracts are not good enough for a compositional
analysis to succeed

Refinement gives hints as to why



Compositional and Modular: Benefits

If we had to refine component 1 to prove 3 correct,
that’s probably because the contract of 1 is too
weak
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Compositional and Modular: Benefits

If after refining all sub-components we still cannot
prove 3 correct, that’s because

• the assumptions of 3 are too weak, and/or

• the guarantees of 3 are do not hold
1 2
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Modes

Often, specifications are contextual (mode-based):

when/if this is the case, do that

Assume/Guarantee contracts do not adequately capture this sort of
specifications

Modes are simply encoded as conditional guarantees



Modes: Example

stopwatch(toggle, reset) → count

Assumption:
• legit input ¬(reset ∧ toggle)

Guarantee:
• output range count ≥ 0

Modes: require ensure
• resetting reset count is 0
• running ¬reset ∧ on count increases by one
• stopped ¬reset ∧ ¬on count does not change



Modes in CocoSpec

CocoSpec represents modes explicitly

A mode consists of a require (req) and an ensure (ens) clause

• expresses a transient behavior

• corresponds to a guarantee req⇒ ens

⇒ separation between global behavior (guarantees)
and transient behavior (modes)



Modes in Contract

A set of modes M can be added to a contract

Its semantics is an assume / guarantee pair 〈A, G〉 with

A ≡
∨

m∈M
reqm

G ≡
∧

m∈M
(reqm ⇒ ensm)



Modes: Example

stopwatch(toggle, reset) → count

var on: bool = toggle -> (pre on and not toggle) or (not pre on and
toggle) ;

Assumption:
• legit input ¬(reset ∧ toggle)

Guarantee:
• output range count ≥ 0

Modes: require ensure
• resetting reset count = 0
• running ¬reset ∧ on count increases by one
• stopped ¬reset ∧ ¬on count does not change



Motivation

Detect shortcomings in the specification:

• do the modes cover all situations the assumptions allow?

• enables specification-checking before model-checking

Produce better feedback for counterexamples:

• indicate which modes are active at each step

• provide a mode-based abstraction of the concrete values

• abstraction is in terms of the user-specified behaviors
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CocoSpec Contracts

A CocoSpec contract is

• a set of assumptions,

• a set of guarantees, and

• a set of modes

Can contain internal variables

It can use specification nodes

Can be inlined in a node or stand-alone

Stand-alone contracts can be imported and instantiated



Stand-alone Contract with Modes

contract stopwatch_spec(tgl, rst: bool) returns (c: int) ;
let

var on: bool = tgl -> (pre on and not tgl) or (not pre on and tgl) ;

assume not (rst and tgl) ;
guarantee c >= 0 ;

mode resetting (
require rst ; ensure c = 0 ; ) ;

mode running (
require not rst and on ; ensure c = (1 -> pre c + 1) ; ) ;

mode stopped (
require not rst and not on ; ensure c = (0 -> pre c) ; ) ;

tel

node stopwatch(toggle, reset: bool) returns (count: bool) ;
(*@contract import stopwatch_spec(toggle, reset) returns (count) ; *)
let ... tel



Additional Features

In contracts, one can

• refer to modes in formulas (with ::<mode_name>)

• call contract-free nodes

node count(in: bool) returns (count: int) ;
let

count = (if in then 1 else 0) + (0 -> pre count) ;
tel

contract stopwatch_spec(tgl, rst: bool) returns (c: int) ;
let

...
mode running (...) ;
mode stopped (...) ;

guarantee not (::running and ::stopped) ;
guarantee ( count(::resetting) > 0 ) => ( c < count(true) ) ;

tel



CocoSpec Support

CocoSpec is fully supported by Kind 2 model checker

Kind 2:

• multi-engine SMT-based safety checker for Lustre programs

• competitive with state-of-the-art checkers for infinite-state
systems

• engines run concurrently and cooperatively

• can run modular / compositional, mode-aware analysis

• implements all the features discussed so far
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