
Chapter 9
Graphs and the Derivative

The computer draws beautiful graphs and does not force us to think very much, so why use calculus
to draw graphs?

The translation between formulas and graphs and the interpretation of graphs themselves are
important parts of this course. Graphs often reveal mathematical results simply and clearly, but
graphs do this with “trends” or “shapes,” not just points. Calculus with the computer will give us
information that includes both points and trends.

In real applications, the scale of a plot can be far from obvious. Hot objects radiate; you have
heard of “red hot.” Planck discovered that the intensity of radiation at frequency ω of a black body
at absolute temperature T is

I =
~ω3

π2c2(e~ω/(kT ) − 1)
where ~ ≈ 6.6255 × 10−27 (erg sec) is Planck’s constant, c ≈ 2.9979 × 1010 (cm/sec) is the speed
of light, and k ≈ 1.3805 × 10−16 (erg/deg) is Boltzman’s constant. The frequency ω where this
function peaks, is the “color” of the radiation we observe at temperature T . This peak predicts the
empirically observed law of radiation discovered earlier by Wein.

If we want to find this peak by graphing, we have a big difficulty. What scale should we use?
The constants c, k, and ~ cover 37 orders of magnitude, whereas a single graph can scarcely show
more than two. This is a complicated formula with messy constants; but aside from the technical
difficulty, calculus can help, even in just finding the interesting scale of the graph. This is taken up
in the project on Planck’s Formula.

Calculus helps you set the scales, which usually are not so obvious in real applications. Calculus
finds formulas for geometric features of interest. Calculus finds the qualitatively interesting range
to plot and once this is found, the computer can make a quantitatively accurate picture. Again,
our goal is for you to form a nonlinear combination

Knowledge[calculus + computing] >

Knowledge[calculus]+Knowledge[computing]

The scale of a graph can alter our perception of the behavior of a function. We begin the
chapter with a look at graphing without knowledge of shape.

9.1 Graphs from Formulas

Two simple approaches to graphing are plotting points and using computer packages. The exercises
at the end of this section show some limitations of these methods.
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Plotting points alone is usually a bad way to sketch graphs because that information alone
requires many points to construct a shape and a leap of faith that we have connected the points
correctly. If we have only numerical data, that is all we can do. Later in this chapter, we will learn
to use calculus to tell us shape information, such as where the graph is increasing or decreasing, so
that only a few points are required to give qualitatively accurate graphs. This first section is about
what goes wrong without this information.

Even with the computer, which will plot 1,000 points if you ask it to, we often can use calculus
to decide what range of values contains the important information. Poor choice of scales can come
up in innocent or simple-minded ways or as a result of large differences in the size of scientific
constants as in the Planck’s Formula project.

Example 9.1 Simple-Minded Scales

Which of the following is the graph of

y = x5 + 4x4 + x

Figure 9.1:1: y = x5 + 4x4 + x on four different scales



Chapter 9 - GRAPHS and the DERIVATIVE 194

The answer is all of these are graphs of this same polynomial. Graph (a) is for −100 < x < 100.
Graph (b) is for −10 < x < 10. Graph (c) is for −1 < x < 1. Graph (d) is for −0.1 < x < 0.1.
They appear different because the wiggle in the medium-scale graph is an insignificant part of the
term x5 when x = 100. The small unit scale misses some of the medium-size 10 wiggle. Why is the
tiny scale straight? (What is the view of the graph in a microscope?) These shape differences are
obvious if you compute some sizes but could surprise you if you are using the computer and blindly
hoping for “good” graphs. Calculus can find the interesting shape information, and the computer
can then draw it accurately. The four graphs above are accurate, but they are drawn on different
scales. Try these yourself with the computer.

Exercise Set 9.1

The next exercise shows you a simple reason why points alone are not enough.

1. Three Points Are Not Enough

(a) The cartesian pairs (−2,−2), (0, 0), (2, 2) are recorded in the table below the blank graph
in the next figure. Plot these points.

(b) Show that the graph of y = x contains all three points from part (1) and sketch the
graph.

(c) Show that the graph of y = x3 − 3x contains all three points from part (1). Can you
sketch it without more points?

(d) Find a point on the graph of y = x that is not on the graph of y = x3 − 3x and plot it.
(e) Use the graphing program in aComputerIntro to plot both functions on the same graph.

