

The University of Iowa

CS:2820 (22C:22)

Object-Oriented Software Development

Spring 2015

The Domain Model

by
Mauricio Monsalve

Design road
● Beginning the design

● Domain Model
describes the
domain (context)

● It is followed by the
System System
Diagram(s)

● Then follows the OO
Design Model(s)

Domain Model
Visual representation of conceptual
classes or real-situation objects in a

domain
● The objects (conceptual classes) of the
domain are not software objects (classes)

● In UML, the Domain Model is illustrated with a
set of class diagrams without methods

● Also known as Visual Dictionary

● Perhaps most essential diagram

Domain Model
● Conceptual class: idea, thing, object

● It may be considered in terms of
– Symbol—words or images representing the
conceptual class

● Visual depiction, diagram

– Intension—the de-nition of the conceptual
class

● Comprehensive de⇠nition

– Extension—the set of examples to which the
conceptual class applies

● Extensive de⇠nition

Domain Model

Domain Model
● Conceptual classes only!

● Not in domain model
– Software artifacts

● Windows, databases, etc.
● Unless domain is software

– Responsibilities or methods
● They are part of the design and the software

Drawing the DM

Concepts have
names and
attributes
(sometimes), but
not methods

Drawing the DM

Drawing the DM
zero or more;

"many"

one or more

one to 40

exactly 5

T

T

T

T

*

1..*

1..40

5

T
3, 5, 8

exactly 3, 5, or 8

Associations should have
speci$c names—and so classes

“has” is a bad name!

Multiplicity should be kept
simple at this stage though;
conceptual modeling dœs not
need to be as precise

Drawing the DM

Sale

- dateTime : Date

- / total : Money

Private visibility

attributes

Math

+ pi : Real = 3.14 {readOnly}

Public visibility readonly

attribute with initialization

Person

firstName

middleName : [0..1]

lastName

Optional value

Classes also include attributes relevant to the domain

Attributed should have simple types (numbers, text, booleans, etc.)
—this is not so relevant at this stage, though

They sometimes can be “derived”, meaning that they can be inferred, by
means of a formula, from other attributes or associations

Drawing the DM
Example of association and derived attribute

SalesLineItem Item
Records-sale-of 10..1

SalesLineItem Item
Records-sale-of 0..1 1..*

Each line item records a

separate item sale.

For example, 1 tofu package.

Each line item can record a

group of the same kind of items.

For example, 6 tofu packages.

SalesLineItem

/quantity

Item
Records-sale-of 0..1 1..*

derived attribute from

the multiplicity value

Drawing the DM
● Pick exact, speci-c names for objects, associations, etc

● Attributes should have trivial types (numbers, text, etc)

● Keep the most relevant associations in the DM

● Encapsulation—don't connect everything to
everything!
– Objects should have strong internal cohesion
(attributes)

– Objects should be associated to few other objects
(low coupling)

● Problem: where do we get our objects from?

Getting the concepts
● Reuse existing models

– Copy or adapt existing, well accepted models
– Use existing DM when modifying a system

● Category lists
– Table 9.1 in book

● Identify noun phrases (easy!)
– Pick nouns, events
– Fully dressed use cases are great source
– Beware: natural language is imprecise

Getting the concepts
Class lists consist of
common taxonomies

The book has one, but
there are other lists—
are they for the DM?
● Business transactions

● Transaction line items

● Products, services

● Place of transaction

● Noteworthy events

● Physical objects

● Descriptions of things

● Catalogs

● Containers of things

● Things in a container

● Other related systems

● Fiduciary records (work,
contracts, -nances, etc)

● Financial instruments

● Reference documents
(schedules, manuals, etc)

Getting the concepts
Main Success Scenario (or Basic Flow):

1)Customer arrives at a POS checkout with goods and/or services to purchase.

2)Cashier starts a new sale.

3)Cashier enters item identi-er.

4)System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules.

Cashier repeats steps 2-3 until indicates done.

5)System presents total with taxes calculated.

6)Cashier tells Customer the total, and asks for payment.

7)Customer pays and System handles payment.

8)System logs the completed sale and sends sale and payment information to the
external Accounting (for accounting and commissions) and Inventory systems (to
update inventory).

9)System presents receipt.

10)Customer leaves with receipt and goods (if any).

