
The Lustre Language

Synchronous Programming

Pascal Raymond, Nicolas Halbwachs

Verimag-CNRS

2

Data-flow approach

• A program = a network of operators connected by wires

• Rather classical (control theory, circuits)

X

Y

+

/

2

A

node Average(X, Y : int)

returns (A : int);

let

A = (X + Y) / 2 ;

tel

• Synchronous: discrete time= IN

∀t ∈ IN At = (Xt + Yt)/2

• Full parallelism: nodes are running concurrently

Data-flow approach

3

Another version

node Average(X, Y : int)

returns (A : int);

var S : int; – local variable

let

A = S / 2; – equations

S = X + Y; – (order does not matter)

tel

• declarative: set of equations

• a single equation for each output/local

• variables are infinite sequences of values

Data-flow approach Another version

4

Lustre (textual) and Scade (graphical)

Data-flow approach Lustre (textual) and Scade (graphical)

5

Combinational programs

• Basic types: bool, int, real

• Constants:

2≡ 2, 2, 2, · · ·
true≡ true, true, true, · · ·

• Pointwise operators:

X≡ x0, x1, x2, x3... Y≡ y0, y1, y2, y3...

X + Y≡ x0 + y0, x1 + y1, x2 + y2, x3 + y3...

• All classical operators are provided

Combinational programs Lustre (textual) and Scade (graphical)

6

• if operator

node Max(A,B: real) returns (M: real);

let

M = if (A >= B) then A else B;

tel

Warning: functional “if then else”, not statement

let
if (A >= B) then M = A ;
else M = B ;

tel✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏���������������

Combinational programs Lustre (textual) and Scade (graphical)

7

Memory programs

Delay operator

• Previous operator: pre

X x0 x1 x2 x3 x4 ...

pre X nil x0 x1 x2 x3 ...

Memory programs Delay operator

7

Memory programs

Delay operator

• Previous operator: pre

X x0 x1 x2 x3 x4 ...

pre X nil x0 x1 x2 x3 ...

i.e. (preX)0 undefined and ∀i �= 0 (preX)i = Xi−1

Memory programs Delay operator

7

Memory programs

Delay operator

• Previous operator: pre

X x0 x1 x2 x3 x4 ...

pre X nil x0 x1 x2 x3 ...

i.e. (preX)0 undefined and ∀i �= 0 (preX)i = Xi−1

• Initialization: ->

X x0 x1 x2 x3 x4 ...

Y y0 y1 y2 y3 y4 ...

X ->Y x0 y1 y2 y3 y4 ...

Memory programs Delay operator

7

Memory programs

Delay operator

• Previous operator: pre

X x0 x1 x2 x3 x4 ...

pre X nil x0 x1 x2 x3 ...

i.e. (preX)0 undefined and ∀i �= 0 (preX)i = Xi−1

• Initialization: ->

X x0 x1 x2 x3 x4 ...

Y y0 y1 y2 y3 y4 ...

X ->Y x0 y1 y2 y3 y4 ...

i.e. (X->Y)0 = X0 and ∀i �= 0 (X->Y)i = Yi

Memory programs Delay operator

8

Nodes with memory

• Boolean example: raising edge

node Edge (X : bool) returns (E : bool);

let

E = false -> X and not pre X ;

tel

• Numerical example: min and max of a sequence

node MinMax(X : int)

returns (min, max : int); – several outputs

let

min = X -> if (X < pre min) then X else pre min;

max = X -> if (X > pre max) then X else pre max;

tel

Memory programs Nodes with memory

9

Recursive definition

Examples

• N = 0 -> pre N + 1

Recursive definition Counter-example

9

Recursive definition

Examples

• N = 0 -> pre N + 1 N = 0, 1, 2, 3, · · ·

Recursive definition Counter-example

9

Recursive definition

Examples

• N = 0 -> pre N + 1 N = 0, 1, 2, 3, · · ·

• A = false -> not pre A

Recursive definition Counter-example

9

Recursive definition

Examples

• N = 0 -> pre N + 1 N = 0, 1, 2, 3, · · ·

• A = false -> not pre A A = false, true, false, true, · · ·

Recursive definition Counter-example

9

Recursive definition

Examples

• N = 0 -> pre N + 1 N = 0, 1, 2, 3, · · ·

• A = false -> not pre A A = false, true, false, true, · · ·

• Correct⇒ the sequence can be computed step by step

Counter-example

• X = 1/(2-X)

• unique (integer) solution: “X=1”

• but not computable step by step

Sufficient condition: forbid combinational loops

How to detect combinational loops?

Recursive definition Counter-example

10

Syntactic vs semantic loop

• Example:

X = if C then Y else A;

Y = if C then B else X;

• Syntactic loop

• But not semantic: X = Y = if C then B else A

Correct definitions in Lustre

• Choice: syntactic loops are rejected

(even if they are “false” loops)

Recursive definition Correct definitions in Lustre

11

Exercices

• A flow F = 1, 1, 2, 3, 5, 8, · · · ?

