
Chapter 5
Symbolic Increments

The main idea of di¤erential calculus is that small changes in smooth functions are approximately linear.
In Chapter 3, we saw that �most�microscopic views of graphs appear to be linear, but we want a symbolic
way to predict the view in a powerful microscope without actually having to use graphical magni�cation.
The computations in this chapter give us that prediction.

Direct computation of the microscopic �gap� is hard work, but the formulas show when the gap gets
small. This guarantees that a magni�ed graph will appear linear before we draw the graph. The direct
computations of this chapter are proofs of speci�c di¤erentiation rules. The next chapter develops the rules
systematically as a procedure or �calculus�of derivatives. You could just accept the speci�c results of this
chapter and go on to Chapter 6 to learn the �rules,�but di¤erentiation rules are actually theorems that
say a local linear approximation is guaranteed by certain systematic computations. You should understand
that this means the �gap�tends to zero at all �good�points.

If the gap does not go to zero at a point, we will not see a straight line when we focus our microscope
there. We know from Exercise 3.2.4 that the perfectly reasonable function

f [x] =
p
x2 + 2x+ 1

does not have the local linearity property at x = �1. (Its graph has a kink no matter how much you
magnify it.) Some less reasonable ones like Weierstrass�function

W [x] = Cos[x] +
Cos[3x]

2
+
Cos[32x]

22
+ � � �+ Cos[3

nx]

2n
+ � � �

are continuous but not locally linear at any point (see Figure 3.2.8). Calculus gives a procedure to �nd
out if a function given by a formula is locally linear.

Once we have the basic rules of this chapter and some functional rules from the next, we will di¤erentiate
the kink function

f [x] =
p
x2 + 2x+ 1 ) f 0[x] =

x+ 1p
x2 + 2x+ 1

but then notice that f 0[�1] is not de�ned, so that we cannot make any conclusion about local linearity
at this point. (General di¤erentiation rules cannot say there is a kink, only that no general conclusion is
possible when the rules do not apply.) At every other x, the rules do apply and this function is locally
linear.
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5.1 The Gap for Power Functions

The gap " for y = f [x] = xp with f 0[x] = p xp�1

In Chapter 3, we formulated the deviation of y = f [x] from a straight line geometrically. The observed
error or gap between the curve and line at magni�cation 1=�x, denoted ", satis�es

f [x+�x]� f [x] = m ��x+ " ��x

The term " ��x is the actual unmagni�ed error that appears in the formula above. We observe " because of
magni�cation. The numberm is the slope of the microscopic straight line dy = mdx in (dx; dy)-coordinates
focused over x. (See Chapter 1 for equations of lines in local coordinates.) �Approximate linearity�means
that the error " is too small to measure, " � 0, when �x � 0 is �small enough.�

Notice that m may depend on x, but not �x, because the slope of the curve depends on the point but
not the magni�cation. As we move the focus point of the microscope, the slope may change, but the graph
should always appear straight under the microscope. Since m depends on x and not on �x, it is customary
to denote this slope by f 0[x] rather than m. The function f 0[x] is called the derivative of the function f [x]
and the local linear equation dy = f 0[x] dx is called the di¤erential of y = f [x]. (It is the equation of the
tangent line at a �xed value of x in local (dx; dy)-coordinates.)

We will compute the symbolic gap for all the examples in this section (and Exercise 5.1.1) by the steps

Procedure 5.1 Computing the "-Gap

1 ) Compute
f [x+�x]� f [x]

�x
2 ) Simplify the expression from the �rst part and compute

f 0[x] = lim
�x!0

f [x+�x]� f [x]
�x

Give an intuitive justi�cation of why your limit is correct.

3 ) Use your limit f 0[x] to solve for " =
f [x+�x]� f [x]

�x
� f 0[x]

4 ) Show that "! 0 as �x! 0, or " � 0 is small when �x = �x � 0 is small.

The error " is the �gap�or amount of deviation from straightness we see above x+�x at power 1=�x.
We want to let �x get �small enough�so that " is below the resolution of our microscope. This chapter
shows symbolically that " tends to zero for various functions at �good�points.

Example 5.1 Increments of y = f [x] = x3

Let y = f [x] = x3 and calculate the increment corresponding to a change in x of �x. First, we know
from Example 1.4.1 that

f [x+�x]�f [x]
�x = 3x2 + (3x+�x)�x
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Second, the intuitive limit

lim�x!0
f [x+�x]�f [x]

�x = 3x2

since (�x(3x+�x) = 0 when we plug �x = 0 into the expression above. (This is technically correct, too,
as long as x is bounded by some �xed amount.)

Third,

" = (3x+�x)�x

comparing the lines above.

Fourth, " tends to zero as �x tends to zero. Here is a rough argument that shows that the "-gap error
becomes small as �x becomes small: If x is no more than a thousand, jxj � 1000, and we want the observed
error to be less than one one millionth, j"j < 10�6, then �x needs to be small enough so that j�xj times
3001 is less than a millionth, for example, j�xj < 10�10, because

j�x(3x+�x)j < 10�10(3001) < 10�6 3001
10; 000

<
1

1; 000; 000

As long as x is bounded, we can make the error as small as we please by choosing a small enough �x.
The exact formula for how small �x needs to be is not so obvious, but it is clear that for any �xed bound
on x, the error "! 0 as �x! 0 for all jxj � b.

Finally, we rewrite this in the form of the increment (or microscope) approximation:

Increment of f [x] = x3:

(x+�x)3 � x3 = 3x2�x+ (�x(3x+�x))�x
f [x+�x]� f [x] = f 0[x] ��x+ " ��x

with f 0[x] = 3x2 and " = (�x(3x+�x)).

We summarize the knowledge that " can be made small by making �x small by writing

y = x3 ) dy = 3x2 dx

This formula, called a �di¤erential,� omits the error term and is just the local (dx; dy)-equation at a
�xed value of (x; y) for the tangent line to y = x3. The complete calculation means that the nonlinear
graph approaches that line as we magnify more and more; in other words, the �gap�in the microscope, ",
tends to zero for all x beneath some bound, jxj � b (see Figure 5.1).

In the next example we calculate the gap for y =
1

x
and show that there is a new complication in

making " tend to zero. There will sometimes have to be exceptional values of x. In these cases, we cannot
even get close to the bad values of x. This is an annoying but necessary complication as you might suspect
by looking at Figure 5.2 near zero.



Chapter 5 - SYMBOLIC INCREMENTS 66

Figure 5.1: The gap near x = 2=3 on y = x3

Figure 5.2: y = 1=x

Example 5.2 Exceptional Numbers and the Derivative of y =
1

x

We follow the steps of Procedure 5.1 and Exercise 5.1.

1) Compute
f [x+�x]� f [x]

�x
:

f [x+�x]� f [x] = 1

x+�x
� 1

x
=
x� (x+�x)
x(x+�x)

=
�1

x(x+�x)
��x

f [x+�x]� f [x]
�x

=
�1

x(x+�x)
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2) Compute

f 0[x] = lim� x ! 0
f [x+�x]� f [x]

�x

intuitively.
It is �clear�that as �x! 0,

lim
�x!0

�1
x(x+�x)

=
�1

x � (x+ 0) =
�1
x2

(This is true unless x! 0 at the same time. In particular, if x = ��x, then �1
x(x+�x) is not even de�ned.)

At least with x �xed, we should have

f 0[x] = � 1

x2

3) We make the �gap�error explicit by the formula

" =
f [x+�x]� f [x]

�x
� f 0[x]

and put the expression on a common denominator

" =
�1

x(x+�x)
� �1
x2

=
1

x2
+

�1
x(x+�x)

=
x+�x

x2(x+�x)
+

�x
x2(x+�x)

=
�x

x2(x+�x)

= �x � 1

x2(x+�x)

4) Show that "! 0 as �x! 0. It seems �clear�that

lim
�x!0

" = lim
�x!0

�x � 1

x2(x+�x)
= 0 � 1

x2(x+ 0)
= 0

but plugging in zero is really not quite enough because it misses the point to the approximation we want.
We want the (x; y)-graph of the function

F�x[x] =
f [x+�x]� f [x]

�x

to approximate the graph of f 0[x] when �x is small. Another way to say this is that we want the whole
function "[x;�x] to be small independent of x provided �x is su¢ ciently small. Then we can move the
microscope over these values of x and continue to see a straight line approximating y = f [x].
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The factor �x in �x � 1
x2(x+�x)

does tend to zero; so, if we can bound the other factor, the whole

function can be made small. The only way for 1
x2(x+�x)

to get big is for x to be near zero. If we restrict x
to stay away from the �bad�point x = 0, then we can always make " small. If b > 0 is �xed,

" � 0 for all jxj � b > 0 when �x � 0

and the graphs of the functions F�x[x] tend to the graph of f 0[x] for all jxj � b.

Increment of f [x] = 1=x:

1

x+�x
� 1

x
=
�1
x2
��x+ " ��x

f [x+�x]� f [x] = f 0[x] ��x+ " ��x

with f 0[x] = � 1
x2
and " = �x � 1

x2(x+�x)
.

We summarize the knowledge that " can be made small by making �x small by writing

y = 1
x ) dy = �1

x2
dx

This notation means that under su¢ cient magni�cation the gap between the curve and its tangent will be
appear small as shown in Figure 5.3 for x = 3=2. The formulas are not valid if x = 0.

Figure 5.3: The gap near x = 3=2 on y = 1=x

Example 5.3 Exceptional Numbers and the Derivative of y =
p
x

Here is another example of the algebraic part of computing increments. We follow the steps of Proce-
dure 5.1 and Exercise 5.1. (See Exercise 28.7.3 for help with these computations.)
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1) Compute
f [x+�x]� f [x]

�x

f [x+�x]� f [x] =
p
x+�x�

p
x

=
(
p
x+�x�

p
x)(
p
x+�x+

p
x)p

x+�x+
p
x

=
1p

x+�x+
p
x
��x

f [x+�x]� f [x]
�x

=
1p

x+�x+
p
x

2) Compute

f 0[x] = lim� x ! 0
f [x+�x]� f [x]

�x

Although there certainly may be di¢ culties near x = 0 (see Figure 5.4), if x is �xed and positive,

lim
�x!0

f [x+�x]� f [x]
�x

= lim
�x!0

1p
x+�x+

p
x
=

1p
x+ 0 +

p
x
=

1

2
p
x

3) Calculate the error gap

" = f [x+�x]�f [x]
�x � f 0[x]

(see Exercise 28.7.3):

" =
f [x+�x]� f [x]

�x
� f 0[x]

=
1p

x+�x+
p
x
� 1

2
p
x

=
�1

2
p
x(
p
x+�x+

p
x)2

��x

4) Show that " �! 0 as �x! 0. It seems �clear�that

lim
�x!0

" = lim
�x!0

�1
2
p
x(
p
x+�x+

p
x)2

��x

=
�1

2
p
x(
p
x+ 0 +

p
x)2

� 0

=
�1
8x
p
x
� 0 = 0

and this shortcut computation (plugging in 0) is justi�ed as a function approximation for all x as long as
the term �1

8x
p
x
cannot get large. This is guaranteed by making x � b for some �xed positive b > 0.
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Figure 5.4: y =
p
x

Increment of f [x] =
p
x:

f [x+�x]� f [x] = f 0[x] ��x+ " ��x
p
x+�x�

p
x =

1

2
p
x
��x+ " ��x

with f 0[x] = 1
2
p
s
and " = ��x=(2

p
x(
p
x+�x+

p
x)2).

We summarize the knowledge that " can be made small by making �x small by writing

y =
p
x ) dy = 1

2
p
x
dx

This notation means that under su¢ cient magni�cation the gap between the curve and its tangent
will be appear small as shown in Figure 5.5 for x = 2=3. These formulas are not valid if x � 0.

Figure 5.5: The gap near x = 2=3 on y =
p
x

Exercise Set 5.1

1. y = xp ) dy = p xp�1 dx, p = 1; 2; 3; : : :

For each f [x] = xp below:
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(a) Compute
f [x+�x]� f [x]

�x
and simplify.

(b) Compute f 0[x] = lim�x!0
f [x+�x]� f [x]

�x
Give an intuitive justi�cation why your limit is

correct. Does x need to be bounded, or can it vary arbitrarily as �x tends to zero?

(c) Use your limit f 0[x] to solve for " and write the increment equation:

f [x+�x]� f [x] = f 0[x] ��x+ " ��x
= [term in x but not �x]�x+ [observed microscopic error]�x

Notice that we can solve the increment equation for " =
f [x+�x]� f [x]

�x
� f 0[x]

(d) Show that "! 0 as �x! 0. �Show�this in any way that you consider reasonable. Does x need
to be bounded, or can it vary arbitrarily as �x tends to zero?

i. If f [x] = x1, then f 0[x] = 1x0 = 1 and " = 0.
ii. If f [x] = x2, then f 0[x] = 2x and " = �x.
iii. If f [x] = x3, then f 0[x] = 3x2 and " = (3x+�x)�x.
iv. If f [x] = x4, then f 0[x] = 4x3 and " = (6x2 + 4x�x+�x2)�x.
v. If f [x] = x5, then f 0[x] = 5x4 and " = (10x3 + 10x2�x+ 5x�x2 +�x3)�x.

If you have di¢ culty with this exercise, see the high school review Exercise powerquotients. Also
see the program SymbIncr in this chapter�s folder. If you want practice computing limits, see the Math
Background chapter on computing limits on the CD accompanying this book.

Problem 5.1 Use Procedure 5.1 to �nd f 0[x], and write the whole increment approximation

f [x+�x]� f [x] = f 0[x]�x+ "�x

showing that "! 0, when �x! 0.

1. (a) f [x] = xn, n a positive integer

(b) f [x] = 1
x2

(c) f [x] = 3
p
x

You can use the computer to help with your symbolic computations. See the program SymbIncr in this
chapter�s folder and verify your predictions using the program Micro1D.
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5.2 Moving the Microscope

This section uses interval notation to give a technical de�nition of local linearity. This �uniform� limit
allows us to �move� the microscope.

A summary of the "-gap computations so far is

y = f [x] = xp ) dy = f 0 [x] dx = pxp�1dx; p = 1; 2; 3; 4; 5
y = f [x] = 1

x ) dy = f 0 [x] dx = �1
x2
dx

y = f [x] = 1
x2

) dy = f 0 [x] dx = �2
x3
dx

y = f [x] =
p
x ) dy = f 0 [x] dx = 1

2
p
x
dx

y = f [x] = 3
p
x ) dy = f 0 [x] dx = 1

3
3p
x2
dx

More than the summary, we know that the size of the gap (given by ") viewed in a microscope of power
1=�x goes to zero even as x varies, provided we avoid �bad�points. For the integer powers, we need to
have x bounded, jxj � b for a �xed b as you saw in Exercise 5.1.1. (��1�are the �bad�points in this
case.) The other �bad� points are fairly obvious from the summary above. If x = 0, the function 1=x
and its derivative �1=x2 are unde�ned. We have to expect trouble there. If x < 0, the function

p
x is

unde�ned, but even if x = 0, where
p
x is de�ned, the derived function 1=(2

p
x) is unde�ned, so we expect

trouble. All we need is a way to say where �good�approximations take place.
To give a general approach, we want to phrase the exceptions in terms of intervals.

De�nition 5.1 Notation for Open and Compact Intervals
If a and b are numbers, we de�ne open intervals as follows

(a; b) = fx : a < x < bg
(�1; b) = fx : x < bg
(a;1) = fx : a < bg

We de�ne compact (or "closed and bounded") intervals by [a; b] = fx : a � x � bg

The condition of �tangency�is expressed by the microscopic error formula given next.

Informal Smoothness:

The function f 0[x] is the derivative of the function f [x] if whenever we make a small change �x � 0 in
input x in the interval of di¤erentiability (a; b), then the change in output satis�es

f [x+ �x]� f [x] = f 0 [x] � �x+ " � �x

with error " � 0. This looks like
Informally, this approximation remains valid if we move the microscope anywhere inside an interval of

�good�points. The approximation means that a microscopic view of a tiny piece of the graph y = f [x]
looks the same as the linear graph dy = f 0[x] � dx. (The lower case (small) Greek delta �, indicates
intuitively that when the di¤erence in x is a su¢ ciently small amount, �x � 0, then the error " � 0 is
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Figure 5.6: A symbolic microscope

small.) When we say f 0[x] is the derivative of f [x] we mean that this local approximation is valid. We
have shown this approximation directly for the functions summarized at the beginning of the section on
appropriate compact intervals described in detail at the end of this section.

The rules of calculus are wonderful: They tell you where the trouble is going to occur.

Procedure 5.2 The Graph of the Linear Function Given by

dy = m dx

in local (dx; dy)-coordinates at (x; f [x]) is the tangent line to the explicit nonlinear graph

y = f [x]

provided m = f 0[x] and f 0[x] can be computed by the rules yielding a formula valid in an interval around
x.

Speci�cally,

Theorem 5.1 Successful Rules Imply Linear Approximation
Suppose the derivative dy

dx = f 0[x] can be computed from an explicit formula y = f [x] using the rules of
Chapter 6. Also, suppose that both f [x] and f 0[x] are de�ned on the compact interval [�; �]. Then the size
of the gap, " in

f [x+�x]� f [x] = f 0[x] ��x+ " ��x
can be made small for all x in [�; �] by choosing a su¢ ciently small �x. (For all x in [�; �] if �x = �x � 0,
then " � 0.)

The complete technical de�nition of smoothness is given in the Mathematical Background materials on
the CD accompanying this text. The background also gives a proof of Theorem 5.1. Here is the technical
de�nition.
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De�nition 5.2 Technical Smoothness (See Mathematical Background for Details)
A real function f [x] is called smooth (or di¤erentiable or derivable) on the open interval (a; b) if there is a
function f 0[x] such that for every compact subinterval [�; �] in (a; b), the function limit

lim
�x!0

f [x+�x]� f [x]
�x

= f 0[x] uniformly for all x in [�; �]

In the Mathematical Background we show that the following are equivalent to this de�nition:

1. A real function f [x] is smooth on the real interval (a; b) if there is another real function f 0[x], called
the derivative of f [x], such that whenever a < x < b and x is a bounded hyperreal number and
not in�nitely near a or b, then an in�nitesimal increment of the dependent variable is approximately
linear, that is,

f [x+ �x]� f [x] = f 0[x] �x+ " �x

where the error " is in�nitesimal, whenever �x is in�nitesimal.

2. A real function f [x] is smooth on the open interval (a; b) if there is a function f 0[x] such that for
every c in (a; b), the double limit converges,

lim
x!c;�x!0

f [x+�x]� f [x]
�x

= f 0[c]

The Mathematical Background also has a chapter on computing uniform limits of formulas like the
gaps " we have found so far.

We do not have to worry about all the technical details, but we do want to understand the role of
points where either f [x] or f 0[x] is an unde�ned formula. The following examples are all smooth functions.
By Theorem 5.1, the �proof� that they are smooth just amounts to valid use of basic rules, in this case
the Power Rule.

Example 5.4 Domains of Approximation for y = xp, p = 1; 2; 3; : : :

The functions y = xn and their derivatives dy
dx = nx

n�1 for n = 1; 2; 3; : : : are de�ned for all real x in
(�1;1). Theorem 5.1 says they are di¤erentiable on the open interval (�1;1), and this means that for
any pair of real numbers, � < �, the gap " can be made small over the compact interval [�; �] by choosing
a single, small enough �x. You cannot make " small for the whole real line, (�1;1).

Example 5.5 Domains of Approximation for y = xp, p = �1;�2; : : :

The functions y =
1

xn
and their derivatives dydx = �

n

xn+1
, for n = 1; 2; 3; : : : are de�ned for all nonzero

real x in (�1; 0) or (0;1), but not at x = 0. Theorem 5.1 says they are di¤erentiable on the open intervals
(�1; 0) and (0;1). This means that for pairs of real numbers, � < � < 0 or 0 < � < �, the gap " can
be made small over the whole compact interval [�; �] by choosing a single, small enough �x. You cannot
make " small for the whole interval, (�1; 0) or (0;1) or for [�; �] if � < 0 < �.
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Example 5.6 Domains of Approximation for y = xp, p = 1=2; 1=3; : : :

The function y =
p
x and its derivative dy

dx =
1

2
p
x
are de�ned for all positive real x in (0;1). Both

are NOT de�ned at x = 0. Theorem 5.1 says they are di¤erentiable on the open interval (0;1), so for
pairs of real numbers 0 < � < �, the gap " can be made small over the compact interval [�; �] by choosing
a single, small enough �x. You cannot make " small for the whole interval (0;1).

Exercise Set 5.2
You can see this function convergence for yourself on the computer.

1. " on the Computer
Run the program DfctLimit to show graphically that the gap errors of all the following functions tend
to zero AS FUNCTIONS OF x away from the �bad�points.

y = f [x] = xp ) dy = f 0 [x] dx = pxp�1dx; p = 1; 2; 3; 4; 5
y = f [x] = 1

x ) dy = f 0 [x] dx = �1
x2
dx

y = f [x] = 1
x2

) dy = f 0 [x] dx = �2
x3
dx

y = f [x] =
p
x ) dy = f 0 [x] dx = 1

2
p
x
dx

y = f [x] = 3
p
x ) dy = f 0 [x] dx = 1

3
3p
x2
dx

2. A View in the Microscope
You are told that a certain function y = f [x] has a derivative for all values of x, f 0[x]. At the point
x = 1, we know that f 0[1] = �2=3. Sketch what you would see in a very powerful microscope focused
on the graph y = f [x] above the point x = 1.

Compare your work on the next problem about kinks with Exercise 3.2.4.

Problem 5.2 " on the Computer and Analytically for a Kink Run the program DfctLimit on the function

y = f [x] =
p
x2 + 2x+ 1

which has derivative
dy

dx
= f 0[x] =

x+ 1p
x2 + 2x+ 1

Show that the function and its derivative are NOT BOTH de�ned at x = �1. Verify analytically that the
gap you see on the computer does NOT tend to zero.
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Figure 5.7: y =
p
x2 + 2x+ 1 near x = �1

5.3 Trigonometric Derivatives

The gaps " for y = f [x] = Sin[x], y = f [x] = Cos[x], and y = f [x] = Tan[x] are calculated in this section
by comparing the length of a segment of the unit circle with the vertical and horizontal projections from the
ends of the segment.

The derivative of sine in radians is cosine and the derivative of cosine in radians is -sine. These
important facts can be seen by magnifying the unit circle. We assume that you know the de�nition of
radian measure of angles and the associated fact that (Cos[�];Sin[�]) is the (x; y)-point on the unit circle
at the angle �, measured counterclockwise from the x-axis. (See Chapter 28, Section 5 and Figure 5.8.)

In this section, we use the informal version of De�nition 5.2 and work from the relationship between
the sine and cosine and the length along the unit circle shown on Figure 5.8. Consider what happens as we
move from a point (Cos[�];Sin[�]) to a nearby point (Cos[�+ ��];Sin[�+ ��]). We magnify the unit circle,
noting on Figure 5.9 that the more we magnify, the straighter the magni�ed portion of the circle appears.

The �gure with small �� � 0 appears to be a triangle at magni�cation 1=��. The length of the
hypotenuse of the apparent triangle is �� because we use radian measure. (Degrees are not the distance
along a unit circle.) The radii coming from the larger �gure appear to meet it at right angles, so the
apparent triangle is similar to the large triangle at the left with hypotenuse 1 and sides Sin[�], Cos[�].
(You may have to do some geometry to convince yourself of this, since the corresponding edges are at right
angles to one another.) The sides of the apparent triangle are the di¤erences in sine and cosine, with cosine
decreasing - hence a negative sign.

Figure 5.9 is the microscopic view of the circle that gives us the results
Consider the apparent similarity, comparing the long sides of the two triangles,

Cos[�]

1
� �sin

��
=
Sin[� + ��]� Sin[�]

��

Because we only know the apparent triangle up to a small error, we write only approximate similarity. To
be explicit, let the di¤erence equal,

" =
Cos[�]

1
� Sin[� + ��]� Sin[�]

��

Now do a little algebra to see,

Sin[� + ��]� Sin[�] = Cos[�] � �� + " � ��
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Figure 5.8: Sine and Cosine as a point on the Unit Circle

with " � 0 whenever �� � 0. This has the form

f [� + ��]� f [�] = f 0[�] + " � ��

with f [�] = Sin[�], f 0[�] = Cos[�], and proves half of the following:

y = Sin [�]) dy
d� = Cos [�] or Sin [� + ��]� Sin [�] = Cos [�] �� + " � ��

y = Cos [�]) dy
d� = �Sin [�] Cos [� + ��]� Cos [�] = �Sin [�] �� + " � ��

For � in radians, with " � 0 if �� � 0 (� can take any value.)

Example 5.7 Increments of Sine

The most important meaning of the increment formula for Sin is simply that a small piece of the graph
is given by the linear equation with slope m = Cos[x]. For example, suppose that we want to estimate
the sine of 29 degrees. We know sine of 30 degrees and we can take the increment of -1 degree, using the
�microscope equation.�We must �rst convert to radian measure because the increment formulas above are
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Figure 5.9: Derivatives of sine and cosine

valid only in radian measure. We take � = �
6 and �� = �

�
180 � 0,

f [x+ �x]� f [x] = f 0[x] � �x+ " � �x
f [� + ��]� f [�] = f 0[�] + " � ��
Sin[� + ��]� Sin[�] = Cos[�] � �� + " � ��

Sin[
�

6
� �

180
]� 1

2
=

p
3

2
� ��
180

+ " � ��

Sin[
�

6
� �

180
] � 1

2
+

p
3

2
� ��
180

Sin[
�

6
� �

180
] � 0:484885

The computer�s approximation of sine of 29 degrees is 0.48481.

Example 5.8 Limits of Sine

The previous example can be cast in limit notation as: Find

lim
��!0

Sin[�6 +��]� Sin[
�
6 ]

��

The solution is to recognize this as a special case of the limit de�ning the derivative,

lim
��!0

Sin[� +��]� Sin[�]
��

= Cos[�]

with � = �=6, or to use the increment approximation,

Sin[� + ��]� Sin[�] = Cos[�] � �� + " � ��
Sin[� + ��]� Sin[�]

��
= Cos[�] + "

Sin[�6 + ��]� Sin[
�
6 ]

��
= Cos[

�

6
] + "
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and recall that

lim
��!0

Sin[�6 +��]� Sin[
�
6 ]

��
= L

is the number L the expression approximates when �� = �� � 0 is small,

Sin[�6 + ��]� Sin[
�
6 ]

��
� Cos[�

6
]

5.3.1 Di¤erential Equations and Functional Equations

It is intuitively clear that magni�ed circles appear straighter and straighter, but complete justi�cation
of the local linearity of sine and cosine requires that we really show that the magni�ed increment of the
circle is close to a triangle. We will not do this here except to make two speci�c uses of identities that
are important in their own right. More details are contained in the Mathematical Background chapter on
Functional Identities.

The formula
(Sin[�])2 + (Cos[�])2 = 1

simply says that sine and cosine lie on the unit circle. If x = Cos[�] and y = Sin[�], x2 + y2 = 1 is the
equation of the unit circle.

Rather than using the increment approximation based on a greatly magni�ed circle, we could use the
exact addition formulas to obtain increments of trig functions. In the case of the sine,

Sin[� + ��] = Sin[�] Cos[��] + Cos[�] Sin[��]

For example,

Sin[�=6 + ��] =
1

2
Cos[��] +

p
3

2
Sin[��]

These are exact formulas for the increments, but we need to obtain the di¤erential approximations

Sin[��] = �� + "1 � ��
Cos[��] = 1 + "2 � ��

to complete the last step in proving the local linear approximation.
The point we wish to illustrate is this:

The di¤erential
d(Sin[�]) = Cos[�] d�

is a sort of simpli�ed version of the functional identity

Sin[� + ��]� Sin[�] = Sin[�] Cos[��]� Sin[�] + Cos[�] Sin[��]
= Cos[�]�� +Cos[�](Sin[��]� ��) + Sin[�](Cos[��]� 1)
= Cos[�]�� + " � ��

that discards the error term ".
We know " � 0 because magni�ed circles appear straighter and straighter as the magni�cation increases.

This observation gives us two interesting limits. Since

" = Cos[�]
Sin[��]� ��

��
+ Sin[�]

Cos[��]� 1
��
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and since this is small for all �, we have Sin[��]���
�� = Sin[��]

�� � 1 � 0 and (Cos[��]�1)
�� � 0, or

lim
��!0

Sin[��]

��
= 1 & lim

��!0

Cos[��]� 1
��

= 0

These limits are just the derivatives of sine and cosine at zero.

Exercise Set 5.3

1. A View in the Microscope

(a) Sketch the view you would see in a powerful microscope focused on the graph y = Sin[�] above
the point where � = �=3. Verify your prediction using the program Micro1D.

2. Derivative of Cosine

(a) Use a powerful microscope to prove that the di¤erential of cosine is minus sine,

y = Cos[�] ) dy = �Sin[�] d�

(b) Write an exact formula for Cos[x+�x] = Cos[x] Cos[�x] : : : using the addition formula for cosine.
Compare the exact formula with the increment approximation obtained from the microscopic view
of the circle. What is the exact formula for "?

(c) Approximate the value of cosine of 46 degrees using the linear increment approximation, dis-
carding the " �x term. Give your answer in terms of exact constants such as � and

p
2 as well

as numerically. Compare your approximation with the computer or your scienti�c calculator�s
approximation.

(d) Use the increment approximation for cosine to show that

lim
��!0

Cos[�4 +��]� Cos[
�
4 ]

��
=

1p
2

3. " on the Computer

(a) Run the program DfctLimit to show graphically that the gap errors of y = Sin[x], y = Cos[x],
and y = Tan[x] tend to zero AS FUNCTIONS OF x for appropriate compact intervals [�; �].
(HINT: Where are the functions and their derivatives de�ned? )

The point of the next problem is that we can compute the increments of the tangent function directly.
Later you will be able to di¤erentiate Tan[�] with rules from Chapter 6.
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Figure 5.10: An increment of tangent and the secant Function

Problem 5.3 Derivative of Tangent (Optional)
Find the di¤erential of the tangent function by examining an increment in the �gures below. The

segment on the line x = 1 between two rays from the circle is the increment of the tangent, because SOH-
CAH-TOA with adjacent side of length 1 gives Tan[�] as the length of the segment on x = 1 between the
x-axis and the ray.

The area of the triangle in Figure 5.10 with �y = �(Tan[�]) as its tiny vertical side is 12�Tan[�], because
the �height� is 1 for the �base�of �Tan[�].

The length of the ray at � out to x = 1 is 1=Cos[�]. Why?
Show the lower estimate

1

2

1

Cos2[�]
�� � 1

2
�Tan[�]

by �nding the area of the circular sector at the left in Figure 5.11. (Note that the area of a circular sector
of radius r and angle � is 1

2 r
2 � �.)

Figure 5.11: A lower estimate and an upper estimate
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Similarly, show
1

Cos2[�]
�� � �Tan[�] � 1

Cos2[� + ��]
��

(What is the radius of the sector on the right in Figure 5.11?)
The area of both of the sectors in Figure 5.11 is ��

2Cos2[�]
+ " � ��, with " � 0 when �� � 0. Why? When

is 1
Cos[�] �

1
Cos[�+��] for �� � 0?

Prove that
y = Tan[�] ) dy =

1

Cos2[�]
d�

provided Cos[�] 6= 0.

5.4 Derivatives of Log and Exp

The gaps " for y = ex and y = Log[x] are discussed in this section.

The important functional identities of exponential functions are as follows:

Theorem 5.2 Laws of Exponents
For a positive base a > 0 and any real numbers p and q

a�p = 1
ap ap � aq = ap+q

a1=p = p
p
a (ap)q = ap�q

We want to use these properties to show what we need to estimate in order to di¤erentiate log and
exponential functions. (Practice with the rules can be found in Chapter 28, Section 4, if your skills are
rusty.)

Example 5.9 The Exact Increment of y = ax

We write an exact formula for the di¤erence ax+�x � ax in terms of ax,

ax+�x � ax = ax � a�x � ax

= ax (a�x � 1)
ax+�x � ax

�x
= ax

a�x � 1
�x

Notice that the last formula says
The rate of change of y = ax for a �xed change �x beginning at x is proportional to ax,
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ax+�x � ax
�x

=
a�x � 1
�x

ax

rate of change = K � ax

where the constant of proportionality K = K[�x] = (a�x� 1)=�x depends only on the change �x, not x.

Example 5.10 Constant Rate of Change for Linear Functions

Suppose an unknown function f [x] increases by a constant amount k every time x increases by another
constant amount h. What sort of function is f [x]? The statement that a constant change of h in input
makes a constant change of k in output is

f [x+ h]� f [x] = k
or the rate of change is constant

f [x+ h]� f [x]
h

= m

with m = k=h. It is easy to see that the linear function

f [x] = m � x+ b
with m = k=h has the needed property (it will satisfy the rate equation for every h.)

Linear functions change at a constant rate. Exponential functions change by a constant percentage for
a constant change in input.

Example 5.11 Constant PERCENTAGE Change for Exponential Functions

Suppose an unknown function f [x] increases by a constant percentage every time x increases by a
constant h. For example, suppose f [x] increases by a third, 33.3%, every time x increases by 1=2. The
change in f is

f [x+
1

2
]� f [x] = 33:3% of f [x]

f [x+
1

2
]� f [x] = 1

3
f [x]

We try to �nd an exponential solution, f [x] = ax, of this functional equation

f [x+
1

2
]� f [x] = 1

3
f [x]

ax+
1
2 � ax = 1

3
ax

ax a
1
2 � ax = 1

3
ax

a
1
2 � 1 = 1

3

a
1
2 =

4

3

a =

�
4

3

�2
=
16

9
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The function f [x] =
�
16
9

�x
increases by one third every time x increases by one half.

Percentage Rate of Change as �x! 0

When �x gets smaller and smaller, we would like to show that K[�x] converges to a constant ka =
lim�x!0K[�x]. In other words, when �x is small, �x � 0, we would like to �nd an expression for the
di¤erence quotient of exponentials of the form,

ax+�x � ax
�x

= ax
a�x � 1
�x

= ax � (ka + �)

where the real constant ka depends only on a and

ka �
a�x � 1
�x

or lim
�x!0

a�x � 1
�x

= ka

It turns out that the mysterious constant ka is Log[a] (the natural logarithm) and � � 0, but this approxi-
mation is di¢ cult to establish directly.

Notice that, if the limit converges, the result says the following:
The instantaneous rate of change of y = ax at x is proportional to ax,

d(ax)

dx
= k ax

Moreover, the convergence is uniform for bounded x:

ax+�x � ax = ka � ax + (� ax) � �x

The gap " = (� ax) � 0 for all bounded x.
The �natural�base e � 2:71828 � � � plays an important role in solving the problem because the number

e � 2:71828 is the unique number that makes

e�x � 1
�x

� 1 = ke

for �x � 0, that is, ka = 1 when a = e.
A mathematically simpler approach is to take the de�nition:

The function y = Exp[x] is o¢ cially de�ned to be the unique solution to

y[0] = 1

dy

dx
= y

This �de�nition�is based on two good guesses. First, that the derivative of an exponential is propor-
tional to the quantity. We saw substantial evidence for this above. Second, that some special number e
makes the constant of proportionality equal to 1. The Project on Direct Computation of the Derivative of
Exponentials shows you more details on this guess and gives you a way to compute e � 2:71828 : : :.

Technically, the approach relies on convergence of Euler�s approximation to di¤erential equations. This
is easier than the convergence problems in the direct approach to the exponential above and has many
other applications. (We have not proved that Euler�s approximation converges, but we have seen it work
in several examples: S-I-R, the canary, and so forth. The proof is in the Mathematical Background CD.)
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Once we have made this the �o¢ cial�de�nition, we can use Euler�s approximation to obtain the speci�c
approximation

(1 + �x)x=�x � ex

We postpone further discussion to Chapter 8 but give the derivatives now. You may use these results as
needed (without proof.)

Theorem 5.3 Derivatives of Logs and Exponentials
The derivative of the natural base exponential function is

y = ex ) dy

dx
= y

or, written in terms of the independent variable,

dex

dx
= ex

The derivative of the natural base logarithm is

dLog[x]

dx
=
1

x

Once we know the derivative of the natural exponential and rules of di¤erentiation, we can �nd the
di¤erentials of all exponentials. For this reason, the natural log and exponential play a major role in
science and mathematics. Just as radian measure makes the calculus of trig functions �natural,� the
e � 2:71828 � � � base for logs and exponentials makes their calculus �natural.�

Exercise Set 5.4

Fixed Percentage Changes

1. Find an exponential function f [x] = ax that doubles every time x increases by 1. Write this English
question as a mathematical equation and solve it using properties of exponents.

2. Find an exponential function f [x] = bx that triples every time x increases by 1. Write this English
question as a mathematical equation and solve it using properties of exponents.

3. Find an exponential function f [x] = cx that increases by 50% every time x increases by 1=2 x-unit.
Write this English question as a mathematical equation and solve it using properties of exponents and
the logarithm.

4. Show that the exponential base a from the �rst part is NOT equal to c from the third part. Should not
a function that increases by 50% in 1=2 unit be the same as one that increases by 100% in 1 unit?
Why not?

5. Let f [x] be an unknown function, h and k unknown constants. Write the statement, �The change
in f [�] as x increases by h equals k times f [x].� as a mathematical equation. In other words, your
equation should say, �f [x] increases by k � 100% as x increases by h.�
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A Doubling Exponential

6. Suppose algae cells in a warm pond double every 6 hours and at time t = 0 (hrs) there is one cell.

(a) How many cells are there in 6 hours? How many cells are there in 12 hours? How many in 18
hours?

(b) How many 6-hour periods are there in t hours? (A formula.)

(c) Give the number of cells n as a function of t,

n[t] = 2???

7. Suppose at time t1 there are a billion cells.

(a) How many are there at time t1 + 6?

(b) What is the formula for the rate of growth of algae cells in a 6-hour period beginning at an
unknown time t? (Compare your work to Problem algaeProb and the program ExpGth of
Chapter 28.)

The next exercise has you practice using the functional identities for the logarithm. The point of the
exercise is that we need only one limit, � ! 0, and the functional identity.

The Derivative of Natural Log

8. Given that d Log[x]dx = 1
x , write the increment approximation for Log at x = 1 to show that

Log[1 + �x] = �x+ " � �x

with " � 0 when �x � 0.

9. Use properties of logs to show that

Log[x+ �x]� Log[x]
�x

=
Log[1 + �x

x ]

�x

10. Suppose you are given that
Log[1 + �] = � + " � �

with " � 0 when � � 0. Use these two facts to prove that for all positive x, bounded away from 0,

Log[x+ �x] = Log[x] +
�x

x
+ " � �x

with " � 0 when �x � 0.

11. Use the above to show that

lim
�x!0

Log[x+�x]� Log[x]
�x

=
1

x

12. What is wrong with the following computation?

Log[x+ �x]� Log[x]
�x

=
Log[x+ �x� x]

�x
=
Log[�x]

�x
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Percent Growth and the Natural Base

13. We know that exponentials grow at a constant PERCENTAGE rate for �xed steps. (See the program
PercentGth.) Let f [x] = er x and substitute this into the expression

1

f [x]

f [x+ �x]� f [x]
�x

= k; k constant

14. Suppose you know that Log[1 + �] = � + " � � with " � 0 when � � 0. Show that r � k when �x � 0.

" on the Computer

15. Run the program DfctLimit to show graphically that the gap errors of y = Exp[x] and y = Log[x]
tend to zero AS FUNCTIONS OF x for appropriate compact intervals [�; �]. (HINT: Where are the
functions and their derivatives de�ned? )

The next exercise has some practice using these derivatives in the increment approximation. Do not
use your calculator until you have written the symbolic expressions. (You do not have to use it at all, but
you can check your work if you wish.)

Natural Increments

16. Use the formula for the derivative of the natural exponential to write the increment approximation
for y = ex,

ex+�x = ex + [?] � �x+ " � �x

17. Use the formula for the derivative of the natural logarithm to estimate Log[2:8] = