
CS:5810 Formal Methods in Software
Engineering

Reactive Systems and the Lustre Language
Part 2

Adrien Champion
adrien-champion@uiowa.edu

1 / 17

mailto:adrien-champion@uiowa.edu

Embedded systems development

Pivot language between design and code should

have clear and precise semantics, and

be consistent with design / prototype formats and target platforms

2 / 17

Embedded systems development

Pivot language between design and code should

have clear and precise semantics, and

be consistent with design / prototype formats and target platforms

2 / 17

Embedded systems development

Pivot language between design and code should

have clear and precise semantics, and

be consistent with design / prototype formats and target platforms

2 / 17

Lustre: a synchronous dataflow language

Synchronous:
a base clock regulates computations;
computations are inherently parallel

Dataflow:
inputs, outputs, variables, constants . . . are endless streams of values

Declarative:
set of equations, no statements

Reactive systems:

Lustre programs run forever
At each clock tick they

compute outputs from their inputs
before the next clock tick

3 / 17

Lustre: a synchronous dataflow language

Synchronous:
a base clock regulates computations;
computations are inherently parallel

Dataflow:
inputs, outputs, variables, constants . . . are endless streams of values

Declarative:
set of equations, no statements

Reactive systems:

Lustre programs run forever
At each clock tick they

compute outputs from their inputs
before the next clock tick

3 / 17

Lustre: a synchronous dataflow language

Synchronous:
a base clock regulates computations;
computations are inherently parallel

Dataflow:
inputs, outputs, variables, constants . . . are endless streams of values

Declarative:
set of equations, no statements

Reactive systems:

Lustre programs run forever
At each clock tick they

compute outputs from their inputs
before the next clock tick

3 / 17

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Circuit view:

x

+

y /

2.0

out

4 / 17

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Circuit view:

x

+

y /

2.0

out

4 / 17

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Mathematical view:
∀i ∈ N, outi =

xi + yi
2

5 / 17

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Transition system unrolled view:

clock ticks . . .0

x0+y0
2.0

x0 y0

out0

1

x1+y1
2.0

x1 y1

out1

2

x2+y2
2.0

x2 y2

out2

3

x3+y3
2.0

x3 y3

out3

6 / 17

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Transition system unrolled view:

clock ticks . . .0

x0+y0
2.0

x0 y0

out0

1

x1+y1
2.0

x1 y1

out1

2

x2+y2
2.0

x2 y2

out2

3

x3+y3
2.0

x3 y3

out3

6 / 17

A simple example

node average (x, y: real) returns (out: real);
let

out = (x + y) / 2.0;
tel

Transition system unrolled view:

clock ticks . . .0

4.0+6.0
2.0

4.0 6.0

5.0

1

0.0+7.0
2.0

0.0 7.0

3.5

2

1.0+1.0
2.0

1.0 1.0

1.0

3

7.0+1.0
2.0

7.0 1.0

4.0

6 / 17

Combinational programs

Basic type: bool, int, real

Constants (i.e., constant streams):
2 2 2 2 2 2 . . .

true true true true true true . . .

Pointwise operators:
x x0 x1 x2 x3 x4 . . .
y y0 y1 y2 y3 y4 . . .

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 . . .

All classical operators are provided

7 / 17

Combinational programs

Basic type: bool, int, real

Constants (i.e., constant streams):
2 2 2 2 2 2 . . .

true true true true true true . . .

Pointwise operators:
x x0 x1 x2 x3 x4 . . .
y y0 y1 y2 y3 y4 . . .

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 . . .

All classical operators are provided

7 / 17

Combinational programs

Conditional expressions:

node max (n1 ,n2: real) returns (out: real);
let

out = if (n1 >= n2) then n1 else n2;
tel

Functional “if ... then ... else ...”

It is an expression, not a statement

-- This does not compile
if (a >= b) then m = a else m = b;

8 / 17

Combinational programs

Conditional expressions:

node max (n1 ,n2: real) returns (out: real);
let

out = if (n1 >= n2) then n1 else n2;
tel

Functional “if ... then ... else ...”