Getting the concepts
Main Success Scenario (or Basic Flow):

1)Customer arrives at a POS checkout with goods and/or services to purchase.

2)Cashier starts a new sale.

3)Cashier enters item identi-er.

4)System records sale line item and presents item description, price, and running total.
Price calculated from a set of price rules.

Cashier repeats steps 2-3 until indicates done.

5)System presents total with taxes calculated.

6)Cashier tells Customer the total, and asks for payment.

7)Customer pays and System handles payment.

8)System logs the completed sale and sends sale and payment information to the
external Accounting (for accounting and commissions) and Inventory systems (to
update inventory).

9)System presents receipt.

10)Customer leaves with receipt and goods (if any).

Getting the concepts
● Using nouns or noun phrases has [almost] no
learning curve (easy!)

● Verbs often imply associations

● This method is as imperfect as natural language
– Also serves to check use cases and requirements
though

● Solutions
– Refer to class list
– Talk to domain expert

● But we can patch our approximations!

Getting more concepts
We may infer more concepts from what we have

● Patch the holes—are there holes in the design?

● Specialize—are there interesting subclasses?

● Generalize—are there interesting superclasses?

● Decompose—can an object be described in terms
of other, contained objects? (Many meanings to this)

● Compose—is a collection of given objects
relevant?

● Fix imperfections—next slides

Getting more concepts

Cashier

name

currentRegisterNumber

Cashier

name

Register

number

Works-on

Worse

Better

a "simple" attribute, but being

used as a foreign key to relate to

another object

1 1

“Foreign keys” identify other concepts. “Keys” are identi$ers; they hold a
1-to-1 relation with an object

Getting more concepts

Item

description

price

serial number

itemID

ProductDescription

description

price

itemID

Item

serial number

Describes Better

Worse

1 *

Another foreign key example

Getting more concepts

Worse

Flight

date

time

FlightDescription

number

Airport

name

Describes-flights-to

Described-by

Flight

date

number

time

Airport

name

Flies-to

Better

1*

1*

1

*

Associations should not have attributes; if one dœs
have, then chances are it is an object

Getting more concepts

OK

OK

Product

Description

Product

Description

itemId : ItemID

1
Store

Store

address : Address

11 1

ItemID

id

manufacturerCode

countryCode

Address

street1

street2

cityName

...

New objects are conditional to the relevance to
the model

Also, composite data types may be objects

Getting more concepts
Payment

amount : Number

Payment Quantity

amount : Number

Unit

...

Payment

amount : Quantity

Has-amount
1*

Is-in

1*

not useful

quantities are pure data

values, so are suitable to

show in attribute section better

Payment

amount : Money

variation: Money is a

specialized Quantity whose

unit is a currency

NextGen example

Register

id

Item
Store

name

address

Sale

dateTime

/ total

CashPayment

amountTendered

Sales

LineItem

quantity

Cashier

id

Customer

Product

Catalog

Product

Description

itemID

description

price

Stocks

*

Houses

1..*

Used-by

*

Contains

1..*

Describes

*

Captured-on

Contained-in

1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-

completed

*

 Works-on

1

1

1

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-

accounts-

for

1

1

Domain Model v/s Design Model

Payment

amount

Sale

date

time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date

startTime: Time

getTotal(): Money

. . .

Pays-for

UP Domain Model

Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model

The object-oriented developer has taken inspiration from the real world domain

in creating software classes.

Therefore, the representational gap between how stakeholders conceive the

domain, and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model

is a concept, but a Payment in

the Design Model is a software

class. They are not the same

thing, but the former inspired the

naming and definition of the

latter.

This reduces the representational

gap.

This is one of the big ideas in

object technology.

inspires

objects

and

names in

Design Model (later)
● We will use a detailed Class Diagram to
describe the Design Model

● We will evolve and infer OO classes from the
concepts

● We might drop concepts as well

● Other classes will come from system needs

● The associations will be much more speci-c

● Code can be partially inferred from Design
Model

Thoughts
● No single correct answer—no exact science either!

● It might take to become familiar with the ideas

● It may be good to start with a simple domain
model

● Then, check what is wrong—-x

● Fixing may add components

● Iterate until good quality

● Don't connect all to all!

Credits

Notes and -gures adapted from

Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and
Iterative Development by C. Larman. 3rd
edition. Prentice Hall/Pearson, 2005.