• A node Switch(on,off: bool) returns (s: bool);

such that:

� s raises (false to true) if on, and falls (true to false) if off

� everything behaves as if s was false at the origin

� must work properly even if off and on are the same

• A node Count(reset,x: bool) returns (c: int);

such that:

� c is reset to 0 if reset, otherwise it is incremented if x,

� everything behaves as if c was 0 at the origin

Recursive definition Exercices

12

Solutions

• Fibonacci:

f = 1 -> pre(f + (0 -> pre f));

• Bistable:

node Switch(on,off: bool) returns (s: bool);

let s = if(false -> pre s) then not off else on; tel

• Counter:

node Count(reset,x: bool) returns (c: int);

let

c = if reset then 0

else if x then (0->pre c) + 1

else (0->pre c);

tel

Recursive definition Solutions

13

Modularity

Reuse

• Once defined, a user node can be used as a basic operator

• Instanciation is functional-like

• Example (exercice: what is the value?)

A = Count(true -> (pre A = 3), true)

• Several outputs:

node MinMaxAverage(x: bool) returns (a: int);

var min,max: int;

let

a = average(min,max);

min, max = MinMax(x);

tel

Modularity Reuse

14

A complete example: stopwatch

• 1 integer output: displayed time

• 3 input buttons: on off, reset, freeze

� on off starts and stops the stopwatch

� reset resets the stopwatch (if not running)

� freeze freezes the displayed time (if running)

Modularity A complete example: stopwatch

14

A complete example: stopwatch

• 1 integer output: displayed time

• 3 input buttons: on off, reset, freeze

� on off starts and stops the stopwatch

� reset resets the stopwatch (if not running)

� freeze freezes the displayed time (if running)

• Find local variables (and how they are computed):

� running: bool, a Switch instance

� freezed: bool, a Switch instance

� cpt: int, a Count instance

Modularity A complete example: stopwatch

15

node Stopwatch(on off,reset,freeze: bool)

returns (time: int);

var running, freezed:bool; cpt:int;

let

running = Switch(on off, on off);

freezed = Switch(

freeze and running,

freeze or on off);

cpt = Count(reset and not running, running);

time = if freezed then (0 -> pre time) else cpt;

tel

Modularity A complete example: stopwatch

16

Clocks

Motivation

• Attempt to conciliate “control” with data-flow

• Express that some part of the program works less often

• ⇒ notion of data-flow clock (similar to clock-enabled in circuit)

Clocks Sampling: when operator

16

Clocks

Motivation

• Attempt to conciliate “control” with data-flow

• Express that some part of the program works less often

• ⇒ notion of data-flow clock (similar to clock-enabled in circuit)

Sampling: when operator

X 4 1 -3 0 2 7 8

C true false false true true false true

X when C 4 0 2 8

• whenever C is false, X when C does not exist

Clocks Sampling: when operator

17

Projection: current operator

• One can operate only on flows with the same clock

• projection on a common clock is (sometime) necessary

X 4 1 -3 0 2 7 8

C true false false true true false true

Y = X when C 4 0 2 8

Z = current(Y) 4 4 4 0 2 2 8

Clocks Projection: current operator

18

Nodes and clocks

• Clock of a node instance = clock of its effective inputs

• Sampling inputs = enforce the whole node to run slower

• In particular, sampling inputs �= sampling outputs

C true true false false true false true

Count((r,true) when C) 1 2 3 4

Count(r,true) when C 1 2 5 7

Clocks Nodes and clocks

19

Example: stopwatch with clocks

node Stopwatch(on off,reset,freeze: bool)

returns (time: int);

var running, freezed:bool;

cpt ena, tim ena : bool;

(cpt:int) when cpt ena;

let

running = Switch(on off, on off);

freezed = Switch(

freeze and running,

freeze or on off);

cpt ena = true -> reset or running;

cpt = Count((not running, true) when cpt ena);

tim ena = true -> not freezed;

time = current(current(cpt) when tim ena);

tel

Clocks Example: stopwatch with clocks

20

Clock checking

• Similar to type checking

• Clocks must be named (clocks are equal iff they are the same var)

• The clock of each var must be declared (the default is the base

clock)

• clk(exp when C) = C ⇔ clk(exp) = clk(C)

• clk(current exp) = clk(clk(exp))

• For any other op:

clk(e1 op e2) = C ⇔ clk(e1) = clk(e2) = C

Clocks Clock checking

21

Programming with clocks

• Clocks are the right semantic solution

• However, using clocks is quite tricky (cf. stopwatch)

• Main problem: initialisation

current(X when C) exists, but is undefined until C becomes

true for the first time

• Solution: activation condition

� not an operator, rather a macro

� X = CONDACT(OP, clk, args, dflt) equivalent to:

X = if clk then current(OP(args when clk))

else (dflt -> pre X)

� Provided by Scade (industrial)

Clocks Programming with clocks

22

Is that all there is?

Dedicated vs general purpose languages

• Synchronous languages are dedicated to reactive kernel

• Not suitable for complex data types manupulation

• Abstract types and functions are imported from the host language

(typically C)

However ...

• Statically sized arrays are provided

• Static recursion (Lustre V4, dedicated to circuit)

• Modules and templates (Lustre V6, dedicated to sofware)

Is that all there is? However ...

	Data-flow approach
	Another version
	Lustre (textual) and Scade (graphical)

	Combinational programs
	Memory programs
	Delay operator
	Nodes with memory

	Recursive definition
	Examples
	Counter-example
	Syntactic vs semantic loop
	Correct definitions in Lustre
	Exercices
	Solutions

	Modularity
	Reuse
	A complete example: stopwatch

	Clocks
	Motivation
	Sampling: black when operator
	Projection: black current operator
	Nodes and clocks
	Example: stopwatch with clocks
	Clock checking
	Programming with clocks

	Is that all there is?
	Dedicated vs general purpose languages
	However ...