It is an expression, not a statement

-- This does not compile
if (a >= b) then m = a else m = b;

8 / 17

Combinational programs

Local variables:

node max (a,b: real) returns (out: real);
var

condition: bool;
let

out = if condition then a else b;
condition = a >= b;

tel

Order does not matter

Set of equations not sequence of statements

Causality is resolved syntactically

9 / 17

Combinational programs

Local variables:

node max (a,b: real) returns (out: real);
var

condition: bool;
let

out = if condition then a else b;
condition = a >= b;

tel

Order does not matter

Set of equations not sequence of statements

Causality is resolved syntactically

9 / 17

Combinational programs

Local variables:

node max (a,b: real) returns (out: real);
var

condition: bool;
let

out = if condition then a else b;
condition = a >= b;

tel

Order does not matter

Set of equations not sequence of statements

Causality is resolved syntactically

9 / 17

Combinational programs

Combinational recursion is forbidden:

x = 1 / (2 - x);

has a unique integer solution: x = 1,

but is not computable step by step

Syntactic loop:

x = if c then y else 0;
y = if c then 1 else x;

not a real (semantic) loop:

x = if c then 1 else 0;
y = x;

but still forbidden by Lustre

10 / 17

Combinational programs

Combinational recursion is forbidden:

x = 1 / (2 - x);

has a unique integer solution: x = 1,

but is not computable step by step

Syntactic loop:

x = if c then y else 0;
y = if c then 1 else x;

not a real (semantic) loop:

x = if c then 1 else 0;
y = x;

but still forbidden by Lustre

10 / 17

Combinational programs

Combinational recursion is forbidden:

x = 1 / (2 - x);

has a unique integer solution: x = 1,

but is not computable step by step

Syntactic loop:

x = if c then y else 0;
y = if c then 1 else x;

not a real (semantic) loop:

x = if c then 1 else 0;
y = x;

but still forbidden by Lustre

10 / 17

Combinational programs

Combinational recursion is forbidden:

x = 1 / (2 - x);

has a unique integer solution: x = 1,

but is not computable step by step

Syntactic loop:

x = if c then y else 0;
y = if c then 1 else x;

not a real (semantic) loop:

x = if c then 1 else 0;
y = x;

but still forbidden by Lustre

10 / 17

Memory programs

Previous operator “ pre ”:
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization “ -> ”:
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x

nil x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y

x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x)

2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Previous operator “ pre ”:
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization “ -> ”:
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x

nil x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y

x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x)

2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Previous operator “ pre ”:
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization “ -> ”:
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x

nil x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y

x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x)

2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Previous operator “ pre ”:
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization “ -> ”:
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x nil x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y

x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x)

2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Previous operator “ pre ”:
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization “ -> ”:
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x nil x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y

x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x)

2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Previous operator “ pre ”:
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization “ -> ”:
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x nil x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x)

2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Previous operator “ pre ”:
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization “ -> ”:
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x nil x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x)

2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Previous operator “ pre ”:
(pre x)0 is undefined (nil)
(pre x)i = xi−1 for i > 0

Initialization “ -> ”:
(x -> y)0 = x0

(x -> y)i = yi for i > 0

Examples:

x x0 x1 x2 x3 x4 x5 . . .
pre x nil x0 x1 x2 x3 x4 . . .

y y0 y1 y2 y3 y4 y5 . . .
x -> y x0 y1 y2 y3 y4 y5 . . .

2 2 2 2 2 2 2 . . .
2 -> (pre x) 2 x0 x1 x2 x3 x4 . . .

11 / 17

Memory programs

Recursive definition using pre :

n = 0 -> 1 + pre n;
a = false -> not pre a;

n 0

1 2 3 . . .

a false

true false true . . .

12 / 17

Memory programs

Recursive definition using pre :

n = 0 -> 1 + pre n;
a = false -> not pre a;

n 0 1 2 3 . . .
a false

true false true . . .

12 / 17

Memory programs

Recursive definition using pre :

n = 0 -> 1 + pre n;
a = false -> not pre a;

n 0 1 2 3 . . .
a false true false true . . .

12 / 17

Memory programs: examples

Raising edge:

node guess (signal: bool) returns (e: bool);
let

e = false -> signal and not pre signal;
tel

signal 0 1 1 0 1 0 . . .
e

0

1 0 0 1 0 . . .

13 / 17

Memory programs: examples

Raising edge:

node guess (signal: bool) returns (e: bool);
let

e = false -> signal and not pre signal;
tel

signal 0 1 1 0 1 0 . . .
e 0

1 0 0 1 0 . . .

13 / 17

Memory programs: examples

Raising edge:

node guess (signal: bool) returns (e: bool);
let

e = false -> signal and not pre signal;
tel

signal 0 1 1 0 1 0 . . .
e 0 1 0 0 1 0 . . .

13 / 17

Memory programs: examples

Raising edge:

node guess (signal: bool) returns (e: bool);
let

e = false -> signal and not pre signal;
tel

signal 0 1 1 0 1 0 . . .
e 0 1 0 0 1 0 . . .

13 / 17

Memory programs: examples

Min and max of a sequence:

node guess (n: int) returns (out1 ,out2: int);
let

out1 = n -> if (n < pre out1) then n else pre out1;
out2 = n -> if (n > pre out2) then n else pre out2;

tel

n 4 2 3 0 3 7 . . .
out1

4

2 2 0 0 0 . . .

out2 4 4 4 4 4 7 . . .

14 / 17

Memory programs: examples

Min and max of a sequence:

node guess (n: int) returns (out1 ,out2: int);
let

out1 = n -> if (n < pre out1) then n else pre out1;
out2 = n -> if (n > pre out2) then n else pre out2;

tel

n 4 2 3 0 3 7 . . .
out1 4

2 2 0 0 0 . . .

out2 4 4 4 4 4 7 . . .

14 / 17

Memory programs: examples

Min and max of a sequence:

node guess (n: int) returns (out1 ,out2: int);
let

out1 = n -> if (n < pre out1) then n else pre out1;
out2 = n -> if (n > pre out2) then n else pre out2;

tel

n 4 2 3 0 3 7 . . .
out1 4 2 2 0 0 0 . . .

out2 4 4 4 4 4 7 . . .

14 / 17

Memory programs: examples

Min and max of a sequence:

node guess (n: int) returns (out1 ,out2: int);
let

out1 = n -> if (n < pre out1) then n else pre out1;
out2 = n -> if (n > pre out2) then n else pre out2;

tel

n 4 2 3 0 3 7 . . .
out1 4 2 2 0 0 0 . . .
out2 4 4 4 4 4 7 . . .

14 / 17

Memory programs: examples

Min and max of a sequence:

node guess (n: int) returns (out1 ,out2: int);
let

out1 = n -> if (n < pre out1) then n else pre out1;
out2 = n -> if (n > pre out2) then n else pre out2;

tel

n 4 2 3 0 3 7 . . .
out1 4 2 2 0 0 0 . . .
out2 4 4 4 4 4 7 . . .

14 / 17

Exercises

Design a node

node switch (on ,off: bool) returns (state: bool);

such that:
state raises (false to true) if on;
state falls (true to false) if off;

everything behaves as if state was false at the origin;
switch must work properly even if on and off are the same

node switch (on , off: bool) returns (state: bool);
let

state =
false -> if (not pre state) then on

else (not off);
-- Equivalently:
-- ((not pre state) and on)
-- or ((pre state) and (not off))

tel

15 / 17

Exercises

Design a node

node switch (on ,off: bool) returns (state: bool);

such that:
state raises (false to true) if on;
state falls (true to false) if off;
everything behaves as if state was false at the origin;
switch must work properly even if on and off are the same

node switch (on , off: bool) returns (state: bool);
let

state =
false -> if (not pre state) then on

else (not off);
-- Equivalently:
-- ((not pre state) and on)
-- or ((pre state) and (not off))

tel

15 / 17

Exercises

Design a node

node switch (on ,off: bool) returns (state: bool);

such that:
state raises (false to true) if on;
state falls (true to false) if off;
everything behaves as if state was false at the origin;
switch must work properly even if on and off are the same

node switch (on , off: bool) returns (state: bool);
let

state =
false -> if (not pre state) then on

else (not off);
-- Equivalently:
-- ((not pre state) and on)
-- or ((pre state) and (not off))

tel

15 / 17

Exercises

Compute the sequence 1, 1, 2, 3, 5, 8 . . .

Fibonacci sequence:
u0 = u1 = 1
un = un−1 + un−2 for n ≥ 2

16 / 17

Exercises

Compute the sequence 1, 1, 2, 3, 5, 8, 13, 21 . . .

Fibonacci sequence:
u0 = u1 = 1
un = un−1 + un−2 for n ≥ 2

16 / 17

Credits

These notes are based on the following lectures notes:

The Lustre Language — Synchronous Programming
by Pascal Raymond and Nicolas Halbwachs
Verimag-CNRS

17 / 17

