
The University of Iowa Fall 2017

CS:5810
Formal Methods in Software Engineering

Introduction

Copyright 2017, Cesare Tinelli, Pierre-Loïc Garoche, Reiner Hänle, Steven Miller

These notes are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their

current form or modified form without the express written permission of one of the copyright holders

2/37

A TRUISM

Software has become critical to modern life

Communication (internet, voice, video, . . .)

Transportation (air traffic control, avionics, cars, . . .)

Health Care (patient monitoring, device control, . . .)

Finance (automatic trading, banking, . . .)

Defense (intelligence, weapons control, . . .)

Manufacturing (precision milling, assembly, . . .)

Process Control (oil, gas, water, . . .)

. . .

3/37

EMBEDDED SOFTWARE

Software is now embedded everywhere

Some of it is critical

Failing software costs money and life!

3/37

EMBEDDED SOFTWARE

Software is now embedded everywhere
Some of it is critical

Failing software costs money and life!

3/37

EMBEDDED SOFTWARE

Software is now embedded everywhere
Some of it is critical

Failing software costs money and life!

4/37

SOFTWARE SYSTEMS ARE GROWING VERY LARGE

5/37

SOFTWARE SYSTEMS ARE GROWING VERY LARGE

http://www.informationisbeautiful.net/visualizations/million-lines-of-code

6/37

SOFTWARE SYSTEMS ARE GROWING VERY LARGE

Automotive Software

A typical 2017 car model contains ∼100M lines of code:
how do you verify that?

Current cars admit hundreds of onboard functions:
how do you cover their combination?

E.g., does braking when changing the radio station and starting the
windscreen wiper, affect air conditioning?

7/37

FAILING SOFTWARE COSTS MONEY

Expensive recalls products with embedded software

Lawsuits for loss of life or property damage
• Car crashes (e.g., Toyota Camry 2005)

Thousands of dollars for each minute of down-time
• (e.g., Denver Airport Luggage Handling System)

Huge losses of monetary and intellectual investment
• Rocket boost failure (e.g., Ariane 5)

Business failures associated with buggy software
• (e.g., Ashton-Tate dBase)

8/37

FAILING SOFTWARE COSTS LIVES

Potential problems are obvious:

• Software used to control nuclear power plants

• Air-traffic control systems

• Spacecraft launch vehicle control

• Embedded software in cars

A well-known and tragic example:

Therac-25 radiation machine failures

9/37

THE PECULIARITY OF SOFTWARE SYSTEMS

Software seems particularly prone to faults

Tiny faults can have catastrophic consequences
Ariane 5

Mars Climate Orbiter, Mars Sojourner

Pentium-Bug

. . .

Rare bugs can occur
avg. lifetime of a passenger plane: 30 years

avg. lifetime of a car: < 10 years, but already > 1.2B cars in 2014

Logic and implementation errors represent security exploits
(too many to mention)

10/37

OBSERVATION

Building software is what most of you will do after
graduation

You’ll be developing systems in the context above

Given the increasing importance of software,
• you may be liable for errors
• your job may depend on your ability to produce reliable systems

What are the challenges in building
reliable and secure software?

11/37

ACHIEVING RELIABILITY IN ENGINEERING

Some well-known strategies from civil engineering:

Precise calculations/estimations of forces, stress, etc.

Hardware redundancy (“make it a bit stronger than
necessary”)

Robust design (single fault not catastrophic)

Clear separation of subsystems (any airplane flies with
dozens of known and minor defects)

Design follows patterns that are proven to work

12/37

WHY THIS DOES NOT WORK FOR SOFTWARE

Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

Redundancy as replication doesn’t help against bugs
Redundant SW development only viable in extreme cases

No physical or modal separation of subsystems
Local failures often affect whole system

Software designs have very high logic complexity

Most SW engineers untrained in correctness

Cost efficiency more important than reliability

Design practice for reliable software is not yet mature

13/37

HOW TO ENSURE SOFTWARE CORRECTNESS?

A Central Strategy: Testing
(others: SW processes, reviews, libraries, . . .)

Testing against inherent SW errors (“bugs”)

Design test configurations that hopefully are representative
and
ensure that the system behaves as intended on them

Testing against external faults

Inject faults (memory, communication) by simulation or
radiation

14/37

LIMITATIONS OF TESTING

Testing can show the presence of errors, but not their
absence

(exhaustive testing viable only for trivial systems)

Representativeness of test cases/injected faults is subjective

How to test for the unexpected? Rare cases?

Testing is labor intensive, hence expensive

15/37

COMPLEMENTING TESTING: FORMAL VERIFICATION

A Sorting Program:
i n t* sort(i n t* a) {
...

