
The University of Iowa	

CS:2820 (22C:22)

Object-Oriented Software Development
Spring 2015	

	

Transition to Design	

(Chapters 12, 13, 14)	

	

by

Mauricio Monsalve

Design road	

Operation:
 enterItem(…)

Post-conditions:
- . . .

Operation Contracts

Sale

date
. . .

Sales
LineItem

quantity

1..*1 . . .

. . .

Domain Model

Use-Case Model

Design Model
: Register

enterItem
(itemID, quantity)

: ProductCatalog

spec = getProductSpec(itemID)

addLineItem(spec, quantity)

: Sale

Require-
ments

Business
Modeling

Design

Sample UP Artifact Relationships

: System

enterItem
(id, quantity)

Use Case Text

System Sequence Diagrams

make
NewSale()

system
events

Cashier

Process
Sale

: Cashier

use
case

names

system
operations

Use Case Diagram

Vision

Supplementary
Specification

Glossary

starting events to
design for, and
more detailed
requirements that
must be satisfied
by the software

Process Sale

1. Customer
arrives ...
2. ...
3. Cashier
enters item
identifier.

the domain
objects,
attributes,
and
associations
that undergo
changes

requirements
that must be
satisfied by
the software

ideas for
the post-
conditions

Remember Agile	

l  Domain Model is covered—done?	

l  System Model is covered—done?	

l  Agile principles	

- Models can always be improved	

-  Prioritized aspects of system	

l  Work is meant to be partial initially!	

l  Iterate and improve!	

Approach to Diagrams	

l  Agile: diagrams are sketch—accurate diagrams
are not as important as advancing	

l  Model Driven Engineering: diagrams must be
perfect (or very detailed) to generate code	

l  CASE tools can help MDE and Agile	

l  Split modeling, model in parallel (try alternatives)	

l  MDE on portions of diagrams—why not?	

Divide and conquer	

l  Prioritize work (requirements, UCs)	

l  Model by parts	

l  Domain Model—use packages	

-  Same topic? Same package	

-  Related concepts? Same package	

-  Relatedness:	

l  Same Use Cases	

l  Hierarchies	

l  Associations (coupling)	

Design: Architecture	

l  A.k.a. logical design	

l  Divide and conquer: layered architecture	

l  Traditional pattern: MVC	

-  Model—underlying logic of the system	

l  Domain Model	

l  Data Model	

l  Logical Procedures—Algorithms	

-  View—user interfaces	

-  Controller—execution control (flow)	

l  Execution algorithms (start, stop, etc.)	

Design: Architecture	

l  MVC is convenient for the UP: Domain
Model corresponds to the Model part	

l  Domain Layer	

l  Convenient starting point for Design	

l  Low representational gap	

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

UP Domain Model
Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model
The object-oriented developer has taken inspiration from the real world domain
in creating software classes.

Therefore, the representational gap between how stakeholders conceive the
domain, and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model
is a concept, but a Payment in
the Design Model is a software
class. They are not the same
thing, but the former inspired the
naming and definition of the
latter.

This reduces the representational
gap.

This is one of the big ideas in
object technology.

inspires
objects

and
names in

Design: Architecture	

Design: Architecture	

l  The architecture can be split into more
layers, or each layer can be split into
partitions (like the packages in the DM)	

Design: Architecture	

Getting the objects	

l  Domain Layer—we can reuse the concepts
from the Domain Model	

l  Must add operations	

l  Operations can be identified through
interaction diagrams	

-  Sequence diagrams	

-  Communication diagrams	

Getting the objects	

Getting the objects	

l  CRC card approach—brainstorming approach	

l  In papers (cards) put the CRCs:	

-  Class name	

-  Responsibilities—what the class does (e.g.,
operations) in plain language	

-  Collaborations—other classes that are
associated/interact with this one	

l  Agile strategy, often seen in XP	

Getting the objects	

Getting the objects	

Credits	

	

Notes and figures adapted from	

Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative
Development by C. Larman. 3rd edition. Prentice
Hall/Pearson, 2005.	

