
CS:5810
Formal	Methods	in	Software	

Engineering

Introduction	to	Alloy
Part	2

1

Copyright 2001-17, Matt Dwyer, John Hatcliff, Rod Howell, Laurence Pilard, and Cesare Tinelli.
Created by Cesare Tinelli and Laurence Pilard at the University of Iowa from notes originally developed by Matt Dwyer,
John Hatcliff, Rod Howell at Kansas State University. These notes are copyrighted materials and may not be used in other
course settings outside of the University of Iowa in their current form or modified form without the express written
permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid
for taking notes by any person or commercial firm without the express written permission of one of the copyright holders.

Alloys	Constraints

• Signatures	and	fields	resp.	define	classes	(of	
atoms)	and	relations	between	them

• Alloy	models	can	be	refined	further	by	adding	
formulas	expressing	additional	constraints	
over	those	classes	and	relations

• Several	operators	are	available	to	express	both	
logical	and	relational	constraints

2CS:5810 -- Formal Methods in Software Engineering Fall 2017

Logical	Operators
The	usual	logical	operators	are	available,	often	
in	two	forms

– not ! (Boolean)	negation
– and && conjunction
– or || disjunction
– implies => implication
– else alternative
– <=> equivalence

3CS:5810 -- Formal Methods in Software Engineering Fall 2017

Quantifiers

Alloy	includes	a	rich	collection	of	quantifiers

all x: S | F F holds	for	every x in	S

some x: S | F F	 holds	for	some x in	S

no x: S | F F holds	for	no x in	S

lone x: S | F F holds	for	at	most	one	x in	S

one x: S | F F holds	for	exactly	one x in	S

4CS:5810 -- Formal Methods in Software Engineering Fall 2017

Predefined	Sets	in	Alloy
There	are	three	predefined	set	constants:
• none :	empty	set
• univ :	universal	set
• ident :	identity	relation

Example. For	a	model instance	with	just:
Man = {(M0),(M1),(M2)}
Woman = {(W0),(W1)}

the	constants	have	the	values
none = {}
univ = {(M0),(M1),(M2),(W0),(W1)}
ident ={(M0,M0),(M1,M1),(M2,M2),(W0,W0),(W1,W1)}

5CS:5810 -- Formal Methods in Software Engineering Fall 2017

Everything	is	a	Set	in	Alloy

• There	are	no	scalars	
– We	never	speak	directly	about	elements	(or		tuples)	of	
relations

– Instead,	we	can	use	singleton relations:
one sig Matt extends Person

• Quantified	variables	always denote	singleton	
relations:
all x : S | … x …

x = {t} for	some	element t of S

6CS:5810 -- Formal Methods in Software Engineering Fall 2017

Set	Operators

+ union
& intersection
- difference
in subset
= equality
!= disequality

Example.Married	men:
Married & Man

7CS:5810 -- Formal Methods in Software Engineering Fall 2017

Relational	Operators

-> arrow	(cross	product)
~ transpose
. dot	join
[] box	join	
^ transitive	closure
* reflexive-transitive	closure
<: domain	restriction
:> image	restriction
++ override

8CS:5810 -- Formal Methods in Software Engineering Fall 2017

Arrow	Product
p -> q
• p and	q are	two	relations
• p ->	q is	the	relation	you	get	by	taking	every	combination	
of	a	tuple	from	p and	a	tuple	from	q and	concatenating	
them	(same	as	flat cross	product)

Examples.
Name = {(N0),(N1)}
Addr = {(D0),(D1)}
Book = {(B0)}

Name -> Addr = {(N0,D0),(N0,D1),(N1,D0),(N1,D1)}
Book -> Name -> Addr =

{(B0,N0,D0),(B0,N0,D1),(B0,N1,D0),(B0,N1,D1)}

9CS:5810 -- Formal Methods in Software Engineering Fall 2017

Transpose
~ p

take	the	mirror	image	of	the	relation	p,
i.e.,	reverse	the	order	of	atoms	in	each	tuple

Example:
• p = {(a0,a1,a2,a3),(b0,b1,b2,b3)}
• ~p = {(a3,a2,a1,a0),(b3,b2,b1,b0)}

How	would	you	use	~ to	express	the	parents	relation	?

