
Validation of Synchronous Reactive Systems:from Formal Veri�cation to Automatic Testing?Nicolas Halbwachs, Pascal RaymondfNicolas.Halbwachs,Pascal.Raymondg@imag.frV�erimag??, Grenoble { FranceAbstract. This paper surveys the techniques and tools developped forthe validation of reactive systems described in the synchronous data-
owlanguage Lustre [HCRP91]. These techniques are based on the speci�ca-tion of safety properties, by means of synchronous observers. The model-checker Lesar [RHR91] takes a Lustre program, and two observers |respectively describing the expected properties of the program, and theassumptions about the system environment under which these propertiesare intended to hold |, and performs the veri�cation on a �nite state(Boolean) abstraction of the system. Recent work concerns extensionstowards simple numerical aspects, which are ignored in the basic tool.Provided with the same kind of observers, the tool Lurette [RWNH98]is able to automatically generate test sequences satisfying the environ-ment assumptions, and to run the test while checking the satisfaction ofthe speci�ed properties.1 IntroductionSynchronous languages [Hal93,BG92,LGLL91,HCRP91] have been proposed todesign so-called \reactive systems", which are systems that maintain a perma-nent interaction with a physical environment. In this area, system reliability,and therefore design validation, are particularly important goals, since mostreactive systems are safety critical. As a consequence, many validation toolshave been proposed, which are dedicated to deal with systems described bymeans of synchronous languages. These tools either concern automatic veri�ca-tion [LDBL93,DR94,JPV95,Bou98,RHR91], formal proof [BCDP99], or programtesting [BORZ98,RWNH98,MHMM95,Mar98].As a matter of fact the validation of synchronous programs, on one handraises speci�c problems | like taking into account known properties of the envi-ronment | and on the other hand allows the application of speci�c techniques| since the programs to be validated are deterministic systems with inputs,in contrast with classical concurrent processes, which are generally modelledas non-deterministic and closed systems. Both for formal veri�cation and fortesting, the user has to specify:? This work was partially supported by the ESPRIT-LTR project \SYRF".?? Verimag is a joint laboratory of Universit�e Joseph Fourier, CNRS and INPG associ-ated with IMAG.



1. the intended behavior of the program under validation, which may be moreor less precisely de�ned. In particular, it may consist of a set of properties,and, for the kind of considered systems, critical properties are most of thetime safety properties.2. the assumptions about the environment under which the properties speci�edin (1) are intended to hold. These assumptions are generally safety proper-ties, too.In synchronous programming, a convenient way of specifying such safety prop-erties is to use \synchronous observers" [HLR93], which are programs observingthe inputs and the outputs of the program under validation, and detect theviolation of the property. Once these observers have been written, automaticvalidation tools can use them forformal veri�cation: One can verify, by model-checking, that for each input
ow satisfying the assumption, the corresponding output 
ow satisfy theproperty. In general, this veri�cation is performed on a �nite-state abstrac-tion of the program under veri�cation.automatic testing: The assumption observer is used to generate realistic testsequences, which are provided to the program; the property observer is usedas an \oracle" determining whether each test sequence \passes" or \fails".In this paper, we present these approaches in the context of the declarativelanguageLustre [HCRP91]. A model-checker for Lustre, called Lesar [RHR91],has been developped for long, and extended towards dealing with simple numer-ical properties. Two testing tools, Lutess [BORZ98] and Lurette [RWNH98]are also available; here, we focus on Lurette, which has some numerical capa-bilities.2 Synchronous Observers in LUSTRE2.1 Overview of LustreLet us �rst recall, in a simpli�ed way, the principles of the language Lustre:A Lustre program operates on 
ows of values. Any variable (or expression)x represents a 
ow, i.e., an in�nite sequence (x0; x1; : : : ; xn; : : :) of values. Aprogram is intended to have a cyclic behavior, and xn is the value of x at thenth cycle of the execution. A program computes output 
ows from input 
ows.Output (and possibly local) 
ows are de�ned by means of equations (in themathematical sense), an equation \x=e" meaning \8n; xn = en". So, an equationcan be understood as a temporal invariant. Lustre operators operate globally on
ows: for instance, \x+y" is the 
ow (x0+y0; x1+y1; : : : ; xn+yn; : : :). In additionto usual arithmetic, Boolean, conditional operators | extended pointwise to
ows as just shown | we will consider only two temporal operators:{ the operator \pre" (\previous") gives access to the previous value of its argu-ment: \pre(x)" is the 
ow (nil ; x0; : : : ; xn�1; : : :), where the very �rst value\nil" is an unde�ned (\non initialized") value.



{ the operator \->" (\followed by") is used to de�ne initial values: \x -> y" isthe 
ow (x0; y1; : : : ; yn; : : :), initially equal to x, and then equal to y forever.As a very simple example, the program shown below is a counter of \events":It takes as inputs two Boolean 
ows\evt" (true whenever the counted\event" occurs), and \reset" (truewhenever the counter should bereinitialized), and returns the num-ber of occurrences of \events" sincethe last \reset". Once declared,such a \node" can be used any-where in a program, as a user-de�ned operator. For instance, ourcounter can be used to generate anevent \minute" every 60 \second",by counting \second" modulo 60.
node Count(evt, reset: bool)returns(count: int);let count = if (true -> reset) then 0else if evt then pre(count)+1else pre(count)telmod60 = Count(second, pre(mod60=59));minute = (mod60 = 0);2.2 Synchronous ObserversNow, an observer in Lustre will be a node taking as inputs all the 
ows relevantto the safety property to be speci�ed, and computing a single Boolean 
ow, say\ok", which is true as long as the observed 
ows satisfy the property.For instance, let us write an ob-server checking that each occur-rence of an event \danger" is fol-lowed by an \alarm" before the nextoccurrence of the event \deadline".It uses a local variable \wait", trig-gered by \danger" and reset by\alarm", and the property will beviolated whenever \deadline" occurswhen \wait" is on.
node Property(danger, alarm, deadline: bool)returns (ok: bool);var wait: bool;let wait = if alarm then falseelse if danger then trueelse (false -> pre(wait));ok = not(deadline and wait);telAssume that the above property is intended to hold about a system S,computing \danger" and \alarm", while \deadline" comes from the environment.Obviously, except if S emits\alarm" simultaneously with each\danger", it cannot ful�ll the prop-erty without any knowledge about\deadline". Now, assume we knowthat \deadline" never occurs earlierthan two cycles after \danger".
node Assumption(danger, deadline: bool)returns (ok: bool);let ok = not deadline or(true -> pre(not danger and(true -> pre(not danger))));telThis assumption can also be expressed by an observer.



(danger, alarm, ...) = S(deadline, ...);realistic = Assumption(danger, deadline);correct = Property(danger, alarm, deadline); S AssumptionProperty realisticcorrectFig. 1. Validation Program2.3 Validation ProgramNow we are left with 3 programs: the program S under validation, and its twoobservers, Property and Assumption. We can compose them in parallel, in asurrounding program called \Validation Program" (see Fig.1). Our veri�cationproblem comes down to showing that, whatever be the inputs to the validationprogram, either the output \correct" is always true, or the output \realistic" issometimes false. The advantages of using synchronous observers for speci�cationhave been pointed out:{ there is no need to learn and use a di�erent language for specifying than forprogramming.{ observers are executable; one can test them to get convinced that the speci�edproperties are the desired ones.Notice that synchronous observers are just a special case of the general tech-nique [VW86] consisting in describing the negation of the property by an automa-ton (generally, a B�uchi automaton), and showing, by performing a synchronousproduct of this automaton and the program, that no trace of the program isaccepted by the automaton. The point is that, in synchronous languages, thesynchronous product is the normal parallel composition, so this technique canbe applied within the programming language.3 Model-Checking3.1 Lustre programs as state machinesOf course, a Lustre program can be viewed as a transition system. All operators,except pre and ->, are purely combinational, i.e., don't use the notion of state.The result of a -> operator depends on whether the execution is in its �rstcycle or not: let init be an auxiliary Boolean state variable, which is initiallytrue, and then always false. The result of a pre operator is the value previouslytaken by its argument, so each pre operator has an associated state variable. Allthese state variables de�ne the state of the program. Of course, programs thathave only Boolean variables have �nitely many states and can be fully veri�edby model-checking [QS82,CES86,BCM+90,CBM89]: when the program underveri�cation and both of its observers are purely Boolean, one can traverse the



�nite set of states of the validation program. Only states reached from the initialstate without falsifying the output \realistic" are considered, and in each reachedstate, one check that, for each input, either \realistic" is false, or \correct" is true.This can be done either enumeratively (i.e., considering each state in turn) orsymbolically, by considering sets of states as Boolean formulas.3.2 Lustre programs as interpreted automataPrograms with numerical variables can be partially veri�ed, using a similar ap-proach. We consider such a program as an intepreted automaton: the statesof the automaton are de�ned by the values of the Boolean state variables, asabove. The associated interpretation deals with the numerical part: conditionsand actions on numerical variables are associated with the transitions of theautomaton. An example of such an interpreted automaton will be shown in Sec-tion 4. If it happens that a property can be proved on the (�nite) control partof the automaton, then it is satis�ed by the complete program. Otherwise, theresult is unconclusive.3.3 LESARLesar is a veri�cation tool dedicated to Lustre programs. It performs thekind of veri�cation described above, by traversing the set of control states ofa validation program, either enumeratively of symbolically. More precisely, itrestricts its search to the part of the program that can in
uence the satisfactionof the property. This part, sometimes called the cone of in
uence, can be easilydetermined, because of the declarative nature of the language: all dependencesbetween variables are explicit. This is an important feature, since experienceshows that, in many practical cases, the addressed property only concerns avery small part of a program: in such a case, Lesar may be able to verify theproperty, even if the whole state space of the program could not be built.4 Towards Numerical PropertiesOnly properties that depend only on the control part of the program can beveri�ed by model checking. The reason is that Lesar can consider as reachablesome control states that are in fact unreachable because of the numerical in-terpretation, which is ignored during the state space traversal: some transitionsare considered feasible, while being forbidden by their numerical guards. Let usillustrate this phenomenon on a very simple example, extracted from a subwayspeed regulation system:A train detects beacons placed along the track, and receives a signal broad-cast each second by a central clock. Ideally, it should encounter one beacon eachsecond, but, to avoid shaking, the regulation system applies a hysteresis as fol-lows: let #b and #s be, respectively, the current numbers of encountered beacons



Late LateEarly
OnTimeInit Early

Fig. 2. Interpreted automaton of the subway exampleand of elapsed seconds. Whenever #b�#s becomes greater 10, the train is con-sidered early, until #b�#s becomes negative. Symmetrically, whenever #b�#sbecomes smaller than �10, the train is considered late, until #b�#s becomespositive. We only consider the part of the system which determines whether thetrain is early of late. In Lustre, the corresponding program fragment could be:di� = 0 -> if second and not beacon then pre(di�){1else if beacon and not second then pre(di�)+1else pre(di�);early = false -> if di� > 10 then trueelse if di� < 0 then falseelse pre(early);late = false -> if di� < {10 then trueelse if di� > 0 then falseelse pre(late);This program has 3 Boolean state variables: the auxiliary variable init (ini-tially true, and then false forever) and the variables storing the previous val-ues of early and late. The corresponding interpreted automaton has the controlstructure shown by Fig 2, and, for instance, the transitions sourced in the state\OnTime" are guarded as follows:g1: di� > 10 ^ di� � �10 ! Early g3: di� > 10 ^ di� < �10 ! EarlyLateg2: di� � 10 ^ di� < �10 ! Late g4: di� � 10 ^ di� � �10 ! OnTimeWithout any knowledge about numerical guards, the model-checker does notknow that some of these guards (g1 and g2) can be simpli�ed, nor that oneof them (g3) is unsatis�able. This is why the state \EarlyLate" is consideredreachable.A transition the guard of which is numerically unsatis�able will be calledstatically unfeasible. In our example, if we remove statically unfeasible transi-tions, we get the automaton of Fig. 3, where the state \EarlyLate" is no longerreachable. A simple way of improving the power of a model-checker is to provide



OnTimeInit Late EarlyFig. 3. The subway example without statically unfeasible transitions
Late OnTime EarlyInit di� � 0�10 � di� � 10di� � 0Fig. 4. The subway example without dynamically unfeasible transitionsit with the ability of detecting statically unfeasible transitions, in some simplecases. For instance, unfeasibility of guards made of linear relations is easy todecide1.This is why Lesar has been extended with such a decision procedure inlinear algebra: when a state violating the property is reached by the standardmodel-checking algorithm, the tool can look, along the paths leading to thisstate, for transitions guarded by unfeasible linear guards. If all such \bad" pathscan be cut, the \bad" state is no longer considered reachable. This very par-tial improvement signi�cantly increases the number of practical cases where theveri�cation succeeds.Of course, we are not always able to detect statically unfeasible transitions.Moreover, some transitions are unfeasible because of the dynamic behavior ofnumerical variables. For instance, in the automaton of Fig. 3, there are directtransitions from state \Early" to state \Late" and conversely. Now, these tran-sitions are clearly impossible, since di� varies of at most 1 at each cycle, andcannot jump from being � 0 in state \Early" to becoming < �10 in state\Late". Such transitions are called dynamically unfeasible. Detecting dynami-cally unfeasible transitions is much more di�cult. We experiment \linear relationanalysis" [HPR97] | an application of abstract interpretation | to synthesizeinvariant linear relations in each state of the automaton. If the guard of a transi-tion is not satis�able within the invariant of its source state, then the transition1 at least for rational solutions; but since unfeasibility in rational numbers impliesunfeasibility in integers, such an approximate decision is still conservative.



is unfeasible. In our example, we get the invariants shown in Fig. 4, which allowus to remove all unfeasible transitions.5 Automatic TestingIn spite of the progress of formal veri�cation, testing is and will remain animportant validation technique. On one hand, the veri�cation of too complexsystems | with too complex state space, or important numerical aspects | willremain unfeasible. On the other hand, some validation problems are out of thescope of formal veri�cation: it is the case when parts of the program cannot beformally described, because they are unknown or written in low level languages;it is also the case when one wants to validate the �nal system within its actualenvironment. So, veri�cation and testing should be considered as complementarytechniques. Moreover, testing techniques and tools should be mainly devotedto cases where veri�cation either fails or does not apply. This is why we areespecially interested in techniques that cope with numerical systems, that don'tneed a formal description of the system under test (black box testing), and thecost of which doesn't depend on the internal complexity of the tested system.Intensive testing requires automation, since producing huge test sets by handis extremely expensive and error-prone. Now, it appears that the prerequisite forautomatic generation of test sets is the same as for veri�cation: an automatictester will need a formal description of both the environment | to generateonly realistic test cases | and the system under test | to provide an \oracle"deciding whether each test passes or fails. In section 2, we proposed the use ofsynchronous observers for these formal descriptions. In the Lurette [RWNH98]and Lutess [BORZ98] tools, such observers are used to automatically generateand run test sequences. In this section, we explain the principles of this genera-tion.The speci�c feature of reactive systems is, of course, that they run in closedloop with their environment. In particular, they are often intended to controltheir environment. This means that the current input (from the environment)may depend on the past outputs (from the system). In other words, the realismof an input sequence does not make sense independently of the correspondingoutput sequence, computed by the system under test. This is why, in our ap-proach, test sequences are generated on the 
y, as they are submitted to thesystem under test.More precisely, we assume that the following components are available:{ an executable version of the system un-der test, say S. We only need to be ableto run it, step by step.{ The observers A and P , respectivelydescribing the assumptions about theenvironment and the properties to bechecked during the test. S realisticcorrectPAi o



Moreover, the output \realistic" of the observer A is required not to dependinstantaneously of the outputs \o" of S. Since \o" is supposed to be computedfrom the current input \i", it would be a kind of causality loop that the realismof \i" depend on \o".Basically, the tester only needs to know the source code of the observer A,and to be able to run the system S and the observer P , step by step. It considers,�rst, the initial state of A: in this state, the Lustre code of A can be simpli�ed,by replacing each expression \e1-> e2" by \e1", and each expression \pre(e)" by\nil". After this simpli�cation, the result \realistic" is a combinational expressionof the input \i", say \b(i)". The satisfaction of the Boolean formula b(i) can beviewed as a constraint on the initial inputs to the system. A constraint solver| which will be detailed below | is used to randomly select an input vector i0satisfying this constraint. Now, S is run for a step on i0, producing the outputvector o0 (and changing its internal state). Knowing both i0 and o0, one can runA and P for a step, to make them change their internal state, and to get theoracle \correct" output by P . The Lustre code of A can be simpli�ed accordingto its new state, providing a new constraint on \i". The same process can berepeated as long as the test passes (i.e., P returns \correct = true"), or for agiven number of steps.The considered tools mainly di�er in the selection of input vectors satisfyinga given constraint. In Lutess [BORZ98], one consider only purely Boolean ob-servers. A constraint is then a purely Boolean formula, which is represented bya Binary Decision Diagram. A correct selection corresponds to a path leadingto a \true" leaf in this BDD. The tool is able to perform such a selection, ei-ther using an equiprobable strategy, or taking into account user-given directives.Lurette [RWNH98] is able to solve constraints that are Boolean expressionsinvolving Boolean inputs and linear relations on numerical inputs.Example: Let us illustrate the generation process on a very simple example.Assume S is intended to regulate a physical value u, by constraining its secondderivative. Initially, both u and its derivative are known to be 0. Then, the secondderivative of u will be in an interval [��;+�] around the (previous) output x ofS. An observer of this behavior can be written as follows:node A (u, x: real) returns (realistic: bool);var dudt, d2udt2: real;let dudt = 0 ->(u { pre(u));d2udt2 = dudt { pre(dudt);realistic = (u=0) -> ((pre(x) { delta <= d2udt2)and (d2udt2 <= pre(x) + delta));telAt the �rst cycle, the code of A is simpli�ed todudt = 0; d2udt2 = nil; realistic = (u=0);



There is only one way of satisfying the constraint, by choosing u0 = 0. Thesystem S is run for one cycle, with this input value, let x0 be the returned value.At the second cycle, we know thatpre(u) = 0 ; pre(dudt) = 0 ; pre(x) = x0So the code of A is simpli�ed todudt = u; d2udt2 = dudt;realistic = (x0{delta <= d2udt2) and (d2udt2 <= xo+delta);which gives the (linear) constraint x0 � � � u � x0 + �. Assume the valueu1 = x0+ � is selected, and provided to S, which returns some new value x1. Atthe next cycle, we know thatpre(u) = pre(dudt) = x0 + � ; pre(x) = x1So, the code of A simpli�es todudt = u { (x0+delta); d2udt2 = dudt { (x0+delta);realistic = (x1{delta <= d2udt2) and (d2udt2 <= x1+delta)which gives the constraint x1 + 2x0 � u � x1 + 2x0 + 2�, and so on...6 ConclusionWe have presented some validation techniques, which mainly derive from thespeci�cation of properties by synchronous observers. While not being restrictedto synchronous models, this way of specifying properties is especially naturaland convenient in that context, since the same kind of language can be used todescribe the system and its properties.Our presentation was centered on the language Lustre, but the techniquescould be adapted to any synchronous language. Notice, however, that some ideaswere directly suggested by the declarative nature of Lustre. For instance, syn-chronous observers were a natural generalization of the relations in Esterel,which are a way of expressing known implications or exclusion between inputevents. When transposed into Lustre, these relations are just special cases ofinvariant Boolean expressions. Generalized to any Boolean Lustre expression,this mechanism provides a way of specifying any safety property. Also, in testsequence generation, the idea of considering an observer as a (dynamic) con-straint is especially natural when the observer is written in Lustre, but can beadapted to any synchronous language.References[BCDP99] S. Bensalem, P. Caspi, C. Dumas, and C. Parent-Vigouroux. A method-ology for proving control programs with Lustre and PVS. In DependableComputing for Critical Applications, DCCA-7, San Jose. IEEE ComputerSociety, January 1999.



[BCM+90] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. Sym-bolic model checking: 1020 states and beyond. In Fifth IEEE Symposiumon Logic in Computer Science, Philadelphia, 1990.[BG92] G. Berry and G. Gonthier. The Esterel synchronous programming lan-guage: Design, semantics, implementation. Science of Computer Program-ming, 19(2):87{152, 1992.[BORZ98] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon. Lutess:testing environment for synchronous software. In Tool support for Sys-tem Speci�cation Development and Veri�cation. Advances in ComputingScience, Springer, 1998.[Bou98] A. Bouali. Xeve: an Esterel veri�cation environment. In Tenth Inter-national Conference on Computer-Aided Veri�cation, CAV'98, Vancouver(B.C.), June 1998. LNCS 1427, Springer Verlag.[CBM89] O. Coudert, C. Berthet, and J. C. Madre. Veri�cation of synchronoussequential machines based on symbolic execution. In International Work-shop on Automatic Veri�cation Methods for Finite State Systems, Greno-ble. LNCS 407, Springer Verlag, 1989.[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of�nite-state concurrent systems using temporal logic speci�cations. ACMTOPLAS, 8(2), 1986.[DR94] R. De Simone and A. Ressouche. Compositional semantics of estereland veri�cation by compositional reductions. In D. Dill, editor, 6th Inter-national Conference on Computer Aided Veri�cation, CAV'94, Stanford,June 1994. LNCS 818, Springer Verlag.[Hal93] N. Halbwachs. Synchronous programming of reactive systems. KluwerAcademic Pub., 1993.[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronousdata
ow programming language Lustre. Proceedings of the IEEE,79(9):1305{1320, September 1991.[HLR93] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers andthe veri�cation of reactive systems. In M. Nivat, C. Rattray, T. Rus, andG. Scollo, editors, Third Int. Conf. on Algebraic Methodology and SoftwareTechnology, AMAST'93, Twente, June 1993. Workshops in Computing,Springer Verlag.[HPR97] N. Halbwachs, Y.E. Proy, and P. Roumano�. Veri�cation of real-timesystems using linear relation analysis. Formal Methods in System Design,11(2):157{185, August 1997.[JPV95] L. J. Jagadeesan, C. Puchol, and J. E. Von Olnhausen. Safety propertyveri�cation of esterel programs and applications to telecommunicationsoftware. In P. Wolper, editor, 7th International Conference on Com-puter Aided Veri�cation, CAV'95, Liege (Belgium), July 1995. LNCS 939,Springer Verlag.[LDBL93] M. Le Borgne, Bruno Dutertre, Albert Benveniste, and Paul Le Guernic.Dynamical systems over Galois �elds. In European Control Conference,pages 2191{2196, Groningen, 1993.[LGLL91] P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire. Programmingreal time applications with Signal. Proceedings of the IEEE, 79(9):1321{1336, September 1991.[Mar98] B. Marre. Test data selection for reactive synchronous software. InDagstuhl-Seminar-Report 223: Test Automation for Reactive Systems -Theory and Practice, September 1998.



[MHMM95] M. M�ullerburg, L. Holenderski, O. Ma�eis, and M. Morley. Systematictesting and formal veri�cation to validate reactive programs. SoftwareQuality Journal, 4(4):287{307, 1995.[QS82] J. P. Queille and J. Sifakis. Speci�cation and veri�cation of concurrentsystems in Cesar. In International Symposium on Programming. LNCS137, Springer Verlag, April 1982.[RHR91] C. Ratel, N. Halbwachs, and P. Raymond. Programming and verifyingcritical systems by means of the synchronous data-
ow programming lan-guage Lustre. In ACM-SIGSOFT'91 Conference on Software for CriticalSystems, New Orleans, December 1991.[RWNH98] P. Raymond, D. Weber, X. Nicollin, and N. Halbwachs. Automatic testingof reactive systems. In 19th IEEE Real-Time Systems Symposium, Madrid,Spain, December 1998.[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automaticprogram veri�cation. In Symposium on Logic in Computer Science, June1986.


