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Abstract. This paper surveys the techniques and tools developped for
the validation of reactive systems described in the synchronous data-flow
language LUSTRE [HCRP91]. These techniques are based on the specifica-
tion of safety properties, by means of synchronous observers. The model-
checker LESAR [RHR91] takes a LUSTRE program, and two observers —
respectively describing the expected properties of the program, and the
assumptions about the system environment under which these properties
are intended to hold —, and performs the verification on a finite state
(Boolean) abstraction of the system. Recent work concerns extensions
towards simple numerical aspects, which are ignored in the basic tool.
Provided with the same kind of observers, the tool LURETTE [RWNH98]
is able to automatically generate test sequences satisfying the environ-
ment assumptions, and to run the test while checking the satisfaction of
the specified properties.

1 Introduction

Synchronous languages [Hal93,BG92,LGLL91,HCRP91] have been proposed to
design so-called “reactive systems”, which are systems that maintain a perma-
nent interaction with a physical environment. In this area, system reliability,
and therefore design validation, are particularly important goals, since most
reactive systems are safety critical. As a consequence, many validation tools
have been proposed, which are dedicated to deal with systems described by
means of synchronous languages. These tools either concern automatic verifica-
tion [LDBL93,DR94,JPV95,Boud8 RHRI1], formal proof [BCDP99], or program
testing [BORZ98, RWNH98, MHMM95,Mar98g].

As a matter of fact the validation of synchronous programs, on one hand
raises specific problems — like taking into account known properties of the envi-
ronment — and on the other hand allows the application of specific techniques
— since the programs to be validated are deterministic systems with inputs,
in contrast with classical concurrent processes, which are generally modelled
as non-deterministic and closed systems. Both for formal verification and for
testing, the user has to specify:
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1. the intended behavior of the program under validation, which may be more
or less precisely defined. In particular, it may consist of a set of properties,
and, for the kind of considered systems, critical properties are most of the
time safety properties.

2. the assumptions about the environment under which the properties specified
in (1) are intended to hold. These assumptions are generally safety proper-
ties, too.

In synchronous programming, a convenient way of specifying such safety prop-
erties is to use “synchronous observers” [HLR93], which are programs observing
the inputs and the outputs of the program under validation, and detect the
violation of the property. Once these observers have been written, automatic
validation tools can use them for

formal verification: One can verify, by model-checking, that for each input
flow satisfying the assumption, the corresponding output flow satisfy the
property. In general, this verification is performed on a finite-state abstrac-
tion of the program under verification.

automatic testing: The assumption observer is used to generate realistic test
sequences, which are provided to the program; the property observer is used
as an “oracle” determining whether each test sequence “passes” or “fails”.

In this paper, we present these approaches in the context of the declarative
language LUSTRE [HCRP91]. A model-checker for LUSTRE, called LESAR [RHR91],
has been developped for long, and extended towards dealing with simple numer-
ical properties. Two testing tools, LUTESS [BORZ98] and LURETTE [RWNHO9S]
are also available; here, we focus on LURETTE, which has some numerical capa-
bilities.

2 Synchronous Observers in LUSTRE

2.1 Overview of Lustre

Let us first recall, in a simplified way, the principles of the language LUSTRE:
A LUSTRE program operates on flows of values. Any variable (or expression)
x represents a flow, i.e., an infinite sequence (zo,x1,...,oy,...) of values. A
program is intended to have a cyclic behavior, and z,, is the value of x at the
nth cycle of the execution. A program computes output flows from input flows.
Output (and possibly local) flows are defined by means of equations (in the
mathematical sense), an equation “x=e” meaning “Vn, x,, = e;”. So, an equation
can be understood as a temporal invariant. LUSTRE operators operate globally on
flows: for instance, “x+y” is the flow (zo+yo, z1+y1,- .-, Tn+Yn, - --)- In addition
to usual arithmetic, Boolean, conditional operators — extended pointwise to
flows as just shown — we will consider only two temporal operators:

— the operator “pre” (“previous”) gives access to the previous value of its argu-
ment: “pre(x)” is the flow (nil, zo,...,z,—_1,...), where the very first value
“nil” is an undefined (“non initialized”) value.



— the operator “->” (“followed by”) is used to define initial values: “x => y” is

the flow (zo,y1,---,Yn, - -

.), initially equal to x, and then equal to y forever.

As a very simple example, the program shown below is a counter of “events”:

It takes as inputs two Boolean flows
“evt” (true whenever the counted
“event” occurs), and “reset” (true
whenever the counter should be
reinitialized), and returns the num-
ber of occurrences of “events” since
the last “reset”. Once declared,
such a “node” can be used any-
where in a program, as a user-
defined operator. For instance, our
counter can be used to generate an
event “minute” every 60 “second”,
by counting “second” modulo 60.

2.2 Synchronous Observers

node Count(evt, reset: bool)
returns(count: int);
let
count = if (true -> reset) then 0
else if evt then pre(count)+1
else pre(count)
tel

mod60 = Count(second, pre(mod60=59));
minute = (mod60 = 0);

Now, an observer in LUSTRE will be a node taking as inputs all the flows relevant
to the safety property to be specified, and computing a single Boolean flow, say
“ok”, which is true as long as the observed flows satisfy the property.

For instance, let us write an ob-
server checking that each occur-
rence of an event “danger” is fol-
lowed by an “alarm” before the next
occurrence of the event “deadline”.
It uses a local variable “wait”, trig-
gered by “danger” and reset by
“alarm”, and the property will be
violated whenever “deadline” occurs
when “wait” is on.

node Property(danger, alarm, deadline: bool
returns (ok: bool);
var wait: bool;

let
wait = if alarm then false
else if danger then true
else (false -> pre(wait));
ok = not(deadline and wait);
tel

Assume that the above property is intended to hold about a system S,
computing “danger” and “alarm”, while “deadline” comes from the environment.

Obviously, except if S emits
“alarm” simultaneously with each
“danger”, it cannot fulfill the prop-
erty without any knowledge about
“deadline”. Now, assume we know
that “deadline” never occurs earlier
than two cycles after “danger”.

node Assumption(danger, deadline: bool)
returns (ok: bool);
let ok = not deadline or
(true => pre(not danger and
(true => pre(not danger))));
tel

This assumption can also be expressed by an observer.
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Fig. 1. Validation Program

2.3 Validation Program

Now we are left with 3 programs: the program S under validation, and its two
observers, Property and Assumption. We can compose them in parallel, in a
surrounding program called “Validation Program” (see Fig.1). Our verification
problem comes down to showing that, whatever be the inputs to the validation
program, either the output “correct” is always true, or the output “realistic” is
sometimes false. The advantages of using synchronous observers for specification
have been pointed out:

— there is no need to learn and use a different language for specifying than for
programming.

— observers are ezecutable; one can test them to get convinced that the specified
properties are the desired ones.

Notice that synchronous observers are just a special case of the general tech-
nique [VW86] consisting in describing the negation of the property by an automa-
ton (generally, a Biichi automaton), and showing, by performing a synchronous
product of this automaton and the program, that no trace of the program is
accepted by the automaton. The point is that, in synchronous languages, the
synchronous product is the normal parallel composition, so this technique can
be applied within the programming language.

3 Model-Checking

3.1 Lustre programs as state machines

Of course, a LUSTRE program can be viewed as a transition system. All operators,
except pre and —>, are purely combinational, i.e., don’t use the notion of state.
The result of a -> operator depends on whether the execution is in its first
cycle or not: let init be an auxiliary Boolean state variable, which is initially
true, and then always false. The result of a pre operator is the value previously
taken by its argument, so each pre operator has an associated state variable. All
these state variables define the state of the program. Of course, programs that
have only Boolean variables have finitely many states and can be fully verified
by model-checking [QS82,CES86,BCM*90,CBM89]: when the program under
verification and both of its observers are purely Boolean, one can traverse the



finite set of states of the validation program. Only states reached from the initial
state without falsifying the output “realistic” are considered, and in each reached
state, one check that, for each input, either “realistic” is false, or “correct” is true.
This can be done either enumeratively (i.e., considering each state in turn) or
symbolically, by considering sets of states as Boolean formulas.

3.2 Lustre programs as interpreted automata

Programs with numerical variables can be partially verified, using a similar ap-
proach. We consider such a program as an intepreted automaton: the states
of the automaton are defined by the values of the Boolean state variables, as
above. The associated interpretation deals with the numerical part: conditions
and actions on numerical variables are associated with the transitions of the
automaton. An example of such an interpreted automaton will be shown in Sec-
tion 4. If it happens that a property can be proved on the (finite) control part
of the automaton, then it is satisfied by the complete program. Otherwise, the
result is unconclusive.

3.3 LESAR

LESAR is a verification tool dedicated to LUSTRE programs. It performs the
kind of verification described above, by traversing the set of control states of
a validation program, either enumeratively of symbolically. More precisely, it
restricts its search to the part of the program that can influence the satisfaction
of the property. This part, sometimes called the cone of influence, can be easily
determined, because of the declarative nature of the language: all dependences
between variables are explicit. This is an important feature, since experience
shows that, in many practical cases, the addressed property only concerns a
very small part of a program: in such a case, LESAR may be able to verify the
property, even if the whole state space of the program could not be built.

4 Towards Numerical Properties

Only properties that depend only on the control part of the program can be
verified by model checking. The reason is that LESAR can consider as reachable
some control states that are in fact unreachable because of the numerical in-
terpretation, which is ignored during the state space traversal: some transitions
are considered feasible, while being forbidden by their numerical guards. Let us
illustrate this phenomenon on a very simple example, extracted from a subway
speed regulation system:

A train detects beacons placed along the track, and receives a signal broad-
cast, each second by a central clock. Ideally, it should encounter one beacon each
second, but, to avoid shaking, the regulation system applies a hysteresis as fol-
lows: let #b and #s be, respectively, the current numbers of encountered beacons



Fig. 2. Interpreted automaton of the subway example

and of elapsed seconds. Whenever #b — #s becomes greater 10, the train is con-
sidered early, until #b — #s becomes negative. Symmetrically, whenever #b — #s
becomes smaller than —10, the train is considered late, until #b — #s becomes
positive. We only consider the part of the system which determines whether the
train is early of late. In LUSTRE, the corresponding program fragment could be:

diff = 0 -> if second and not beacon then pre(diff)-1
else if beacon and not second then pre(diff)+1
else pre(diff);
early = false -> if diff > 10 then true
else if diff < 0 then false
else pre(early);
late = false -> if diff < —10 then true
else if diff > 0 then false
else pre(late);

This program has 3 Boolean state variables: the auxiliary variable init (ini-
tially true, and then false forever) and the variables storing the previous val-
ues of early and late. The corresponding interpreted automaton has the control
structure shown by Fig 2, and, for instance, the transitions sourced in the state
“OnTime” are guarded as follows:

g1: diff > 10 A diff > —10 — Early g3: diff > 10 A diff < —10 — EarlyLate
go: diff <10 A diff < —10 — Late  g4: diff < 10 A diff > —10 — OnTime

Without any knowledge about numerical guards, the model-checker does not
know that some of these guards (g1 and g2) can be simplified, nor that one
of them (gs) is unsatisfiable. This is why the state “EarlyLate” is considered
reachable.

A transition the guard of which is numerically unsatisfiable will be called
statically unfeasible. In our example, if we remove statically unfeasible transi-
tions, we get the automaton of Fig. 3, where the state “EarlyLate” is no longer
reachable. A simple way of improving the power of a model-checker is to provide



Fig. 3. The subway example without statically unfeasible transitions

diff < 0 ~10 < diff < 10 diff > 0

Fig. 4. The subway example without dynamically unfeasible transitions

it with the ability of detecting statically unfeasible transitions, in some simple
cases. For instance, unfeasibility of guards made of linear relations is easy to
decide®.

This is why LESAR has been extended with such a decision procedure in
linear algebra: when a state violating the property is reached by the standard
model-checking algorithm, the tool can look, along the paths leading to this
state, for transitions guarded by unfeasible linear guards. If all such “bad” paths
can be cut, the “bad” state is no longer considered reachable. This very par-
tial improvement significantly increases the number of practical cases where the
verification succeeds.

Of course, we are not always able to detect statically unfeasible transitions.
Moreover, some transitions are unfeasible because of the dynamic behavior of
numerical variables. For instance, in the automaton of Fig. 3, there are direct
transitions from state “Early” to state “Late” and conversely. Now, these tran-
sitions are clearly impossible, since diff varies of at most 1 at each cycle, and
cannot jump from being > 0 in state “Early” to becoming < —10 in state
“Late”. Such transitions are called dynamically unfeasible. Detecting dynami-
cally unfeasible transitions is much more difficult. We experiment “linear relation
analysis” [HPR97] — an application of abstract interpretation — to synthesize
invariant linear relations in each state of the automaton. If the guard of a transi-
tion is not satisfiable within the invariant of its source state, then the transition

L at least for rational solutions; but since unfeasibility in rational numbers implies
unfeasibility in integers, such an approximate decision is still conservative.



is unfeasible. In our example, we get the invariants shown in Fig. 4, which allow
us to remove all unfeasible transitions.

5 Automatic Testing

In spite of the progress of formal verification, testing is and will remain an
important validation technique. On one hand, the verification of too complex
systems — with too complex state space, or important numerical aspects — will
remain unfeasible. On the other hand, some validation problems are out of the
scope of formal verification: it is the case when parts of the program cannot be
formally described, because they are unknown or written in low level languages;
it is also the case when one wants to validate the final system within its actual
environment. So, verification and testing should be considered as complementary
techniques. Moreover, testing techniques and tools should be mainly devoted
to cases where verification either fails or does not apply. This is why we are
especially interested in techniques that cope with numerical systems, that don’t
need a formal description of the system under test (black box testing), and the
cost of which doesn’t depend on the internal complexity of the tested system.

Intensive testing requires automation, since producing huge test sets by hand
is extremely expensive and error-prone. Now, it appears that the prerequisite for
automatic generation of test sets is the same as for verification: an automatic
tester will need a formal description of both the environment — to generate
only realistic test cases — and the system under test — to provide an “oracle”
deciding whether each test passes or fails. In section 2, we proposed the use of
synchronous observers for these formal descriptions. In the LURETTE [RWNH98]
and LuTEss [BORZ98] tools, such observers are used to automatically generate
and run test sequences. In this section, we explain the principles of this genera-
tion.

The specific feature of reactive systems is, of course, that they run in closed
loop with their environment. In particular, they are often intended to control
their environment. This means that the current input (from the environment)
may depend on the past outputs (from the system). In other words, the realism
of an input sequence does not make sense independently of the corresponding
output sequence, computed by the system under test. This is why, in our ap-
proach, test sequences are generated on the fly, as they are submitted to the
system under test.

More precisely, we assume that the following components are available:

— an executable version of the system un-

der test, say .S. We only need to be able ] realistic
to run it, step by step. . A=

— The observers A and P, respectively e S E
describing the assumptions about the correct
environment and the properties to be | P

checked during the test.



Moreover, the output “realistic” of the observer A is required not to depend
instantaneously of the outputs “0” of S. Since “0” is supposed to be computed
from the current input “i”, it would be a kind of causality loop that the realism
of “i” depend on “0”.

Basically, the tester only needs to know the source code of the observer A,
and to be able to run the system S and the observer P, step by step. It considers,
first, the initial state of A: in this state, the LUSTRE code of A can be simplified,
by replacing each expression “e;=> e2” by “e;”, and each expression “pre(e)” by
“nil”. After this simplification, the result “realistic” is a combinational expression
of the input “i”, say “b(i)”. The satisfaction of the Boolean formula b(i) can be
viewed as a constraint on the initial inputs to the system. A constraint solver
— which will be detailed below — is used to randomly select an input vector g
satisfying this constraint. Now, S is run for a step on i, producing the output
vector og (and changing its internal state). Knowing both i and og, one can run
A and P for a step, to make them change their internal state, and to get the
oracle “correct” output by P. The LUSTRE code of A can be simplified according
to its new state, providing a new constraint on “i”. The same process can be
repeated as long as the test passes (i.e., P returns “correct = true”’), or for a
given number of steps.

The considered tools mainly differ in the selection of input vectors satisfying
a given constraint. In LuTESS [BORZ98], one consider only purely Boolean ob-
servers. A constraint is then a purely Boolean formula, which is represented by
a Binary Decision Diagram. A correct selection corresponds to a path leading
to a “true” leaf in this BDD. The tool is able to perform such a selection, ei-
ther using an equiprobable strategy, or taking into account user-given directives.
LureTTE [RWNHOS] is able to solve constraints that are Boolean expressions
involving Boolean inputs and linear relations on numerical inputs.

Ezample: Let us illustrate the generation process on a very simple example.
Assume S is intended to regulate a physical value u, by constraining its second
derivative. Initially, both « and its derivative are known to be 0. Then, the second
derivative of u will be in an interval [—d, 4+0] around the (previous) output x of
S. An observer of this behavior can be written as follows:

node A (u, x: real) returns (realistic: bool);
var dudt, d2udt2: real;

let
dudt = 0 ->(u — pre(u));
d2udt2 = dudt — pre(dudt);
realistic = (u=0) -> ((pre(x) — delta <= d2udt2)
and (d2udt2 <= pre(x) + delta));
tel

At the first cycle, the code of A is simplified to

dudt = 0; d2udt2 = nil; realistic = (u=0);



There is only one way of satisfying the constraint, by choosing uy = 0. The
system S is run for one cycle, with this input value, let g be the returned value.
At the second cycle, we know that

pre(u) =0, pre(dudt) =0, pre(x) = o
So the code of A is simplified to

dudt = u; d2udt2 = dudt;
realistic = (zo—delta <= d2udt2) and (d2udt2 <= z,+delta);

which gives the (linear) constraint zp — ¢ < u < wo + ¢. Assume the value
uy = xo + 90 is selected, and provided to S, which returns some new value x1. At
the next cycle, we know that

pre(u) = pre(dudt) = zo + 9, pre(x) = x;
So, the code of A simplifies to

dudt = u - (zp+delta); d2udt2 = dudt — (zo+delta);
realistic = (x1—delta <= d2udt2) and (d2udt2 <= z;+delta)

which gives the constraint z; + 2z < u < z1 + 2z9 + 24, and so on...

6 Conclusion

We have presented some validation techniques, which mainly derive from the
specification of properties by synchronous observers. While not being restricted
to synchronous models, this way of specifying properties is especially natural
and convenient in that context, since the same kind of language can be used to
describe the system and its properties.

Our presentation was centered on the language LUSTRE, but the techniques
could be adapted to any synchronous language. Notice, however, that some ideas
were directly suggested by the declarative nature of LUSTRE. For instance, syn-
chronous observers were a natural generalization of the relations in ESTEREL,
which are a way of expressing known implications or exclusion between input
events. When transposed into LUSTRE, these relations are just special cases of
invariant Boolean expressions. Generalized to any Boolean LUSTRE expression,
this mechanism provides a way of specifying any safety property. Also, in test
sequence generation, the idea of considering an observer as a (dynamic) con-
straint is especially natural when the observer is written in LUSTRE, but can be
adapted to any synchronous language.
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