~children

10CS:5810 -- Formal Methods in Software Engineering Fall 2017

Relational	Composition	(Join)
p.q

• p and	q are	two	relations	that	are	not	both	unary
• p.q is	the	relation	you	get	by	taking	every	
combination	of	a	tuple	from	p and	a	tuple	from	q
and adding	their	join,	if	it	exists

11CS:5810 -- Formal Methods in Software Engineering Fall 2017

How	to	join	tuples	?
• What	is	the	join	of	theses	two	tuples	?

– (a1,...,am)
– (b1,...,bn)

If	am ≠ b1 then	the	join	is	undefined
If	am =	b1 then	it	is:	(a1,...,am-1,b2,...,bn)

Examples.
– (a,b).(a,c,d) undefined
– (a,b).(b,c,d) = (a,c,d)

• What	about	(a)	.	(a)	?		
t1.t2 is	not	defined	if	t1 and	t2 are	both unary	tuples

12

Not defined !

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Examples
to maps	a	message	to	the	name	it	should	
be	sent	to
address maps	names	to	addresses

to = {(M0,N0),(M0,N2)
(M1,N2),(M2,N3)}

address = {(N0,D0),
(N0,D1),(N1,D1),(N2,D3)}

to.address maps	a	message	to	the	
addresses	it	should	be	sent	to

to.address = {(M0,D0),
(M0,D1),(M0,D3),(M1,D3)}

13

M2M1M0

N3N2N1N0

D3D1D0

to
address
to.address

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Exercises
What’s	the	result	of	these	join applications?

– {(a,b)}.{(c)}
– {(a)}.{(a,b)}
– {(a,b)}.{(b)}
– {(a)}.{(a,b,c)}
– {(a,b,c)}.{(c),(c,d),(b,c)}
– {(a,b)}.{(a,b,c)}
– {(a,b,c,d)}.{(d,e,f),(d,a)}
– {(a)}.{(b)}

14CS:5810 -- Formal Methods in Software Engineering Fall 2017

Exercises
• Given	a	relation	addr of	arity 4	that	contains	the	tuple	
b->n->a->t when	book	b maps	name	n to	address	a
at	time	t,	and	given	a	specific	book	B and	a	time	T:
– addr = {(B0,N0,D0,T0),(B0,N0,D1,T1),
(B0,N1,D2,T0),(B0,N1,D2,T1),(B1,N2,D3,T0),
(B1,N2,D4,T1)}

– T = {(T1)} B = {(B0)}

The	expression	B.addr.T is	the	name-address	mapping	
of	book	B at	time	T.	What	is	the	value	of	B.addr.T ?

• When	p is	a	binary	relation	and	q is	a	ternary	relation,	
what	is	the	arity of	the	relation	p.q ?	

• Join	is	not	associative,	why	?	
(i.e.,	(p.q).r and	p.(q.r) are	not	always	equivalent)	

15CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example:	Family	Structure
abstract sig Person {

children: set Person,

siblings: set Person

}

sig Man, Woman extends Person {}

sig Married in Person {

spouse: one Married

}

16CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example:	Family	Structure
• How	would	you	use	join	to	find	Matt’s	children	or	
grandchildren	?

– matt.children //	Matt’s children
– matt.children.children //	Matt’s	grandchildren

• What	if	we	want	to	find	Matt’s	descendants?

17CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example:	Family	Structure
Every	married	man	(woman)	has	a	wife	(husband)

all p: Married |

(p in Man => p.spouse in Woman)

and

(p in Woman => p.spouse in Man)

A	spouse	can’t	be	a	sibling

no p: Married |
p.spouse in p.siblings

18CS:5810 -- Formal Methods in Software Engineering Fall 2017

Box	Join
p[q]

– Semantically	identical	to	dot	join,	but	takes	its	arguments	in	
different	order

p[q] ≡ q.p

Example:	Matt’s	children	or	grandchildren	?

– children[matt] //	Matt’s	children
– children.children[matt] //	Matt’s	grandchildren
– children[children[matt]] //	Matt’s	grandchildren

19CS:5810 -- Formal Methods in Software Engineering Fall 2017

Transitive	Closure
^r

– Intuitively,	the	transitive	closure	of	a	relation	r:SxS is	what	you	get	
when	you	keep	navigating	through	r until	you	can’t	go	any	farther	

^r = r + r.r + r.r.r + …

20

(S0,S1)
(S1,S2)
(S2,S3)
(S4,S7)

r

(S0,S1)
(S1,S2)
(S2,S3)
(S4,S7) ^r
(S0,S2)
(S0,S3)
(S1,S3)

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example:	Family	Structure
• What	if	we	want	to	find	Matt’s	ancestors	or	
descendants	?