}

Testing sort:

sort({3,2,5}) == {2,3,5}
√

sort({}) == {}
√

sort({17}) == {17}
√

Typically missed test cases

sort({2,1,2}) == {1,2,2} �

sort(null) == exception �

isPermutation(sort(a),a) �

15/37

COMPLEMENTING TESTING: FORMAL VERIFICATION

A Sorting Program:
i n t* sort(i n t* a) {
...

}

Testing sort:

sort({3,2,5}) == {2,3,5}
√

sort({}) == {}
√

sort({17}) == {17}
√

Typically missed test cases

sort({2,1,2}) == {1,2,2} �

sort(null) == exception �

isPermutation(sort(a),a) �

15/37

COMPLEMENTING TESTING: FORMAL VERIFICATION

A Sorting Program:
i n t* sort(i n t* a) {
...

}

Testing sort:

sort({3,2,5}) == {2,3,5}
√

sort({}) == {}
√

sort({17}) == {17}
√

Typically missed test cases

sort({2,1,2}) == {1,2,2} �

sort(null) == exception �

isPermutation(sort(a),a) �

16/37

FORMAL VERIFICATION AS THEOREM PROVING

Theorem (Correctness of sort()) For any given non-null int
array a, calling the program sort(a) returns an int array that is
sorted wrt ≤ and is a permutation of a.

However, methodology differs from mathematics:

1. Formalize the expected property in a logical language

2. Prove the property with the help of an (semi-)automated tool

17/37

CONTRASTING TESTING WITH FORMAL VERIFICATION

18/37

FORMAL METHODS

Rigorous techniques and tools for the development and
analysis of computational (hardware/software) systems

Applied at various stages of the development cycle

Also used in reverse engineering to model and analyze
existing systems

Based on mathematics and symbolic logic (formal)

18/37

FORMAL METHODS

Rigorous techniques and tools for the development and
analysis of computational (hardware/software) systems

Applied at various stages of the development cycle

Also used in reverse engineering to model and analyze
existing systems

Based on mathematics and symbolic logic (formal)

18/37

FORMAL METHODS

Rigorous techniques and tools for the development and
analysis of computational (hardware/software) systems

Applied at various stages of the development cycle

Also used in reverse engineering to model and analyze
existing systems

Based on mathematics and symbolic logic (formal)

18/37

FORMAL METHODS

Rigorous techniques and tools for the development and
analysis of computational (hardware/software) systems

Applied at various stages of the development cycle

Also used in reverse engineering to model and analyze
existing systems

Based on mathematics and symbolic logic (formal)

19/37

MAIN ARTIFACTS IN FORMAL METHODS

1. System requirements
2. System implementation

Formal methods rely on
a. some formal specification of (1)
b. some formal execution model of (2)

Use tools to verify mechanically that implementation satisfies
(a) according to (b)

19/37

MAIN ARTIFACTS IN FORMAL METHODS

1. System requirements
2. System implementation

Formal methods rely on
a. some formal specification of (1)
b. some formal execution model of (2)

Use tools to verify mechanically that implementation satisfies
(a) according to (b)

20/37

WHY USE FORMAL METHODS

Mathematical modeling and analysis contribute to the overall
quality of the final product

Increase confidence in the correctness/robustness/security
of a system

Find more flaws and earlier (i.e., during specification and
design vs. testing and maintenance)

21/37

WHY USE FORMAL METHODS

Relative cost to fix an error, by development phase

Finding errors earlier reduces development costs

22/37

FORMAL METHODS: THE VISION

Complement other analysis and design methods

Help find bugs in code and specification

Reduce development, and testing, cost

Ensure certain properties of the formal system model

Should be highly automated

23/37

FORMAL METHODS AND TESTING

Run the system at chosen inputs and observe its behavior

• Randomly chosen
• Intelligently chosen (by hand: expensive!)
• Automatically chosen (need formalized spec)

What about other inputs? (test coverage)

What about the observation? (test oracle)

Challenges can be addressed by/require formal methods

24/37

A WARNING

The notion of “formality” is often misunderstood
(formal vs. rigorous)

The effectiveness of formal methods is still debated

There are persistent myths about their practicality
and cost

Formal methods are not yet widespread in industry

They are mostly used in the development of safety, business,
or mission critical software, where the cost of faults is high

25/37

THE MAIN POINT OF FORMAL METHODS IS NOT

To show “correctness” of entire systems
• What is correctness? Go for specific properties!

To replace testing entirely
• Formal methods do not go below byte code level
• Some properties are not formalizable

To replace good design practices

There is no silver bullet!

No correct system w/o clear requirements & good design

26/37

OVERALL BENEFITS OF USING FORMAL METHODS

Forces developers to think systematically about issues

Improves the quality of specifications, even without formal
verification

Leads to better design

Provides a precise reference to check requirements against

Provides documentation within a team of developers

Gives direction to latter development phases

Provides a basis for reuse via specification matching

Can replace (infinitely) many test cases

Facilitates automatic test case generation

27/37

SPECIFICATIONS: WHAT THE SYSTEM SHOULD DO

Simple properties
• Safety properties: something bad will never happen
• Liveness properties: something good will happen eventually
• Non-functional properties: runtime, memory, usability, . . .

“Complete” behaviour specification
• Equivalence check
• Refinement
• Data consistency
• . . .

28/37

FORMAL SPECIFICATION

The expression in some formal language and at some
level of abstraction of a collection of properties that some
system should satisfy [van Lamsweerde]

formal language:
• syntax can be mechanically processed and checked
• semantics is defined unambiguously by mathematical means

abstraction:
• above the level of source code
• several levels possible

28/37

FORMAL SPECIFICATION

The expression in some formal language and at some
level of abstraction of a collection of properties that some
system should satisfy [van Lamsweerde]

properties:
• expressed in some formal logic
• have a well-defined semantics

satisfaction:
• ideally (but not always) decided mechanically
• based on automated deduction and/or model checking techniques

29/37

FORMALIZATION HELPS TO FIND BUGS IN SPECS

Well-formedness and consistency of formal specs
arecheckable with tools

Fixed signature (symbols) helps spot incomplete specs

Failed verification of implementation against spec
gives feedback on erroneous formalization

30/37

A FUNDAMENTAL FACT

Formalisation of system requirements is hard

31/37

DIFFICULTIES IN CREATING FORMAL MODELS

Real World

Formal
Execution

Model

Formal
Requirements
Specification

Abstraction

wrong assumption

eg. zero delay

missing requirement

eg, stack overflow

misunderstood problem

eg, wrong integer model

31/37

DIFFICULTIES IN CREATING FORMAL MODELS

Real World

Formal
Execution

Model

Formal
Requirements
Specification

Abstraction

wrong assumption

eg. zero delay

missing requirement

eg, stack overflow

misunderstood problem

eg, wrong integer model

31/37

DIFFICULTIES IN CREATING FORMAL MODELS

Real World

Formal
Execution

Model

Formal
Requirements
Specification

Abstraction

wrong assumption

eg. zero delay

missing requirement

eg, stack overflow

misunderstood problem

eg, wrong integer model

31/37

DIFFICULTIES IN CREATING FORMAL MODELS

Real World

Formal
Execution

Model

Formal
Requirements
Specification

Abstraction

wrong assumption

eg. zero delay

missing requirement

eg, stack overflow

misunderstood problem

eg, wrong integer model

32/37

ANOTHER FUNDAMENTAL FACT

Proving properties of systems can be hard

33/37

LEVEL OF SYSTEM DESCRIPTION

Low level (machine level)
Finitely many states
Tedious to program, worse to maintain
Automatic proofs are (in principle) possible

...

High level (programming language level)
Complex datatypes and control structures,
general programs
Easier to program
Automatic proofs (in general) impossible!

34/37

EXPRESSIVENESS OF SPECIFICATION

Simple
Finitely many cases
Approximation, low precision
Automatic proofs are (in principle) possible

...

Complex
General properties
High precision, tight modeling
Automatic proofs (in general) impossible!

35/37

CURRENT AND FUTURE TRENDS

Slowly but surely formal methods are finding increased used in
industry.

Design for formal verification
Combining semi-automatic methods with SAT, theorem
provers
Combining static analysis of programs
with automatic methods and with theorem provers
Combining test and formal verification
Integration of formal methods into SW development process

36/37

CURRENT AND FUTURE TRENDS

Need for secure systems is increasing the use of FMs

Security is intrinsically hard

"Security is to safety as Lucifer is to Murphy"

Redundant fault-tolerant systems are often used to meet
safety requirements

Fault-tolerance depends on the independence of component
failures

Security attacks are intelligent, coordinated and malicious

Formal methods provides a systematic way to meet stringent
security requirements

37/37

SUMMARY

Software is becoming pervasive and very complex

Current development techniques are inadequate

Formal methods . . .
• are not a panacea, but will be increasingly necessary
• are (more and more) used in practice
• can shorten development time
• can push the limits of feasible complexity
• can increase product quality
• can improve system security

We will learn to use several different formal methods, for
different development stages

