
Chapter 7
Related Rates and Implicit
Derivatives

This chapter gives some basic applications of the Chain Rule but also shows why it is important to
learn to work with parameters and variables other than x and y. Most of this chapter is independent
of the next few, so it could be skipped now in favor of other topics. If you skip this chapter now,
return to implicit di¤erentiation later when it arises in another application.

The main new topic in this chapter is an application of the Chain Rule called �related rates
problems�given in the Section 7.4. When functions are chained or composed, the rate of change
of the �rst output variable changes the second output variable: Their rates are related. This idea
generalizes to implicitly linked variables.

Implicitly linked variables change with one another, but there are no explicit functions connect-
ing them, only a formula involving both variables. Implicit di¤erentiation is often an easier way
to solve related rate, max - min, or other problems later in the course. Essentially, this method is
easier because implicit di¤erentiation �treats all variables equally.�

7.1 Di¤erentiation with Parameters

You just learned the dy
dx versions of the rules for di¤erentiation. However, it is important to

work with parameters (letters you treat as constants) and other variable names. This section has
examples to show you why.

In the Chain Rule, we asked you to use a di¤erent variable name u and �nd dy
du with formulas

you just learned for dydx . A few exercises in Chapter 6 were also written in terms of other variables.
Usually students do not like this at �rst which is an understandable reaction. However, there are
times mathematically when you have already used the variable x for something but need to vary
something else. Here is an oversimpli�ed example to illustrate the point:
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Example 7.1 Approximating a Root x as b Varies

Suppose we are �nding a root of the quadratic equation

ax2 + bx+ c = 0

where the coe¢ cient b is a measured quantity and not known with perfect accuracy. We want to
know how sensitive the largest root of the equation is to errors in measuring b. The largest root of
the quadratic equation above can be written as a function of b, including the parameters a and c:

x =
�b+

p
b2 � 4ac
2a

The derivative dx
db measures the rate of change of x with respect to b. A small change in b denoted

db produces the approximate change in x of

dx = x0[b] db

by the microscope approximation (or meaning of derivative). An exercise below has you explore
this approximation. We return to this in Example 7.12.

Example 7.2 The Role of Parameters

Much later in the course (in the project on resonance) we will see that the amplitude, A, of a
certain kind of oscillation is given by the formula

A[!] =

s
1

(s�m!2)2 + (c !)2

where s, m and c are measured quantities of a particular system. If we think of the oscillator as
the front suspension of an old car with weak shocks, m is the mass, s is the strength of the spring,
and c measures the strength left in the shocks. These are �xed for any particular car and we want
to see how the peak of A depends on these parameters. This will tell us the frequency of the most
violent shaking of a car in terms of m, s, and c. The graph typically looks like Figure 7.1:1

The peak response (called the �resonant frequency�) is at the frequency !r where A0[!r] = 0.
We compute the derivative of A with respect to ! treating the other letters as constants:

A0[!] =
d(((s�m!2)2 + (c !)2)(�1=2))

d!

= �1
2
((s�m!2)2 + (c !)2)(�3=2) � (2(s�m!2)� 2m! + 2c2 !)

= �! 2m2 !2 + (c2 � 2ms)
((s�m!2)2 + (c !)2)(3=2)
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Figure 7.1:1: Amplitude A as a function of frequency !

This is very messy, but we can check our work with the computer.
Notice that this derivative is zero, A0[!] = 0, when ! = 0 (look at the graph) or ! is a positive

root (the peak) of the numerator:

2m2 !2 + (c2 � 2ms) = 0
2m2 !2 = (2ms� c2)
p
2m! =

p
2ms� c2

! =

p
2ms� c2p
2m

=

p
4ms� 2c2
2m

so the resonant frequency is

!r =

p
4ms� 2c2
2m

Given m, s, and c, we just �plug in�and �nd the frequency. The important point is that we
�nd the max BEFORE we know the actual values of these constants.

Exercise Set 7.1

The next exercise is solved with implicit di¤erentiation in Example 7.12. Solve it explicitly now
so you can compare the explicit and implicit methods.

1. Approximate Roots

(a) Compute the derivative dx
db (considering a and c as parameters). When is this de�ned?

In the cases when it is not de�ned, what is going on in the original root-�nding problem?
Consider some special cases to help such as (a; b; c) = (1;�3; 2), (a; b; c) = (1;�2; 1),
(a; b; c) = (0;�2; 1).
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(b) Consider the case (a; b; c) = (1;�3; 2) and denote the error in measuring b by db. Sup-
pose the magnitude of db could be as large as 0.01. Use the di¤erential approximation
to estimate the resulting error in the root.

The following are for practice di¤erentiating with respect to di¤erent letters:

(c) Compute the derivative dx
da (considering b and c as parameters). When is this de�ned?

(d) Compute the derivative dx
dc (considering a and b as parameters). When is this de�ned?

(e) Check your di¤erentiation with the computer.

It is customary in physics to let the Greek letter omega, !, denote frequency and T denote
absolute temperature. Certainly, the capital T suggests the word that the variable measures.
Whether you like ! or not, it is almost impossible to read the physics literature without
working with it. Here is an example to test your skills.

2. Planck�s radiation law can be written

I =
a!3

eb!=T � 1

for constants a and b. This expresses the intensity I of radiation at frequency ! for a body
at absolute temperature T . Suppose T is also �xed. Express I as a chain or composition of
functions (of the variable ! with parameters) and products of functions to which the rules of
this chapter apply. For example, you can use the Exponential Rule, d(e

u)
du = eu. What is the

formula for dI
d!? Check your work with the DfDx program.

There is a project on Planck�s law studying the interaction between calculus and graphs and
between calculus and maximization. Planck�s Law was one of the �rst big achievements of quantum
mechanics.

We postpone the exercises on related rates until we have shown you implicitly linked variables
and the method of implicit di¤erentiation. In those problems, you have your choice of solving for
explicit nonlinear equations or using implicit di¤erentiation.

7.2 Implicit Di¤erentiation

Implicit equations have many powerful uses. We can di¤erentiate them directly simply by treating
all variables equally.

A unit circle in the plane is given by the set of (x; y)-points satisfying the implicit equation

x2 + y2 = 1
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This equation is called �implicit�because, if we treat x as given, then y is only implicitly given by
the equation. Two values of y satisfy the equation, but the implicit equation does not give a direct
�explicit�way to compute them. The explicit equation

y = �
p
1� x2

gives a direct way to compute y on the lower half-circle, whereas the implicit equation does not
but does give the whole circle.

Example 7.3 Implicit Tangent to the Circle

The di¤erential of u2 + b, when u is the variable and b is a parameter, is 2u du. Treating x
as the variable and y2 as a parameter in x2 + y2, we have the di¤erential 2x dx. Treating y as
the variable and x2 as a parameter in x2 + y2, we have the di¤erential 2 y dy. Adding the two, we
obtain 2x dx + 2 y dy. Since the di¤erential of the constant 1 is zero, the total di¤erential of the
implicit equation becomes

x2 + y2 = 1 ) 2x dx+ 2 y dy = 0

We may view the total di¤erential as an implicit equation for the tangent line to the circle in the
local variables (dx; dy) when (x; y) is a �xed point on the circle.

This may be solved for dydx as follows:

2x dx+ 2y dy = 0

x dx+ y dy = 0

y dy = �x dx

dy = �x
y
dx

dy

dx
= �x

y

This is a valid formula for the slope of the tangent to a circle. However, this expression uses
both variables so that to use it, we need to know both x and y. For example, the point (1=2;�

p
3=2)

lies on the lower half of the circle as shown in Figure 7.2:2. At this point the slope is

dy

dx
= �x

y
=

1=2p
3=2

=
1p
3

Let us compare this computation of the slope of the circle at (1=2;�
p
3=2) to the computation

with the explicit equation.

y = �
p
1� x2

y = �
p
u = �u1=2 u = 1� x2

dy
du = �u

�1=2 = � 1
2
p
u

du
dx = �2x
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Figure 7.2:2: y = �
p
1� x2 and dy = dx=

p
3, y +

p
3
2 =

�
x� 1

2

�
=
p
3

so the Chain Rule gives
dy

dx
=
dy

du
� du
dx
=

x

2
p
u
=

x

2
p
1� x2

and when x = 1=2
dy

dx
=

x

2
p
1� x2

=
1=2

2
p
1� (1=2)2

=
1p
3

The implicit computation

x2 + y2 = 1 ) 2x dx+ 2 y dy = 0

is certainly simpler than solving and performing the four lines of computation above.
The idea of implicit di¤erentiation is to di¤erentiate everything with respect to x and multiply

by dx, then to di¤erentiate everything with respect to y and multiply by dy, and �nally to add all
the di¤erentials together. This description is a little vague, but the drill exercise below should be
enough to give you the idea. This works with any variables.

Example 7.4 Di¤erent Letters

Find the implicit equation of the tangent to the circle w2 + h2 = 252 at (20; 15).

w2 + h2 = 252

2w dw + 2h dh = 0

The equation w2+h2 = 252 is an implicit equation in w and h. When we consider w and h �xed
and located somewhere on the circle, the equation in dw and dh, w dw + h dh = 0, is an implicit
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Figure 7.2:3: 20 dw + 15 dh = 0

equation for a line. The point (20; 15) lies on the circle. The implicit equation of its tangent at this
point is shown in Figure 7.2:3.

Implicit curve Implicit tangent line

w2 + h2 = 252 w dw + h dh = 0

The formula w dw + h dh = 0 has the advantage that we may think of either variable as the
independent variable. When w = 25, we have h = 0. The circle is smooth, but the tangent is
vertical, 25 dw + 0 dh = 0 or dw = 0. (This is simply the local variable equation for the dh-axis.)
The explicit formula h =

p
252 � w2, with derivative dh

dw = �w=
p
252 � w2, is unde�ned at w = 25.

Exercise Set 7.2 Implicit Drill

1. Verify the following implicit total di¤erential calculations:

3x2 + y2=5 = 1 ) 6x dx+ 2
5y dy = 0

xy = 1 ) y dx+ x dy = 0

x+ xy = 2y ) dx+ x dy + y dx = 2 dy

y +
p
y = x+ x2 ) dy + 1

2
p
ydy = dx+ 2x dx

ex = Log [y] ) ex dx = 1
ydy

x = Sin [xy] ) dx = yCos [xy] dx+ xCos [xy] dy

x = Log [Cos [3x+ 5y]] ) dx = �3Tan [3x+ 5y] dx� 5Tan [3x+ 5y] dy
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2. More Implicit Di¤erentiation Drill

Find the total di¤erential and solve for dy
dx

a) x2 � y2 = 3 b) y +
p
y = 1

x c) xy = 4

d) y = Cos [xy] e) Sin [x] Cos [y] = 1
2 f) y = Sin [x+ y]

g) y = exy h) exey = 1 i) ex = x+ y2

j) x = Log [xy] k) y = Log
�
x2y

�
l) x = Log [x+ y]

7.3 Implicit Tangents and Derivatives

Implicit di¤erentiation can be used directly to �nd tangents and derivatives.

Example 7.5 The General Implicit Slope of a Circle

The circle of radius r (centered at the origin) is the set of (x; y) points satisfying

x2 + y2 = r2

Because we are thinking of r as a constant, its di¤erential is zero and

2x dx+ 2y dy = 0

If we solve the equation 2x dx+ 2 y dy = 0 for the slope of the tangent line,

dy

dx
= �x

y

The slope of a radial line from the center to any point (x; y) on the circle is y=x. The negative
reciprocal �x=y is the slope of a perpendicular line. We have just shown that it is the slope of the
tangent, so this shows that the tangent to a circle is perpendicular to a radius at a general point
as shown on Figure 7.3:4

Example 7.6 Implicit Tangent to an Ellipse
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Figure 7.3:4: Circle and Tangent

The di¤erential of the equation of an ellipse (x2 )
2 + (y3 )

2 = 1 is computed as follows:

x2

4
+
y2

9
= 1

2x dx

4
+
2y dy

9
= 0

1

2
x dx+

2

9
y dy = 0

x dx+
4

9
y dy = 0

The result of this computation, shown in Figure 7.3:5, is not geometrically as obvious as the
tangent to a circle because a line from the center is no longer perpendicular to the tangent. However,
if we want to sketch the tangent at a point, for example where x = 8=5 � 1:6 and y = 9=5 � 1:8, so
(x2 )

2+(y3 )
2 = 4

5

2
+ 3
5

2
= 1 is on the ellipse, we can use the local (dx; dy) coordinates (as in Chapter

1) in the implicit form. The speci�c tangent has equation 8
5 dx+

4
9
9
5 dy = 0 or 2 dx+ dy = 0.

7.3.1 The Chain Rule as Substitution in Di¤erentials

Suppose we have a chain
y = f [u] & u = g[x]

If we calculate the di¤erentials

dy = f 0[u] du & du = g0[x] dx
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Figure 7.3:5:
�
x
2

�2 � �y3�2 = 1 and 2 dx+ dy = 0 at (x; y) = �85 ; 95�

and make the substitution for du,

dy = f 0[u] du = f 0[u](g0[x] dx) = f 0[g[x]]g0[x] dx

we have in e¤ect done a Chain Rule computation. In speci�c contexts, it looks simpler.

Example 7.7 The Di¤erential of y = ex
2

We compute the di¤erential of y = ex
2
using the decomposition

y = eu & u = x2

The di¤erentials are
dy = eu du & du = 2x dx

Substitution of du gives
dy = eu du = eu (2x dx) = 2xex

2
dx

Example 7.8 The S-I-R Invariant and Di¤erentials
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In Chapter 2, you may recall that we claimed that the quantity

s+ i� b

a
Log[s] = k

was constant, where s and i are the susceptible and infectious fraction of a population, wheras a
and b are constants. The di¤erential of this equation is

ds+ di� b

a

1

s
ds = dk�

1� b

a

1

s

�
ds+ di = dk

In the S-I-R model of an epidemic, the variables s and i are both functions of time,

s = s [t] i = i [t]
&

ds = s0 [t] dt di = i0 [t] dt

Substituting these in the �rst di¤erential gives

(

�
1� b

a

1

s

�
s0[t] + i0[t]) dt = dk

Carrying this one step further, recall that s0[t] = �a s[t] i[t] and i0[t] = as[t]i[t]� bi[t]. Substi-
tuting these into the expression gives

dk = (

�
1� b

a

1

s

�
(�asi) + (asi� bi)) dt

dk = ((�asi+ bi) + (asi� bi)) dt
dk

dt
= 0

Since the derivative of k with respect to t is zero, k is constant.

7.3.2 Derivatives of Inverse Functions

The method of implicit di¤erentiation applies to inverse functions. This case is treated in detail in
the Project on Inverse Functions.

Example 7.9 Derivative of Log[y]
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Consider an example for the inverse pair of equations

y = ex , x = Log[y]

The di¤erential of the exponential equation is dy = ex dx, but we may use the fact that ex = y
to write

dy = y dx

Solving for the derivative of x with respect to y gives us the derivative of the logarithm,

d(Log[y])

dy
=
dx

dy
=
1

y

Example 7.10 Derivative of ArcTan[y]

Computation of inverse function derivatives this way can present computational di¢ culties,
such as the following:

y = Tan[x] , x = ArcTan[y]

You computed the derivative of tangent directly in Chapter 5 and using rules in Chapter 6, obtaining
the following answer both ways:

dy =
1

(Cos[x])2
dx

Consequently, we have a formula for the derivative of the arctangent

d(ArcTan[y])

dy
=
dx

dy
= (Cos[x])2

Unfortunately, this form of the equation is in terms of the dependent variable for arctangent, so
some trig tricks are needed to put it in the form

d(ArcTan[y])

dy
=

1

1 + y2

See the project on Inverse Functions. Additional examples are included in that project along with
complete justi�cation of this method of computing derivatives of inverse functions. The justi�cation
is in the form of a procedure you can use to compute the actual nonlinear inverse function. In other
words, it is a �practical�proof.

Exercise Set 7.3

1. Use implicit di¤erentiation to �nd the equation of the tangent line to

(5x)2 � (4y)2 = 32

at the point (x; y) = (1; 1). Use the local coordinates (dx; dy) centered at (x; y) = (1; 1).
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Figure 7.3:6:
�
5
3x
�2 � �43x�2 = 1

7.4 Related Rates

Many applications of calculus involve di¤erent quantities that vary with time but are �linked�with
one another; the time rate of change of one variable determines the time rate of change of the other.
This section illustrates the idea with examples including the falling ladder.

Example 7.11 The Fast Lighthouse

A lighthouse is 1 mile o¤ a straight shore with its beacon revolving 3 times per minute. How
fast does the beam of light sweep down the beach at the points that are 2 miles from the point
closest to the lighthouse?

The �chain�in this exercise is that the angle of the beacon depends on time and the distance to
the point of contact down the beach depends on the angle. We will assume that the light revolves
clockwise in the diagram Figure 7.4:7. We want to know the rate of change of distance with respect
to time.

We introduce the variables shown in the diagram Figure 7.4:7:

t = the time from t = 0 when the beam is perpendicular to the shore (minutes)

� = the angle the beam makes from the perpendicular line (radians)

D = the distance along the shore from the perpendicular point (miles)
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Figure 7.4:7: A lighthouse beam sweeps the shore

The link between the angle and the distance is

Tan[�] = D

because D=1 is the opposite over the adjacent sides. (SOH-CAH-TOA).
The link between the time and the angle can be expressed as an explicit function, but what is

important is to know the rate of change,

d�

dt
= 6� =

3� 2�
1

=
3 revolutions in radians

1 minute

Because the derivative is constant, this is equivalent to � = 6� t, because t = 0 when � = 0.
The question in this problem is

Find:
dD

dt
when D = 2

Solution: Distance as an explicit function of time is

D = Tan[�[t]] where � = �[t] = 6� t

The Chain Rule gives us

dD

dt
=
dD

d�
� d�
dt

=
d(Tan[�])

d�
� d�
dt

=
1

(Cos[�])2
� d�
dt
=

6�

(Cos[�])2

This formula tells us the speed of the light�s motion in terms of �. Notice that � is not the
independent variable t, but instead is the link variable or output from the �rst function in the
chain. We could use the �rst function � = 6� t to express the speed in terms of t, but this is neither
necessary nor desirable (unless we want to know when the light gets to the point 2 miles down the
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Figure 7.4:8: The angle when D = 2

beach.) In fact, it is not even necessary to know the derivative d�
dt at any other time; it need not

be constant as long as we know that dDdt =
1

(Cos[�])2
� d�dt .

The speci�c position when D = 2 is shown in Figure 7.4:8.
The Pythagorean Theorem applied to Figure 7.4:8 tells us that the hypotenuse of the right

triangle shown is
p
22 + 12 =

p
5. SOH-CAH-TOA tells us that

Cos[�] =
1p
5

Finally, when D = 2

dD

dt
=

6�

(Cos[�])2
= 6� � (

p
5)2 = 30� � 94:25 (mi/min) � 5656 mph

Common error: A common error in related rate problems is to �x a quantity too soon. In the
example above, we want the speed dD

dt when D = 2; but, if we �x this position at D = 2 miles
down the shore before we di¤erentiate, we get Tan[�] = 2 so � is constant and there is nothing to
di¤erentiate. You must think about the drill problems in their general variable cases, di¤erentiate,
and then �x the quantities at the speci�c values.

The Lightspeed Lighthouse

The beam of light in the previous example moves down the beach faster and faster, but real
light can only move at the speed of light. The Scienti�c Project on the Lightspeed Lighthouse
examines the example taking into account that the light must travel from the lighthouse to the
shore at the speed of light.

7.5 Implicitly Linked Variables

Implicit solutions of related rates problems often are simpler and more revealing than �rst solving
for a quantity explicitly.
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Example 7.12 Implicit Solution of Exercise 7.11

After you solve Exercise 7.11, you should compare your solution to the following implicit method.
We begin with the equation

a x2 + b x+ c = 0

We are told that a and c are known exactly but that b is measured and may have some error when
we determine the largest root x satisfying the equation above. In other words, the independent
variable b implicitly determines the variable x. The variables in this problem are b and x, and x is
the dependent variable.

The total di¤erential of the equation is

(2 a x+ b) dx+ x db = 0

The �rst term is the familiar derivative with respect to x and the second is the derivative with
respect to b, thereby treating all other letters, including x, as parameters. The rate of change of x
with respect to b is obtained by solving

(2 a x+ b) dx+ x db = 0

(2 a x+ b) dx = �x db

dx = � x

2 a x+ b
db

dx

db
= � x

2 a x+ b

When (a; b; c) = (1;�3; 2), the largest root of the original equation is x = 2, so as b varies from �3,

dx

db
= � x

2 a x+ b
= � 2

4� 3 = �2

For example, if b+db = �3+:001 = �2:99, then dx � �2 db = �2�:001 = �:002 and x+dx = 1:998.
(The exact solution is (2999 +

p
994001)=2000 � 1:99799799397791.)

When (a; b; c) = (1;�2; 1), the only root of the original equation is x = 1. In this case, the
implicit di¤erential breaks down

(2 a x+ b) dx+ x db = 0

(2� 2) dx+ db = 0
0 dx+ db = 0

This equation cannot be solved for dx. Implicit di¤erentiation of dxdb fails in this case. We still can
graph the line 0 dx+ db = 0 in the (db; dx)-plane. The equation db = 0 is the vertical dx-axis, and
vertical lines do not have slopes.
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Figure 7.5:9: x2 + bx+ 1 = 0

Of course, this degeneracy is only a hint of the trouble in the original implicit equation. If we
change b to �1:99, there are no real solutions to the original problem. The equation �branches�
here between the positive discriminant and negative one, x = �b=2 +

p
b2 � 4=2 and x = �b=2 �p

b2 � 4=2. The vertical tangent we just computed is the tangent touching these two branches
shown in Figure 7.5:9.

Di¤erentiating the explicit function x[b] is more complicated, as you saw in Exercise 7.11:

x =
�b�

p
b2 � 4ac
2a

dx

db
=
1

2a
[�1� bp

b2 � 4ac
]

dx =
1

2a
[�1� bp

b2 � 4ac
] db

The implicit and explicit formulas for dx are the same when x = �b�
p
b2�4ac
2a .

Example 7.13 Implicit Solution of the Balloon Exercise 7.4

In Exercise 7.4.1, you calculate the rate of change of surface area of a balloon that is being
blown up so that its volume is increasing at the rate of 2 cubic inches per second. We want to
know how the rate of change of volume e¤ects the rate of change of surface area. In the exercise,
we ask you to solve explicitly for surface area as a function of volume. The implicit solution of that
problem does not require that we �nd the explicit function.

Here is the implicit solution of the problem:

V = 4
3� r

3 S = 4� r2

dV = 4� r2 dr dS = 8� r dr
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We solve the volume di¤erential for dr, dr = dV=(4�r2) and substitute into the surface di¤er-
ential, dS = 8� r dV=(4� r2), obtaining

dS =
2

r
dV

dS

dt
=
2

r

dV

dt
dS

dt
=
2

6
� 2 = 2

3
(m2=sec)

Compare this solution with your explicit solution from Exercise 7.4 that �rst solves

S[V ] = (??V 2)1=3

and uses the Chain Rule to compute

dS

dt
=
dS

dV
� dV
dt
= 2 (???)1=3

dV

dt

Example 7.14 The Fast Ladder

A ladder of length L rests against a vertical wall. The bottom of the ladder is pulled out
horizontally at a constant rate r (m/sec). What is the vertical speed of the tip that rests against
the wall?

We introduce the variables shown in Figure 7.5:10:

x = the horizontal distance from the corner to the bottom of the ladder (meters)

y = the vertical distance from the corner to the top of the ladder (meters)

t = the time from some starting time t = 0 (seconds)

The length L is a parameter, �xed, but not known to us. We wish to

Find:

y0[t] =
dy

dt

in terms of x0[t] = dx
dt and the other variables.

The fact that the length of the ladder is �xed together with the Pythagorean Theorem gives us
the implicit linkage between x and y:

x2 + y2 = L2 a constant
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Figure 7.5:10: Ladder and wall

The fact that there is some implicit relationship is clear physically. If we place the base of the
ladder at a given x, we know that there is a unique place, y, where it will rest against the wall. We
could solve the equation above for y, since only the positive solution makes physical sense, but we
will leave that approach to the problem to an exercise below.

The total di¤erential of the implicit equation is

2x dx+ 2 y dy = 0

which we can solve for dy = �x
y dx.

In this problem, we also know that x and y are functions of time. This means that the di¤er-
entials can be expanded

dx = x0[t] dt & dy = y0[t] dt

Substitution of the time expressions of the di¤erentials into the equation above yields the solution
to our question:

dy = �x
y
dx

y0[t] dt = �x[t]
y[t]

x0[t] dt

y0[t] = �x[t]
y[t]

x0[t]

The time rate of change of y equals the time rate of change of x times x over y and the motion is
down, or y0[t] is negative.

Suppose we have an enormous ladder of length 5 m. If the base rests 3 meters from the corner,
then y = 4. If we are pulling the base out from the wall at the rate of 1=7 m/sec, then the top is
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moving down the wall at the rate

y0[t] = �x[t]
y[t]

x0[t]

= �3
4
� 1
7

(m=sec)

If the base of this same ladder is moved to 4 meters from the corner so that y = 3 and if the
base is still pulled out at the speed x0[t] = 1=7, then the speed down the wall is

y0[t] = �x[t]
y[t]

x0[t]

= �4
3
� 1
7

(m=sec)

Example 7.15 A Limiting Case

As we pull the base of the ladder toward the point x = L away from the wall, what happens to the
speed with which the other tip moves down the wall? We can see from the diagram, Figure 7.5:10,
that when x! L, y ! 0. The formula for the vertical speed tends to minus in�nity.

y0[t] = �x[t]! L

y[t]! 0
r ! �1

Humm, this calculation is a little mysterious. Here is another way to look at it: Solve the
equation x2 + y2 = L2 for y =

p
L2 � x2 and substitute into the expression for vertical speed,

y0[t] = �x[t]
y[t]

x0[t]

= � x[t]p
L2 � (x[t])2

x0[t]

Clearly, as x tends to L, xp
L2�x2 tends to in�nity. This is correct mathematically, and we want you

to verify it in Exercise 7.4.2.

Exercise Set 7.4

1. A child is blowing up a balloon by adding air at the rate of 2 cubic inches per second. Well
before it bursts, its radius is 6 inches. Assume that the balloon is a perfect sphere and �nd
the surface area S as an explicit function of volume V . Use your explicit function to say how
fast the surface is stretching at this point.
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Hints: Give variables for surface area, volume, time, and whatever else you need. Solve for
S in terms of V . The �chain� in this exercise is thta volume depends on time (through the
child�s e¤orts), V = V [t] and surface area depends on volume, S = S[V ]. We want to know
how area changes with time, dSdt , where S = S[V [t]]. (See review Exercise in Chapter 28 to
express surface area as an explicit function of volume.)

2. The Explicit Fast Ladder

Solve the equation x2+ y2 = L2 for y =
p
L2 � x2. Use the fact that x = x[t] is a function of

time together with the Chain Rule to show that

y0[t] =
dy

dt
=
dy

dx
� dx
dt
=

�x[t]p
L2 � (x[t])2

� x0[t]

Verify that this model predicts that as x approaches L, the speed of the tip resting on the wall
tends to in�nity.

The result of the previous exercise is wrong for a real ladder. The tip of such a ladder cannot
go faster than the speed of light. There is a physical condition that this simple mathematical
model does not take into account. The real falling ladder is explored in the Scienti�c Projects
Chapter on Mechanics. It uses Galileo�s Law of Gravity from Chapter 9.

3. Related Rates Drill

(a) Each edge of a cube is expanding at the rate of 3 inches per second. How fast is the
volume expanding at the point where the volume equals 64 cubic inches?

(b) Each edge of a cube is expanding at the rate of 3 inches per second. How fast is the
surface area expanding at the point where the volume equals 64 cubic inches?

(c) A 6-foot man walks away from an 8-foot lamp at the rate of 5 feet per second. How fast
is his shadow growing at the point where he is 7 feet from the lamp?

(d) A snowball melts at a rate proportional to its surface area, that is, it loses volume per
unit time in this proportion. Say the constant of proportionality is k. What is dr

dt , the
rate of change of radius with respect to time?

(e) Your snow-cone has melted �lling the conical holder with sticky liquid. The liquid is
dripping from the point at the bottom at the rate of 1 liter per hour. If the cone is 7
centimeters high and 5 centimers in diameter at the top, what is the rate of change of
the height of the liquid when half of it has leaked out? (Note: The volume of a cone of
height h and base radius r is V = �

3 r
2h.)
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7.6 Projects

7.6.1 Dad�s Disaster

Dad is painting the garage when Pooch gets her leash tangled around the bottom of the ladder and
starts pulling it away from the wall. The Fast Ladder example suggests that Dad will break the
sound barrier before he crashes to the sidewalk. Is this so? The Falling Ladder Project helps you
�nd out.

7.6.2 The Inverse Function Rule

The project on �nding the derivative an inverse function such as ArcTan[y] and computing values
of the inverse itself. This project relies on basic graphical understanding and the microscope idea.