Figure 9.1:2: Three points on two graphs
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2. Find the equations of the lines shown in Figure 9.1:3.

Figure 9.1:3: Three parallel lines and two intersecting lines

3. Scale of the Plot
Use the computer to make several plots on different scales. First, replot

y = x5 + 4x4 + x

at the four scales described in Example 9.1:1 above, but leave the default “Ticks” on so
that the computer puts the scales on the plots. This will show you more clearly what we
described in the previous paragraph. Second, plot the functions below on the different
suggested scales:

y = xx0 < x < 2 and 0 < x < 5

y = 3x4 − 4x3 − 36x2 − 10 < x < 10 and − 3 < x < 5

Explain why the pairs of graphs appear to be different even though they are of the same
function.

In the next exercise, you are given four choices for the graph and asked which one is best.
Identify a shape feature related to the derivative (or what you would see in a microscope), and
then check the formula to see if it matches. For example, graph (a) is decreasing for large
magnitude negative numbers, and graph (b) is increasing. The derivative,dydx = 15(x

2 − 1)x2,
is positive if the magnitude of x is large; the squares remove the dependence on sign. What
does this say about the choice between (a) and (b)? What else can you eliminate?

4. Which of the following is the graph of y = 3x5 − 5x3? Which shape features of the incorrect
ones makes each one wrong?
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The previous exercise is a little artificial. It really means, “which graph has all the shape
information of the algebraic curve.” It also implicitly assumes that one of the figures is correct.
The point is that calculus tells us the shape or all the “ups and downs” of the curve.

9.2 Graphs Without Formulas

Qualitative information certainly can exist without any formulas.

Graphs are primarily good for qualitative information rather than quantitative accuracy. Graphs
readily show where quantities are increasing or decreasing but only give rough approximations to
amounts, rates of increase, and so on.
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Exercise Set 9.2

Make a qualitative rough sketch of a graph of the distance traveled as a function of time on the
following hypothetical trip: You travel a total of 100 miles in 2 hours. Most of the trip is on rural
interstate highway at the 65 mph speed limit. (What qualitative feature or shape does the graph
of distance vs. time have when speed is 65 mph?) You start from your house at rest, gradually
increase your speed to 25 mph, slow down, and stop at a stop sign. (What shape is the graph of
distance vs. time while you are stopped?) You speed up again to 25 mph, travel a while and enter
the interstate. At the end of the trip, you exit, slow to 25 mph, stop at a stop sign, and proceed to
your final destination.

9.3 Ups and Downs of the Derivative

Calculus lets us “look” in a powerful microscope at a graph before we have the whole graph. We
must “look” by computing derivatives.

Of course, all we would see in a powerful microscope is the graph of a straight line dy = mdx
in the microscope (dx, dy)-coordinates (where m = f 0[x] with x fixed). This can only be one of the
three qualitative shapes shown in Figure 9.3:4.

Figure 9.3:4: dy = mdx for m > 0, m = 0, m < 0

If f 0[x] is undefined, something else may appear in the microscope, and the rules of calculus do
not let us “see” in this case. The exact slope can be measured on an auxiliary scale (if necessary),
as in Figure 9.3:5.
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Figure 9.3:5: A Slope Scale

Our approach to graphing will be to fill out a table that looks like the blank graphing table
shown in Figure 9.3:6.

Figure 9.3:6: A blank graphing table
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Procedure 9.1 Graphing y = f [x] with the First Derivative

1. Compute f 0[x] and find all values of x where f 0[x] = 0 (or f 0[x] does not exist). Record these
in the microscope row as horizontal line segments (or ∗0s if the derivative does not exist).

2. Check the sign (+) or (-) of f 0[x] at values between each of the points from the first part.
Record f 0[x] = (+) > 0 as an upward sloping microscope line and f 0[x] = (−) < 0 as a
downward sloping microscope line.

3. Compute a few key (x, y) pairs (using f [x] to find values of y, not f 0[x]) and record the
numbers on the x and y rows. For example, you should at least compute the (x, y) pairs for
the x values used in step 1.

4. Plot the points and mark small tangent lines.

5. Connect the points with a curve matching the tangents as you pass through the points and
increasing or decreasing according to the table between the horizontal points.

