
The University of Iowa	

CS:2820 (22C:22)

Object-Oriented Software
Development

!

Spring 2015

Iterative Evolutionary
Development 	

by 	

Cesare Tinelli

Software development approach
emphasizing 	

early programming and 	

testing of a partial system	

in repeating cycles

Iterative and Evolutionary
Development

• Development starts before all the
requirements are defined in detail	

• Feedback is used to clarify and improve
evolving specifications	

• Relies on short quick development
steps, feedback, and adaptation to clarify
the requirements and design

Iterative and Evolutionary
Development

• Popular iterative process for projects
using OO analysis and design	

• Combines commonly accepted best
practices into a cohesive and well-
documented process	

• For us, it is an example how to do, and
so explain, OO analysis and design	

• It promotes iterative and evolutionary
development

The Unified Process

Iterative Development

• Development is organized into a series of
short, fixed-length mini-projects (iterations)	

• The outcome of each iteration is a tested,
integrated, and executable partial system	

• Each iteration includes its own requirements
analysis, design, implementation, and testing
activities

Iterative and evolutionary development

Requirements

Design

Implementation &
Test & Integration

& More Design

Final Integration
& System Test

Requirements

Design

3 weeks (for example)
The system grows
incrementally.

Feedback from
iteration N leads to
refinement and
adaptation of the
requirements and
design in iteration
N+1.

Iterations are fixed in
length, or timeboxed.

Time
Implementation &
Test & Integration

& More Design

Final Integration
& System Test

Iterative Development

• The process lifecycle is based on the
successive enlargement and refinement of a
system through multiple iterations	

• Cyclic feedback and adaptation are core
drivers to converge upon a suitable system 	

• The system grows incrementally over time,
iteration by iteration	

• Specification and design evolve as a result of
feedback and adaptation

Early iterations are farther from the "true
path" of the system. Via feedback and
adaptation, the system converges towards
the most appropriate requirements and
design.

In late iterations, a significant change in
requirements is rare, but can occur. Such
late changes may give an organization a
competitive business advantage.

one iteration of design,
implement, integrate, and test

Iterative and evolutionary development

Benefits

• Fewer project failures, better productivity,
and lower defect rates	

• Early rather than late mitigation of high
risks (technical, requirements, objectives,
usability, ...)	

• Early visible progress

Benefits

• A refined system that more closely meets
the real needs of the stakeholders	

• Managed complexity (the team is not
overwhelmed by “analysis paralysis” or very
long and complex steps)	

• The learning within an iteration can be
methodically used to improve the
development process itself

Risk-Driven and Client-Driven
Iterative Planning

• The UP encourages a combination of	

• risk-driven iterative planning and	

• client-driven iterative planning	

• Early iterations aimed at	

1. identifying and reducing the highest risks 	

2. building visible features the client cares
most about

Other Critical UP Practices

• Tackle high-risk and high-value issues
in early iterations	

• Continuously engage users for
evaluation, feedback, and requirements	

• Build a cohesive, core architecture in
early iterations	

• Continuously verify quality; test early,
often, and realistically

Other Critical UP Practices

• Apply use cases where appropriate	

• Do some visual modeling (with UML)	

• Carefully manage requirements	

• Practice change request and
configuration management

UP Phases

1. Inception—approximate vision, business case,
scope, vague estimates	

2. Elaboration—refined vision, iterative
implementation of the core architecture,
resolution of high risks, identification of most
requirements and scope, more realistic estimates	

3. Construction—iterative implementation of the
remaining lower risk and easier elements, and
preparation for deployment	

4. Transition—beta tests, deployment

UP Development Cycle

inc. elaboration construction transition

iteration phase

development cycle

release

A stable executable
subset of the final
product. The end of
each iteration is a
minor release.

increment

The difference
(delta) between the
releases of 2
subsequent
iterations.

final production
release

At this point, the
system is released
for production use.

milestone

An iteration end-
point when some
significant decision
or evaluation
occurs.

UP Disciplines

Iterations

Sample
UP Disciplines

Business Modeling

Requirements

Design

Implementation

Test

Deployment

Configuration & Change
Management

Project Management

Environment

Focus
of this
book

Note that
although an
iteration includes
work in most
disciplines, the
relative effort and
emphasis change
over time.

This example is
suggestive, not
literal.

A four-week iteration (for example).
A mini-project that includes work in most
disciplines, ending in a stable executable.

Disciplines across Phases

Sample
UP Disciplines

Business
Modeling

Requirements

Design

Implementation

...

The relative effort in
disciplines shifts
across the phases.

This example is
suggestive, not literal.

incep-
tion elaboration construction transi-

tion

...

Credits

Notes and figures adapted from 	

Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative
Development by C. Larman. 3rd edition.
Prentice Hall/Pearson, 2005.	

