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Remember Agile	



l  Domain Model is covered—done?	



l  System Model is covered—done?	



l  Agile principles	


- Models can always be improved	



-  Prioritized aspects of system	


l  Work is meant to be partial initially!	



l  Iterate and improve!	





Approach to Diagrams	



l  Agile: diagrams are sketch—accurate diagrams 
are not as important as advancing	



l  Model Driven Engineering: diagrams must be 
perfect (or very detailed) to generate code	



l  CASE tools can help MDE and Agile	



l  Split modeling, model in parallel (try alternatives)	



l  MDE on portions of diagrams—why not?	





Divide and conquer	


l  Prioritize work (requirements, UCs)	



l  Model by parts	



l  Domain Model—use packages	



-  Same topic? Same package	



-  Related concepts? Same package	



-  Relatedness:	


l  Same Use Cases	



l  Hierarchies	



l  Associations (coupling)	





Design: Architecture	


l  A.k.a. logical design	



l  Divide and conquer: layered architecture	



l  Traditional pattern: MVC	


-  Model—underlying logic of the system	



l  Domain Model	


l  Data Model	


l  Logical Procedures—Algorithms	



-  View—user interfaces	


-  Controller—execution control (flow)	



l  Execution algorithms (start, stop, etc.)	





Design: Architecture	



l  MVC is convenient for the UP: Domain 
Model corresponds to the Model part	



l  Domain Layer	



l  Convenient starting point for Design	



l  Low representational gap	
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UP Domain Model
Stakeholder's view of the noteworthy concepts in the domain.

UP Design Model
The object-oriented developer has taken inspiration from the real world domain 
in creating software classes. 

Therefore, the representational gap between how stakeholders conceive the 
domain, and its representation in software, has been lowered.
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is a concept, but a Payment in 
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class. They are not the same 
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latter.
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Design: Architecture	





Design: Architecture	



l  The architecture can be split into more 
layers, or each layer can be split into 
partitions (like the packages in the DM)	





Design: Architecture	





Getting the objects	



l  Domain Layer—we can reuse the concepts 
from the Domain Model	



l  Must add operations	



l  Operations can be identified through 
interaction diagrams	



-  Sequence diagrams	



-  Communication diagrams	





Getting the objects	





Getting the objects	



l  CRC card approach—brainstorming approach	



l  In papers (cards) put the CRCs:	


-  Class name	



-  Responsibilities—what the class does (e.g., 
operations) in plain language	



-  Collaborations—other classes that are 
associated/interact with this one	



l  Agile strategy, often seen in XP	





Getting the objects	





Getting the objects	
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