Do not start by plotting points. Start with the “shape” information of the microscope row so
you first find out which points are interesting to plot.

If you are plotting with the computer, you can just work steps (a) and (b). This will tell you
the range of x values to plot.

Example 9.2 Graphing y = f [x] = 3x5 − 5x3 from Scratch

First, compute f 0[x],

y0 = 3 · 5 · x4 − 5 · 3 · x2 = 15x4 − 15x2 = 15x2 (x2 − 1)
This derivative is defined for all real values of x.

Second, find all places, x, where y0 = 0,

0 = 15x2 (x2 − 1) ⇔ x = 0 or x = +1 or x = −1
The derivative is always defined and is zero only at these three points - nowhere else.

Third, we check the sign of y0 for x-values between the three places where the slope is zero,
x = −2, x = −1/2, x = 1/2, and x = 2. Notice that we are computing f 0[x], not f [x].

x = −2, y0 = 15 · (−2)2 · [(−2)2 − 1] = 15 · 4 · [4− 1] = (+) slope up
x = −12 , y0 = 15 · (−12)2 · [(−12)2 − 1] = 15 · 14 · [14 − 1] = (−) slope down
x = 1

2 , y
0 = 15 · (12)2 · [(12)2 − 1] = 15 · 14 · [14 − 1] = (−) slope down

x = 2, y0 = 15 · (2)2 · [(2)2 − 1] = 15 · 4 · [4− 1] = (+) slope up
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Fourth, we compute the (x, y)-coordinates of several important points. The points with zero
slope are important, and we can get a reasonable idea of the shape of the curve with only these
three values. Notice that now we are using the formula y = f [x] and not f 0[x].

x = −1, y = 3 · (−1)5 − 5 · (−1)3 = −3 + 5 = 2 (−1, 2)

x = 0, y = 3 · (0)5 − 5 · (0)3 = 0 (0, 0)

x = 1, y = 3 · (1)5 − 5 · (1)3 = 3− 5 = −2 (1,−2)

Figure 9.3:7: Slope information for y = 3x5 − 5x3

Mathematica’s version of the graph is shown in Figure 9.3:8.

Figure 9.3:8: y = 3x5 − 5x3
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Example 9.3 Graphing y = x e−x

First, use the Product Rule and Chain Rule to compute the derivative

y = f [x] g[x] f [x] = x df
dx = 1

g[x] = e−x g = eu u = −x
dg
du = eu du

dx = −1
dg
dx =

dg
du

du
dx

= (eu)(−1) = −e−x

So, the final derivative is

dy

dx
=

df

dx
g + f

dg

dx
= 1 e−x − x e−x = (1− x) e−x

This derivative is defined for all real x.
We know that eu 6= 0 for any u, so dy

dx = 0 only if 1− x = 0 or x = 1.
Second, we check signs at x values between −∞ and 1 and between 1 and +∞, x = −1 satisfies

−∞ < −1 < 1 and x = 3 satisfies 1 < 3 < +∞.

y0(−1) = (1 + 1) e+1 = 2 · e ≈ 5.4
y0(+3) = (1− 3) e−3 = −2 e−3 ≈ −0.10

The values of the y-coordinate at these points are

y(−1) = (−1) e+1 = −e ≈ −2.7
y(+1) = 1 e−1 = 1/e ≈ 0.368
y(+3) = 3 e−3 = 3/e3 ≈ 0.15

We also know that
lim

x→−∞x e−x = −∞ & lim
x→∞

x

ex
= 0

and that y = x e−x > 0 for x > 0. (See Theorem 8.3.)
All this graphing information is recorded in the table of Figure 9.3:9.
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Figure 9.3:9: Slope information for y = xe−x

Exercise Set 9.3

The next exercise has a row of microscopic views filled out. Just looking across the y0 row we
see that the graph goes up - over - down - over -down - over - up. Plot the points given in the x
and y row. Add little tangent segments given in the y0 row at the (x, y) points. Then fill in a curve
that goes through the points and is tangent to the segments.

1. The table below the axes in Figure 9.3:10 contains x and y coordinates of the point as well
as microscopic views of y = f [x] at those dotted points. Sketch the graph.

Figure 9.3:10: Points and microscopic views
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Reverse the procedure of the last exercise. Look at the next graph, fill out the x and y
numbers and make microscopic views of the graph at these points.