– matt.^children //	Matt’s	descendants
– matt.^(~children) //	Matt’s	ancestors

• How	would	you	express	the	constraint	“No	person	
can	be	their	own	ancestor	”

no p: Person | p in p.^(~children)

21CS:5810 -- Formal Methods in Software Engineering Fall 2017

Reflexive-transitive	closure
• *r = ^r + iden

22

(S0,S1)
(S1,S2)
(S2,S3)
(S4,S7)

r

*r

(S0,S1)
(S1,S2)
(S2,S3)
(S4,S7)
(S0,S2)
(S0,S3)
(S1,S3)
(S0,S0)
(S1,S1)
(S2,S2)
(S3,S3)
(S4,S4)
(S7,S7)

^r

iden

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Domain	and	Image	Restrictions
The	restriction	operators	are	used	to	filter	relations	to	a	
given	domain	or	image

If	s is	a	set	and	r is	a	relation	then
• s <: r contains	tuples	of	r starting	with	an	element	in	s
• r :> s contains	tuples	of	r ending	with	an	element	in	s

Examples.
Man = {(M0),(M1),(M2),(M3)}
Woman = {(W0),(W1)}
children = {(M0,M1),(M0,M2),(M3,W0),(W1,M1)}
// father-child
Man <: children = {(M0,M1),(M0,M2),(M3,W0)}
// parent-son
children :> Man = {(M0,M1),(M0,M2),(W1,M1)}

23CS:5810 -- Formal Methods in Software Engineering Fall 2017

Override
p ++ q
– p and	q are	two	relations	of	arity two	or	more
– the	result	is	like	the	union	between	p and	q except	that
tuples	of	q can	replace	tuples	of	p;	any	tuple	in	p that	
matches	a	tuple	in	q starting	with	the	same	element	is	
dropped

– p ++ q = p – (domain(q) <: p) + q

Example
– oldAddr = {(N0,D0),(N1,D1),(N1,D2)}
– newAddr = {(N1,D4),(N3,D3)}
– oldAddr ++ newAddr = {(N0,D0),(N1,D4),(N3,D3)}

24CS:5810 -- Formal Methods in Software Engineering Fall 2017

Operator	Precedence
||
<=>
=>
&&
!
=		!=		in
+		-
++
&
->
<:
:>
[]
.
~		*		^

25

Low

High

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example:	Family	Structure
How	would	you	express	the	constraint	“No	person	can	
have	more	than	one	father and	mother	”	?

26CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example:	Family	Structure
How	would	you	express	the	constraint	“No	person	can	have	
more	than	one	father and	mother	” ?

all p: Person |
(lone (children.p & Man)) and
(lone (children.p & Woman))

Equivalently:

all p: Person |
(lone (Man <: children).p) and
(lone (Woman <: children).p)

This	is	an	example	of	a	negative	constraint	that	is	easier	to	
state	positively	(to	make	use	of	the	lone operator)

27CS:5810 -- Formal Methods in Software Engineering Fall 2017

Set	Comprehension
{ x : S | F }
– the	set	of	values	drawn	from	set	S for	which	F
holds

How	would	use	the	comprehension	notation	to	specify	
the	set	of	people	that	have	the	same	parents	as	Matt?

(assuming	Person has	a		parents field)	

28CS:5810 -- Formal Methods in Software Engineering Fall 2017

Set	Comprehension
{ x : S | F }
– the	set	of	values	drawn	from	set	S for	which	F
holds

How	would	use	the	comprehension	notation	to	specify	
the	set	of	people	that	have	the	same	parents	as	Matt?

