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Pros and cons of propositional logic

+ Propositional logic is declarative: pieces of syntax correspond to facts

+ Propositional logic allows partial/disjunctive/negated information
(unlike most data structures and databases)

+ Propositional logic is compositional:
meaning of B1,1 ^ P1,2 is derived from meaning of B1,1 and of P1,2

+ Meaning in propositional logic is context-independent
(unlike natural language, where meaning depends on context)

� Propositional logic has very limited expressive power
E.g., cannot say “pits cause breezes in adjacent squares”
except by writing one sentence for each square

Need a logic that’s more expressive
) First Order Logic (FOL)
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Outline

} Syntax and semantics of FOL

} Examples of sentences

} Wumpus world in FOL
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Basic entities in FOL

Whereas propositional logic assumes world contains facts,
first-order logic (like natural language) assumes the world contains

• Objects: people, houses, numbers, theories, Ronald McDonald, colors,
baseball games, wars, centuries . . .

• Relations: red, round, bogus, prime, multistoried . . .,
is the brother of, is bigger than, is inside, is part of, has color, occurred
after, owns, comes between, . . .

• Functions: father of, best friend, third inning of, one more than, end of
. . .
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Logics in general

Language Ontological commitment* Epistemological commitment*
(what it talks about) (what it says about truth)

Prop. logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief
Fuzzy logic facts + degree of truth known interval value

*To philosophers, these mean roughly the following:

ontological commitment ⇡ our assumptions about what things exist

epistemological commitment ⇡ what we can know about those things
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Syntax of FOL: Basic elements

Constant symbols KingJohn, 2, UniversityofMaryland , . . .
Predicate symbols Brother, >, . . .
Function symbols Sqrt, LeftLegOf , . . .
Variable symbols x, y, a, b, . . .
Connectives ^ _ ¬ ) ,
Equality =

Quantifiers 8 9
Punctuation ( ) ,
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Atomic sentences

Atomic sentence = predicate(term1, . . . , termn)

or term1 = term2

Term = function(term1, . . . , termn)

or constant or variable

E.g.,

Brother(KingJohn, RichardTheLionheart)

> (Length(LeftLegOf (Richard)), Length(LeftLegOf (KingJohn)))
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Complex sentences

Complex sentences are made from atomic sentences using connectives

¬S, S1 ^ S2, S1 _ S2, S1 ) S2, S1 , S2

E.g.,

Sibling(KingJohn, Richard) ) Sibling(Richard, KingJohn)

>(1, 2) _ (1, 2)

>(1, 2) ^ ¬>(1, 2)
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Truth in first-order logic

In FOL, a model is a pair M = (D, I), where D is a domain and I is an
interpretation

D contains � 1 objects (domain elements)
and relations among them

I specifies referents for
constant symbols ! objects in the domain
predicate symbols ! relations over objects in the domain
function symbols ! functional relations over objects in the domain

Recall that mathematically, a relation is a set of ordered n-tuples

An atomic sentence predicate(term1, . . . , termn) is true in M
i↵ the objects referred to by term1, . . . , termn

are in the relation referred to by predicate

Like before, we say M is a model of a sentence ↵ if ↵ is true in M
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Truth example

Suppose M = (D, I), where
D is the domain shown at right,
and I is an interpretation in which

Richard !
Richard the Lionheart

John !
the evil King John

Brother !
the brotherhood relation

R J$

left leg left leg

on headbrother

brother

person
person
king

crown

Brother(Richard, John) is true in M i↵ the pair consisting of
Richard the Lionheart and the evil King John
is in the brotherhood relation
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Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating the pos-
sible worlds (i.e., model checking)

How to enumerate possible worlds in FOL?

For each number of domain elements n from 1 to 1
For each k-ary predicate Pk in the vocabulary

For each possible k-ary relation on n objects
For each constant symbol C in the vocabulary

For each choice of referent for C from n objects . . .

Computing entailment in this way is not easy!
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Universal quantification

8 hvariablesi hsentencei

Everyone at the University of Maryland is smart:
8x At(x, UMD) ) Smart(x)

8x P is true in a model m i↵ P is true with x being
each possible object in the model

Roughly equivalent to the conjunction of instantiations of P

(At(KingJohn, UMD) ) Smart(KingJohn))

^ (At(Richard, UMD) ) Smart(Richard))

^ (At(UMD, UMD) ) Smart(UMD))

^ . . .
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A common mistake to avoid

Common mistake with 8:
using ^ when you meant to use )

8x At(x, UMD) ^ Smart(x)

means “Everyone is at UMD and everyone is smart”

Probably you meant to say

8x At(x, UMD) ) Smart(x)

Everyone at UMD is smart.
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Existential quantification

9 hvariablesi hsentencei

Someone at UMD is smart:
9x At(x, UMD) ^ Smart(x)

9x P is true in a model m i↵ P is true with x being
some possible object in the model

Roughly equivalent to the disjunction of instantiations of P

(At(KingJohn, UMD) ^ Smart(KingJohn))

_ (At(Richard, UMD) ^ Smart(Richard))

_ (At(UMD, UMD) ^ Smart(UMD))

_ . . .
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Another common mistake to avoid

A common mistake with 9:
using ) when you meant to use ^:

9x At(x, UMD) ) Smart(x)

This is equivalent to

9x ¬At(x, UMD) _ Smart(x)

There’s someone who either is smart or isn’t at UMD.

That’s true if there’s anyone who is not at UMD.

Probably you meant to say this instead:

9x At(x, UMD) ^ Smart(x)

There’s someone who is at UMD and is smart.
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Properties of quantifiers

8x 8 y is the same as 8 y 8x

9x 9 y is the same as 9 y 9x

9x 8 y is not the same as 8 y 9x

9x 8 y Loves(x, y)

“There is a person who loves everyone in the world”

8 y 9x Loves(x, y)

“Everyone in the world is loved by at least one person”

Quantifier duality: each can be expressed using the other

8x Likes(x, IceCream) ¬9x ¬Likes(x, IceCream)

9x Likes(x, Broccoli) ¬8x ¬Likes(x, Broccoli)
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Examples of sentences

Brothers are siblings
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Examples of sentences

Brothers are siblings

8x, y Brother(x, y) ) Sibling(x, y)

“Sibling” is symmetric
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Examples of sentences

Brothers are siblings

8x, y Brother(x, y) ) Sibling(x, y)

“Sibling” is symmetric

8x, y Sibling(x, y) , Sibling(y, x)

One’s mother is one’s female parent
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Examples of sentences

Brothers are siblings

8x, y Brother(x, y) ) Sibling(x, y)

“Sibling” is symmetric

8x, y Sibling(x, y) , Sibling(y, x)

One’s mother is one’s female parent

8x, y Mother(x, y) , (Female(x) ^ Parent(x, y))

A first cousin is a child of a parent’s sibling
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Examples of sentences

Brothers are siblings

8x, y Brother(x, y) ) Sibling(x, y)

“Sibling” is symmetric

8x, y Sibling(x, y) , Sibling(y, x)

One’s mother is one’s female parent

8x, y Mother(x, y) , (Female(x) ^ Parent(x, y))

A first cousin is a child of a parent’s sibling

8x, y F irstCousin(x, y) ,
9 px, py Parent(px, x) ^ Sibling(px, py) ^ Parent(py, y)
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Equality

term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same object

E.g., 1 = 2 and 8x ⇥(Sqrt(x), Sqrt(x)) = x are satisfiable
(true under at least one interpretation)

2 = 2 is valid (true in every interpretation)

E.g., definition of Sibling in terms of Parent:
8x, y Sibling(x, y) , [¬(x = y) ^ 9m, f ¬(m = f ) ^

Parent(m, x) ^ Parent(f, x) ^ Parent(m, y) ^ Parent(f, y)]
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Substitutions

Substitution: a set of variable bindings

Consider a substitution � that assigns x = 1, y = f (z)

A logician would write � = {1/x, f (z)/y}
Russell and Norvig write � = {x/1, y/f(z)}

To try to avoid ambiguity, I’ll try to write � = {x 1, y  f (z)}

Given a sentence S and a substitution �,
S� (postfix notation) is the result of applying � to S

S = GreaterThan(x, y)

� = {x 1, y  f (z)}
S� = GreaterThan(1, f(z))

The substitutions are performed simultaneously like let,
not sequentially like let*

S = GreaterThan(x, y)

� = {x 2, y  g(x)}
S� = GreaterThan(2, g(x))
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Interacting with FOL KBs

Suppose an agent has an FOL KB of
axioms for how the Wumpus world works

A model of the KB consists of a domain and interpretation (e.g., an actual
Wumpus World) that makes every sentence in the KB true

Suppose we have a way to do inference in the FOL KB (see next chapter)

Suppose the agent perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB, Percept([Smell, Breeze, None], 5))

Ask(KB, 9 a Action(a, 5))

I.e., does KB entail any particular actions at t = 5?

Answer: Y es, {a Shoot}  substitution

Ask(KB, S) returns some/all � such that KB |= S�
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Knowledge base for the wumpus world

“Perception”
8 b, g, t Percept([Smell, b, g], t) ) Smelled(t)
8 s, b, t Percept([s, b, Glitter], t) ) AtGold(t)

Reflex: 8 t AtGold(t) ) Action(Grab, t)

Reflex with internal state: do we have the gold already?
8 t AtGold(t) ^ ¬Holding(Gold, t) ) Action(Grab, t)

Holding(Gold, t) cannot be observed
) keeping track of change is essential
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Deducing hidden properties

Properties of locations:
8x, t At(Agent, x, t) ^ Smelled(t) ) Smelly(x)

8x, t At(Agent, x, t) ^Breeze(t) ) Breezy(x)

Squares are breezy near a pit:

Diagnostic rule—infer cause from e↵ect
8 y Breezy(y) ) 9x Pit(x) ^ Adjacent(x, y)

Causal rule—infer e↵ect from cause
8x, y P it(x) ^ Adjacent(x, y) ) Breezy(y)

Neither of these is complete—e.g., the causal rule doesn’t say whether
squares far away from pits can be breezy

Definition for the Breezy predicate:
8 y Breezy(y) , [9x Pit(x) ^ Adjacent(x, y)]
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Keeping track of change

Facts hold in situations, rather than eternally
E.g., truth of Holding(Gold) depends on whether we’ve grabbed the gold

Situation calculus is one way to represent change in FOL:
Adds a situation argument to each non-eternal predicate
e.g., Holding(Gold, s) to mean we’re holding the gold in situation s

Situations are connected by the Result function
Result(a, s) is the situation that results from doing a in s

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S0
Forward

S1 = Result(Forward, S0)

CMSC 421: Chapter 8 and Section 10.3 27



Describing actions I

“E↵ect” axiom—describe changes due to action
8 s AtGold(s) ) Holding(Gold, Result(Grab, s))

Is this the only e↵ect?
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Describing actions I

“E↵ect” axiom—describe changes due to action
8 s AtGold(s) ) Holding(Gold, Result(Grab, s))

“Frame” axiom—describe non-changes due to action
8 s HaveArrow(s) ) HaveArrow(Result(Grab, s))

Frame problem: find a way to handle non-change

Qualification problem: true descriptions of real actions require endless caveats—
what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences—
what about the dust on the gold, wear and tear on gloves, . . .

The Wumpus world is so simple that it’s easy to specify all the qualifications
and ramifications of each action

But we still need to handle the frame problem
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Describing actions II

One way to handle the frame problem is to use successor-state axioms

One axiom for each predicate P :

“P true afterwards” , [“an action made P true” _
“P true already and no action made P false”]

“P true in Result(a, s)” , [ a = a1 _ a = a2 _ . . . _ a = am _
(“P true in s” ^ a 6= b1 ^ a 6= b2 ^ . . . ^ b 6= bn)]

where a1, . . . , am are all of the actions (plus preconditions if needed)
that can make P true

and b1, . . . , bn are all of the actions that can make P false

For holding the gold:
8 a 8 s Holding(Gold, Result(a, s)) ,

[(a = Grab ^ AtGold(s))

_ (Holding(Gold, s) ^ a 6= Release)]
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Making plans

Initial condition in KB:
At(Agent, [1, 1], S0)

At(Gold, [1, 2], S0)

Query: Ask(KB, 9 s Holding(Gold, s))

i.e., is there a situation in which I’ll be holding the gold?

Answer: {s Result(Grab, Result(Forward, S0))}
i.e., go forward and then grab the gold

This notation is awkward. How to improve it?
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Better Notation

Extend FOL syntax to use the following notation for lists
This notation comes from the Prolog programming language

[ ] = the empty list, like NIL in Lisp

[a, b, c] = list of a, b, and c, like '(a b c) in Lisp

[a|y] = list whose head is a and tail is y, like (cons a y) in Lisp

Represent plans as action sequences [a1, a2, . . . , an]

Define PlanResult(p, s) to be the result of executing p in s:
8 s P lanResult([ ], s) = s
8 a, p, s P lanResult([a|p], s) = PlanResult(p, Result(a, s))

Then this query
Ask(KB, 9 p Holding(Gold, P lanResult(p, S0)))

has this solution:
{p [Forward, Grab]}
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Planning

Planning: find a set of actions to achieve goal or perform task

We just discussed a special case called classical planning:
Find sequence of actions to achieve goal, subject to a bunch of assumptions
} time is a sequence of instants 0, 1, 2, . . . , n
} at each instant i, a state of the world si = Result(ai, si�1)

} we know the initial state s0 and goal condition g
} actions have no duration
} no change ever occurs in the world, except for our agent’s actions
} actions have deterministic outcomes
} we can infer exactly what each action will do

. . .

Can do classical planning using the situation calculus, but it’s very ine�cient

There are many planning algorithms for doing it more e�ciently
See Chapter 11
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Summary

First-order logic:
– objects and relations are semantic primitives
– syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: su�cient to define wumpus world

Situation calculus:
– conventions for describing actions and change in FOL
– can formulate and solve planning problems (ine�ciently)

as inference on a situation calculus KB
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Homework assignment

Problems 7.5, 8.4, 8.5, 8.13

10 points each, 40 points total

Due on Thursday, March 25 (after spring break)
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