2. Fill out the table in Figure 9.3:11 to correspond to the given graph.

Figure 9.3:11: Look in Your Imaginary Microscope

3. Graphing with Slopes Drill
Use the above first derivative procedure to sketch the graphs of

a) y = f [x] = 2x2 − x4 b) y = f [x] = x3 − 3x

c) y = f [x] = 6x5 − 10x3 d) y = (x+ 2)
2
3

e) y = Sin[x] + Cos[x] f) y = Sin[x]×Cos[x]

g) y = x ex h) y = e−x2

i) y = x Log[x] j) y = x− Log[x]

You may check your graphs with the computer after you sketch by hand. Later, you will need the
skills you develop in this exercise together with the computer in order to understand complicated
graphs like Planck’s Formula in the projects.

9.3.1 The Theorems of Bolzano and Darboux

How do we know that it is sufficient to just check one point between the zeros of f 0[x] in the
graphing procedure of the last section? This is because derivatives have the property that they
cannot change sign without being zero, provided that they are defined on an interval. If f 0[x] is not
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zero in an interval a < x < b, then f 0[x] cannot change sign. This is taken up in the Mathematical
Background Chapter on Bolzano’s Theorem, Darboux’ Theorem, and the Mean Value Theorem,
see http://www.math.uiowa.edu/~stroyan/InfsmlCalc/FoundationsTOC.htm.

9.4 Bending & the Second Derivative

If the slope gets steeper and steeper, the curve bends up. The derivative f 0[x] is just a function
and its derivative must be positive if it is increasing, f 00[x] = (+) > 0. A negative second derivative
make the first derivative decrease. If the slope decreases, the curve bends down. These two facts
can be summed up in the diagram of Figure 9.4:12.

Figure 9.4:12: f 00 [x] Negative on frown - positive on smile

This section shows you how to use this diagram.

Which is a better graph of graph of y = 3x5 − 5x3?

The difference between the choices is the bending, not the slope. This information can be
obtained by asking whether the first derivative is increasing or decreasing.
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Example 9.4 The Bends of y = 3x5 − 5x3

We computed the slope information of y = 3x5 − 5x3 in Example 9.2 above. The derivatives
are

y = 3x5 − 5x3
y0 = 3 · 5x4 − 5 · 3x2 = 15 (x4 − x2)

y00 = 15 (4x3 − 2x) = 30x (2x2 − 1)

We already found the slope table and (x, y)-points at the places where the slope is zero. Now
we want to find out where the curve bends up (or looks like part of a smile) and where it bends
down.

y00 = 0 ⇔ 0 = 30x (2x2 − 1) ⇔ x = 0 or 2x2 − 1 = 0
⇔ x = 0 or x =

1√
2
≈ 0.707 or x = − 1√

2
≈ −0.707

The second derivative is always defined and only is zero at these three points.
Now we check the signs of the second derivative at values between the zeros.

x = −1, y00 = 30 · (−1) · [2(−1)2 − 1] = −30 · [4− 1] = (−) frown

x = −12 , y00 = 30 · (−12) · [2(−12)2 − 1] = −15 · [12 − 1] = (+) smile

x = 1
2 , y00 = 30 · (12) · [2(12)2 − 1] = 15 · [12 − 1] = (−) frown

x = 1, y00 = 30 · (1) · [2(1)2 − 1] = 30 · [4− 1] = (+) smile

So we see that graph (a) above is a better representation of the curve y = 3x5 − 5x3, because the
extra bends on graph (b) have the bending sequence smile - frown - smile - frown - smile - frown. We
could eliminate graph (b) because the second derivative at a large positive number would need to
be negative in order to have the right-most downward (frown) bend shown on graph (b). Similarly,
the left-most upward bend would require that the second derivative is positive. Graph (a) above
has the (-) - (+) - (-) - (+) or frown - smile - frown - smile sequence of signs to its second derivative.

Sketching curves with both the slope and bend information amounts to filling out the table of
Figure 9.4:13 according to the following procedure.
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Procedure 9.2 Plotting with the First and Second Derivatives

1. (a) Compute f 0[x] and find all values of x where f 0[x] = 0 (or f 0[x] does not exist). Record
these in the microscope row as horizontal line segments (or ∗s if the derivative does not
exist).

(b) Check the sign (+) or (-) of f 0[x] at values between each of the points from the first
part. Record f 0[x] = (+) > 0 as an upward sloping microscope line and f 0[x] = (−) < 0
as a downward sloping microscope line.

(c) Compute f 00[x] and find all values of x where f 00[x] = 0 (or f 00[x] does not exist). Record
these in the y00 row of the table as 0s (or ∗s if the derivative does not exist).

(d) Check the sign (+) or (-) of f 00[x] at values between each of the points from the first
part. Record f 00[x] = (+) > 0 as a smile and f 00[x] = (−) < 0 as a frown.

(e) Compute a few key (x, y) pairs (using f [x] to find values of y, not f 0[x] or f 00[x]) and
record the numbers on the x and y rows. For example, you should at least compute the
(x, y) pairs for the x values used in steps (a) and (c).

(f) Plot the points and mark small tangent lines.

(g) Connect the points with a curve matching the tangents as you pass through the points
and increasing or decreasing and bending according to the table.

Do not start by plotting points. Start with the “shape” information of the slope row and then
do the bend row so you first find out which points are interesting to plot.

Figure 9.4:13: Blank table for plotting with x, y, y0 and y00
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Example 9.5 y = x3 + x

The graph of y = x3+x illustrates the additional information of the second derivative. We have
dy
dx = 3x

2 +1 which is always positive. The first derivative slope information just says the graph is

increasing. However, d2y
dx2 = 6x which is zero at x = 0 and only there. When x < 0, d2y

dx2 < 0, so the
graph bends downward, but slopes upward. The left half of a frown slopes up, but bends down.
When x > 0, d2y

dx2
> 0, so the graph bends upward and slopes upward. The right half of the smile

slopes up, and bends up. Fill out the slope and bend shape tables for this graph which is given next.

Figure 9.4:14: y = x3 + x

Example 9.6 Graphing y = x e−x - (con’t).

We now add the second derivative information to the sketch of the graph of Example 9.3. We
know from that example that dy

dx = (1− x) e−x, so the second derivative is

d2y

dx2
= (x− 2) e−x

which is defined everywhere.
The second derivative is zero only if x = 2, since eu > 0 for all u.
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We check the values x = 0 with −∞ < 0 < 2 and x = 3 with 2 < 3 < +∞,

y00[0] = −2 e0 = −2 frown

y00(3) = (3− 2) e−3 = 1/e3 > 0 smile

The slope and bend information we have computed is recorded in Figure 9.4:15.

Figure 9.4:15: Slope and bend information for y = xe−x

The computer graph is in Figure 9.4:16.

Figure 9.4:16: The computer graph of y = xe−x

Example 9.7 Graph y = e−x4
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Begin with the Chain Rule,

y = eu u = −x4

dy
du = eu du

dx = −4x3

so dy
dx =

dy
du · dudx = −4x3 e−x

4

We have dy
dx = 0 only if x = 0 and the derivative is defined everywhere. Check

dy
dx at x = ±1 to see

that the slope table is up - over - down.
Now use the Product Rule on dy

dx = f [x] g[x],

f = −4x3 g = e−x4

df
dx = −12x2 dg

dx = −4x3e−x
4

so

d2y
dx2

= df
dx g + f dg

dx = −12x2 e−x
4
+ 16x6 e−x4

d2y
dx2

= (16x6 − 12x2) e−x4

The second derivative is defined for all x and only equals zero when 16x6 − 12x2 = 0. This

happens at x = 0 and 16x4 = 12 or x = ± 4

q
3
4 ≈ ±0.9306. Checking values, we see that the bending

table is smile - frown - frown - smile.
The limiting values as x→ ±∞ are simple since −x4 < 0 tends to −∞, y → 0.

Figure 9.4:17: y = e−x4
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Example 9.8 Graph y = xLog[x]

Solution: The Product Rule makes the derivative

dy

dx
= Log[x] + x

1

x
= 1 + Log[x]

Setting this equal to zero, we find that

dy

dx
= 0 ⇔ x = e−1 =

1

e

and the slope table on (0,∞) is down-over-up. This makes the minimum occur at x = 1/e. We
also know that xLog[x] is negative for x < 1.

The rest of the graphing information is easy to get,

d2y

dx2
=
1

x
> 0

for all x > 0, so the curve always bends upward.

Figure 9.4:18: y = xLog [x]

When x = H an infinitely large number, H Log[H] is also infinitely large, so

lim
x→∞xLog[x] =∞
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The question is, “What value does xLog[x] increase to as x decreases to zero?”

lim
x↓0

xLog[x] =?

To compute the limit at zero, we make a change of variables. Let z = 1/x and rewrite our
problem

lim
x↓0

xLog[x] = lim
z→∞

Log[1/z]

z
= lim

z→∞
−Log[z]

z
= 0

(See Example 8.7.)

Exercise Set 9.4

Identify bends in the figures of the next exercise and then compute y00 from the given formula
to see which graph is right.

1. Which graph is nearest y = 4x2 − x5

5 ?
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2. Use first and second derivative procedure to sketch graphs of

a) y = f [x] = 2x2 − x4 b) y = f [x] = x3 − 3x

c) y = f [x] = 6x5 − 10x3 d) y = (x+ 2)
2
3

e) y = Sin[x] + Cos[x] f) y = Sin[x]×Cos[x]

g) y = x ex h) y = e−x2

i) y =
Log[x]

x
j) y = x− Log[x]

k) y =
1

1 + x2
l) y =

1

1− x2

Check your graphs with the computer, but remember that these are practice problems for you
to work by hand. Later, messy real-world problems (like Planck’s Law in the Projects) will
require this calculus effort before you start the computer.

Graphical analysis is very useful and often only a rough idea is enough. Here is an example of
using one graph to help find another.

Problem 9.1 Graph y = (x3−x2+1)2. How does the graph of the simpler equation z = x3−x2+1
help in finding all the places where y0(x) = 0?

9.5 Graphing Differential Equations

A differential equation, such as
dy

dt
= y (3− y)

can be thought of as a description of the slope of the curve y = y[t], given that you know y. This is
enough to sketch a graph.
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Example 9.9 The Slopes of y[t] When dy
dt = y (3− y)

In this case, if we start at y = 1 when t = 0, the initial slope is dy
dt = y (3− y) = 1(3− 1) = 2.

We can begin to sketch the curve by putting our pencil at (0, 1) and moving up along a line of slope
2. After we have sketched a small distance, both t and y will be larger and the slope will change
accordingly.

We can move a specific small amount to y1 and recompute the slope from the differential
equation, y1 (3−y1), as we have the computer do in the SecondSIR program and the computations
on the dead canary, Exercise 4.2.1. The specific amounts are not essential to sketch the curve.
Whenever y is between 1 and 3, the slope, dydt = y (3−y) is positive. This means that as t increases,
y increases. However, as we approach y = 3 from below, the term 3 − y tends to zero and the
slope dy

dt = y (3 − y) also tends to zero. This means that the rate of increase slows down as y
approaches 3. If we ever get to y = 3, the slope becomes zero and the curve ceases to increase.
This rough reasoning gives a sketch of the solution of the differential equation when the solution
starts at y[0] = 1, as shown as the lowest graph in Figure 9.5:19. It does not require a formula for
the solution.

Figure 9.5:19: Solutions to dy
dt = y (3− y), starting at y [0] = 1, 2, 3, 4, 5

This is a graphical version of Euler’s Method or the idea of the SecondSIR program. Although
it is not very accurate, it does give the behavior of solutions. We will return to this kind of curve
sketching when we study differential equations later in the course.
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Example 9.10 The Bends of y[t] When dy
dt = y (3− y)

We can also ask where the concavity of the curve changes. We use the Product Rule and general
Chain Rule to compute

d

dt

dy

dt
=

d

dt
(y (3− y))

d2y

dt2
=

dy

dt
(3− y) + y

d(3− y)

dt

=
dy

dt
(3− y)− y

dy

dt
= (3− 2y) dy

dt

Now, substitute the formula for dy
dt = y (3− y), to obtain

d2y

dt2
= (3− 2y) dy

dt
= y (3− y)(3− 2y)

The second derivative equals y (3− y)(3− 2y), so y00[t] > 0 for 0 < y < 3/2 and y > 3, whereas
y00[t] < 0 for y < 0 or 32 < y < 3. Notice the change of concavity in Figure 9.5:20.

Figure 9.5:20: Concavity of logistic solutions

Exercise Set 9.5

A fundamental “decay law” says that the rate of decrease of a quantity is proportional to the
amount that is left. Radioactive substances have this property. You can sketch the amount of such
a substance as a function of time without any formula.
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1. Exponential Decay Without Formulas
Given that a quantity q satisfies q[0] = 4 and dq

dt = −12 q, sketch the graph of q vs t. What
happens as the quantity as it gets close to q = 0? You can find an analytical solution to the
conditions q[0] = 4 and dq

dt = −12 q? (See Chapter 8. This is not needed for the sketch.)

a) y[0] = 1 b) y[0] = 2 c) y[0] = 6 d) y[0] = 4 e) y[0] = 0

2. Sketch the solutions of dy
dt = 10y(4− y) that begin with

a) y[0] = 1 b) y[0] = 2 c) y[0] = 6 d) y[0] = 4 e) y[0] = 0

Euler’s approximation uses the tangent line for a small step and then recomputes the slope.
The increment equation says, y[t+ δt] = y[t] + y0[t] · δt+ ε · δt, so y[t+ δt] ≈ y[t] + y0[t] · δt.
If y[t] satisfies y[0] = y0 and y0[t] = f [y[t]], Euler’s approximation is given recursively by

yapprox[0] = y0

yapprox[t+ δt] = yapprox[t] + f [yapprox[t]] · δt

for t = 0, δt, 2δt, 3δt, . . .. Notice that the equation of the tangent at a fixed point y1 = y[t]
with slope m = y0[t] is dy = m · dt in local coordinates, where dy = y− y1. So y = y1+m · δt
is the point on the tangent line of slope m at time δt past t.

y = y1 +m · δt
y[t+ δt] = y[t] + y0[t] · δt

If the second derivative y00[t] is positive and y0[t] is increasing in y, Euler’s approximation is
always low. We can see this just from the relation between the graph and the derivatives.

3. Suppose y[0] = 1/4 and dy
dt =

√
y. Why is the tangent line to the exact solution y = y[t]

below the curve at t = 0? If Euler’s approximate solution yapprox[δt] is low at the first step,

why is the slope f [yapprox[δt]] below the slope of y[t] at t = δt? (HINT: Compute d2y
dt2

= 1
2

using the Chain Rule. Where does the tangent lie in relation to a curve with a positive second
derivative? Draw a tangent on a smiley face.) Explain why the Euler approximation is always
below the true solution y[t].
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Figure 9.5:21: Euler’s approximation to y [0] = 1/4 and y0 [t] =
p
y [t]

4. Solutions to the S-I-S Equations
An S-I-S disease is one that does not confer immunity; you are either susceptible or infectious.
If s is the fraction of the population that is susceptible, the spread of the disease in time t is
given by

ds

dt
= b(1− s)(1− c s)

where b is the reciprocal of the infectious period and c is the contact number. Assume that
c > 1 (so that each infectious person contacts more than one other person) and sketch the
graphs of the solutions for various initial conditions between 0 and 1. (HINTS: Show that
s has a positive derivative for 0 < s < 1/c and a negative derivative for 1/c < s < 1. The
second derivative d2s

dt2
= b2(s− 1)(1− cs)((1 + c)− 2cs), so concavity changes at the average

of 1 and 1/c.)

9.6 Projects

9.6.1 Planck’s Formula & Wein’s Law

Planck won a Nobel prize for a formula that tells the intensity of radiation as a function of temper-
ature. His formula predicts the empirically observed law of radiation discovered earlier by Wein.
The peak in Planck’s formula gives Wein’s law. This was an important early discovery in quantum
mechanics because classical thermodynamics does not predict Wein’s Law.

This project shows that graphing alone is not enough to find the peak but that calculus and
the computer together make the story clear.
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9.6.2 Algebraic Formulations of Increasing and Bending

The project on “Taylor’s Formula,” can be used to give algebraic proofs of the meaning of the slope
and bending icons used in graphing.

9.6.3 Bolzano, Darboux, and the Mean Value Theorem

The Mathematical Background chapter on these three theorems provides complete justification for
our simple method of finding the slope and bend tables.

9.6.4 Horizontal and Vertical Asymptotes

The limits at infinity that we computed in some of our graphs show that the graph is tending
toward a line called an “asymptote.” This project explores this topic in greater detail.