{ q: Person | q.parents = matt.parents }

(assuming	Person has	a		parents field)	

29CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example:	Family	Structure

30

How	would	you	express	the	constraint	“A	person	P’s	
siblings	are	those	people,	other	than	P,	with	the	same	
parents	as	P”

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example:	Family	Structure
How	would	you	express	the	constraint	“A	person	P’s	
siblings	are	those	people,	other	than	P,	with	the	same	
parents	as	P”

all p: Person |

p.siblings =

{q: Person | p.parents = q.parents} - p

31CS:5810 -- Formal Methods in Software Engineering Fall 2017

Let	
You	can	factor	expressions	out:

let x = e | A

– Each	occurrence	of	the	variable	x will	be replaced	by	the	
expression	e in	A

Example:	Each	married	man	(woman)	has	a	wife	(husband)

all p: Married |

let q = p.spouse |

(p in Man => q in Woman) and

(p in Woman => q in Man)

32CS:5810 -- Formal Methods in Software Engineering Fall 2017

Facts
Additional	constraints	on	signatures	and	fields	
are	expressed	in	Alloy	as	facts

fact Name {

F1

F2

…

}

AA	looks	for	instances	of	a	model	that	also	
satisfy	all of	its	fact	constraints

33CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example	Facts

-- No person can be their own ancestor

-- At most one father and mother

-- a persons's siblings are other persons with the same
parents

34CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example	Facts

-- No person can be their own ancestor
fact selfAncestor {

no p: Person | p in p.^parents
}

-- At most one father and mother
fact loneParents {

all p: Person | lone (p.parents & Man) and
lone (p.parents & Woman)

}

-- a persons's siblings are other persons with the same
parents

fact siblingsDefinition {
all p: Person |

p.siblings = {q: Person | p.parents = q.parents} - p
}

35CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example	Facts
fact social {

-- Every married man (woman) has a wife (husband)

all p: Married |

let s = p.spouse |

(p in Man => s in Woman) and

(p in Woman => s in Man)

-- A spouse can't be a sibling

no p: Married | p.spouse in p.siblings

-- A person can't be married to a blood relative

no p: Married |

some (p.*parents & (p.spouse).*parents)

}

36CS:5810 -- Formal Methods in Software Engineering Fall 2017

Run	Command

• Used	to	ask	AA	to	generate	an	instance	of	the	
model

• May	include	conditions
– Used	to	guide	AA	to	pick	model	instances	with	certain	
characteristics

– E.g.,	force	certain	sets	and	relations	to	be	non-empty
– In	this	case,	not	part	of	the	“true”	specification

37CS:5810 -- Formal Methods in Software Engineering Fall 2017

Run	Command

• To	analyze	a	model,	you add	a	run	command	
and	instruct	AA	to	execute	it.
– the	run	command

tells	the	tool	to	search	for	an	instance	of	the	model

– you	may	also	give	a scope	to	signatures
bounds	the	size	of	instances	that	will	be	considered

• AA	executes	only	the	first run command	in	a	
file

38CS:5810 -- Formal Methods in Software Engineering Fall 2017

Scope

• Limits	the	size	of	instances	considered	to	
make	instance	finding	feasible

• Represents	the	maximum	number	of	elements	
in	a top-level	signature

• Default value	=	3	for	each	top-level	signature

39CS:5810 -- Formal Methods in Software Engineering Fall 2017

Run	Conditions

• We	can	use	condition	schemas	to	encode	
realism	constraints to	e.g.,	
– Force	generated	models	to	include	at	least	one	
married	person,	or	one	married	man,	etc.

• Condition schemas	can	be	used	to	implement	
constraint	macros
– This	allows	common	constraints	to	be	shared

40CS:5810 -- Formal Methods in Software Engineering Fall 2017

Run	Example

41

Family Structure:

-- The simplest run command
-- The scope of every signature is 3
run {}

-- The scope scope of every signature is 5
run {} for 5

-- With conditions forcing each set to be populated
-- Setting the scope to 2
run {some Man && some Woman && some Married} for 2

-- Other scenarios
run {some Woman && no Man} for 7
run {some Man && some Married && no Woman}

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Exercises

• Load	family-2.als
• Execute	it
• Analyze	the	metamodel
• Look	at	the	generated	instance
• Does	it	look	correct?
• What	if	anything	would	you	change	about	it?

