
The University of Iowa	

	

CS:2820 (22C:22)

Object-Oriented Software Development

Spring 2015	

	

Iteration 1: onto Elaboration

by

Mauricio Monsalve

Inception

l  Suppose inception is done; then
l  Use cases/requirements:
-  Short requirements workshop done
-  Most use cases, actors, goals defined/named
-  Most use cases written in brief format

10-20% in detail, though

-  most influential and risky quality requirements
identified

Inception

l  Technical proof-of-concept (feasibility)
-  Hello worlds to check if library X can be

combined with Y
-  Can we do X on system Y? Show so

l  User interface-oriented prototypes
-  HTML, Slides, etc., to show how functionality

would work

Inception

l  Preparing the elaboration
-  Recommendations on what components to

buy/build/reuse
We don't need to do everything from scratch

-  High-level candidate architecture and
components proposed
This is just a brief speculation of how to organize the

components of the system. It can change.

-  Plan for the first iteration
This is what we talk about here

Iterative-incremental
development

l  The UP is both iterative and incremental
l  Iterative development:

Development is split in iterations
l  Incremental development:

Complexity (size) is increased in iterations

Not all requirements are tackled
in a single iteration

1
A use case or feature is
often too complex to
complete in one short
iteration.

Therefore, different parts
or scenarios must be
allocated to different
iterations.

Use Case
Process Sale

2 3 . . .

Use Case
Process Sale

Use Case
Process Sale

Use Case
Process Rentals

Feature:
Logging

Elaboration

Elaboration is the initial series of iterations
during which, on a normal project:
l  the core, risky software architecture is

programmed and tested
l  the majority of requirements are

discovered and stabilized
l  the major risks are mitigated or retired

Elaboration

l  Consists of 2 or more iterations
l  Iterations: 2 to 6 weeks
-  prefer shorter iterations, unless large team

l  During this phase, one is not creating
throw-away prototypes
-  code and design are production-quality

portions of the final system

Elaboration

In one sentence:

Build the core architecture,
resolve the high-risk elements,
define most requirements, and

estimate the overall schedule and resources

Elaboration
l  Recommendations
-  Short timeboxed risk-driven iterations
-  Start programming early
-  Adaptively design, implement, and test the core

and risky parts of the architecture
-  Test early, often, realistically
-  Adapt on feedback from tests, users, developers
-  Write most of the use cases and other

requirements in detail, through a series of
workshops, once per elaboration iteration

Elaboration

l  How to prioritize work?
l  Prioritize requirements
l  Rank requirements based on
-  Criticality: degree of value to the customer
-  Coverage: how much of the system is related

to the requirement
-  Risk: technical complexity, uncertainty of

effort, usability
l  Start with top ranked requirements

Elaboration
Some artifacts produced during the elaboration

Process Sale

1. Customer arrives
...
2. ...
3. Cashier enters
item identifier.
4....

Use Case Text

Operation: enterItem(…)

Post-conditions:
- . . .

Operation Contracts

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

the domain objects,
attributes, and associations
that undergo state changes

Domain Model

Use-Case Model

Design Model

: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec = getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

. . .

conceptual
classes in
the
domain
inspire the
names of
some
software
classes in
the design

conceptual classes –
terms, concepts
attributes, associations

Cashier: …
Item ID: …
...

Glossary

elaboration of
some terms in
the domain
model

Require-
ments

Business
Modeling

Design

Sample UP Artifact Relationships

Agile pedagogy!
l  Re-read the slides—make associations
l  Can you explain why we said what we said?

Obviously, because we think it is useful and right, but
why do we do so?

l  Do you understand the implicitly defined
concepts?
-  There are many concepts built from earlier work
-  We do not describe all possibilities:

l  E.g., iterative and incremental development... what is [not]?

l  Can you apply some UP concepts to studying?