42CS:5810 -- Formal Methods in Software Engineering Fall 2017

Empty	Signatures

• The	analyzer’s	algorithms	prefer	smaller	
instances
– Often	it	produces	empty	signatures	or	otherwise	
trivial	instances	

– It	is	useful	to	know	that	these	instances	satisfy	the	
constraints	(since	you	may	not	want	them)

• Usually,	they	do	not	illustrate	the	interesting	
behaviors	that	are	possible

43CS:5810 -- Formal Methods in Software Engineering Fall 2017

Exercises
• Load	family-3.als
• Execute	it
• Look	at	the	generated	instance
• Does	it	look	correct?
• How	can	you	produce	
– two	married	couples?
– a	non	empty	married	relation	and	a	non-empty	
siblings	relation	?

44CS:5810 -- Formal Methods in Software Engineering Fall 2017

Assertions

• Often	we	believe	that	our	model entails	certain	
constraints	that	are	not	directly	expressed
– e.g.,	some	A	&&	(A	in	B)			entails			some	B

• We	can	define	these	constraints	as assertions
and	ask	the	analyzer	to	check	if	they	hold
– e.g.,			assert	myAssertion {	some	B	}

check	myAssertion

45CS:5810 -- Formal Methods in Software Engineering Fall 2017

Assertions

• If	the	constraint	in	an	assertion	does	not	hold,	
the	analyzer	will	produce	a	counterexample	
instance

• If	you	expect	the	constraint	to	hold	but	it	does	
not,	you	can	either
– make	it	into	a	fact,	or	
– refine	your	model	until	the	assertion	holds

46CS:5810 -- Formal Methods in Software Engineering Fall 2017

Assertions
• No	person	has	a	parent	that	is	also	a	sibling

assert a1 { all p: Person |
no p.parents & p.siblings }

• A	person’s	siblings	are	his/her	siblings’	siblings

assert a2 { all p: Person |
p.siblings = p.siblings.siblings }

• No	person	shares	a	common	ancestor	with	his/her	spouse	(i.e.,	
spouse	isn’t	related	by	blood)

assert a3 { no p: Married |

some (p.^parents & p.spouse.^parents) }

47CS:5810 -- Formal Methods in Software Engineering Fall 2017

Assertion	Scopes

• You	can	specify	a	scope	explicitly	for	any	
signature,	but:

– If	a	signature	has	been	given	a	bound

– Then	the	bound	of	its	supersignature or	any	
other	extension	of	the	same	supersignature
can	be	determined

48CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example	Scope
abstract sig Object {}
sig Directory extends Object {}
sig File extend Object {}
sig Alias in File {}

We	consider	an	assertion	A

• well-formed:
check A for 5 Object
check A for 4 Directory, 3 File
check A for 5 Object, 3 Directory
check A for 3 Directory, 3 Alias, 5 File

• ill-formed	because	it	leaves	the	bound	of	File unspecified
check A for 3 Directory, 3 Alias

49CS:5810 -- Formal Methods in Software Engineering Fall 2017

Example	Scope	
abstract sig Object {}

sig Directory extends Object {}

sig File extends Object {}

sig Alias in File {}

• check A for 5 [or] run {} for 5

places	a	bound	of	5	on	each	top-level	signature	(in	this	
case	just	Object)

• check A for 5 but 3 Directory

additionally	places	a	bound	of	3	on	Directory,	and	a	
bound	of	2	on	File by	implication

• check A for exactly 3 Directory, exactly 3 Alias,
5 File

limits	File to	at	most	5	tuples,	but	requires	that	
Directory and	Alias have	exactly	3	tuples	each

50CS:5810 -- Formal Methods in Software Engineering Fall 2017

Size	Determination

Size	determined	in	a	signature	declaration	has	priority	
on	size	determined	in	scope

Example:
abstract sig Color {}

one sig red, yellow, green extends color {}

sig Pixel {color: one Color}

check A for 2

limits	the	signature	Pixel to	2	elements,	but	assigns	a	
size	of	exactly	3	to	Color

51CS:5810 -- Formal Methods in Software Engineering Fall 2017

Exercises

• Load	family-4.als
• Execute	it
• Look	at	the	generated	counter-examples
• Why	is	SiblingsSibling false?
• Why	is	NoIncest false?

52CS:5810 -- Formal Methods in Software Engineering Fall 2017

Problems	with	Assertions
Analyzing SiblingSiblings ...
Scopes: Person(3)
Counterexample found:

Person = {M,W0,W1}
Man = {M}
Woman = {W0,W1}
Married = {M,W1}

children = {(W0,W1)}
siblings = {(M,W0),(W0,M)}
spouse = {(M,W1),(W1,M)}

53

M.siblings = {W0}
M.siblings.siblings = {M}

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Problems	with	Assertions
Analyzing NoIncest ...
Scopes: Person(3)
Counterexample found:

Person = {M0,M1,W}
Man = {M0,M1}
Woman = {W}
Married = {M1,W}

children = {(M0,W),(W,M1)}
siblings = {}
spouse = {(M1,W),(W,M1)}

54

(M0 is an Ancestor of M1
and

M0 is an ancestor of W)
and

M1 and W are married

CS:5810 -- Formal Methods in Software Engineering Fall 2017

Exercises
• Fix	the	specification	in	family-4.als
– If	the	model	is	underconstrained,	add	appropriate	
constraints

– If	the	assertion	is	not	correct,	modify	it
• Demonstrate	that	your	fixes	yield	no	counter-
examples
– Does	varying	the	scope	make	a	difference?
– Does	this	mean	that	the	assertions	hold	for	all	
models?

55CS:5810 -- Formal Methods in Software Engineering Fall 2017

Functions	and	Predicates
Parametrized macros for	terms	and	formulas
– Can	be	named	and	reused	in	different	contexts								
(facts,	assertions	and	conditions	of	run)

– Can	have	zero	or	more	parameters
– Used	to	factor	out	common	patterns

Functions are	good	for:
– set	expressions you	want	to	reuse	in	different	contexts

Predicates are	good	for:
– formulas	you	want	to	reuse	in	different	contexts

56CS:5810 -- Formal Methods in Software Engineering Fall 2017

Functions
A	named	set	expression,	with	zero	or	more	parameters

Examples:
– The	sisters	function
fun sisters [p: Person] : Woman {

{w: Woman | w in p.siblings} }

– The	parents	relation
fun parents [] : Person -> Person {~children}

– Used	in	a	formula
all p: Person | not (p in p.^parents or

p in sisters[p])

57CS:5810 -- Formal Methods in Software Engineering Fall 2017

Predicates
A	named	formula,	with	zero	or	more	parameters

Predicates	are	not	included	when	analyzing	other	schemas	
(e.g.,	facts	or	assertions)	unless	they	are	applied	to	actual	
arguments	in	the	schemas	being	analyzed

Example:
– Two	persons	are	blood	relatives	iff they	have	a	common	ancestor
pred BloodRelated [p: Person, q: Person] {
some (p.*parents & q.*parents)

}
– A	person	can't	be	married	to	a	blood	relative
no p: Married | BloodRelated[p, p.spouse]

58CS:5810 -- Formal Methods in Software Engineering Fall 2017

Predicate	or	Fact	?

• Predicates	are	(parametrized)	definitions of	
constraints

• Facts	are	assumed constraints

• Note: You	can	package	constraints	as	predicates	and	
then	use	those	predicates	in	facts
pred IsSingle[p: Person] { not (p in Married) }
pred IsFather[p: Man] { some p.children }

fact { some q: Man | IsSingle[q] && IsFather[q] }

59CS:5810 -- Formal Methods in Software Engineering Fall 2017

Exercises
• Define	a	predicate	that	characterizes	the	notion	of	
“in-law”	for	the	family	example

• Write	a	fact	stating	that	a	person	is	an	in-law	of	their	
in-laws

• Add	these	to	the	family	example	and	run	it	through	
AA

• Can	you	express	this	same	notion	in	another	way	in	
the	Alloy	model?

– Do	so	and	run	it	through	AA
– Which	approach	is	better?		Why?

60CS:5810 -- Formal Methods in Software Engineering Fall 2017

Exercises
• Add	an	assertion	stating	that	a	person	has	no	
married	in-laws

• What	is	the	minimum	scope	for	set	Person	for	
which	ACA	can	find	a	counterexample?

• How	would	you	use	ACA	to	prove	that	your	
answer	is	truly	the	minimum	scope?

• prove	it!

61CS:5810 -- Formal Methods in Software Engineering Fall 2017

Acknowledgements

62

The family structure example is based on an example by
Daniel Jackson distributed with the Alloy Analyzer

CS:5810 -- Formal Methods in Software Engineering Fall 2017

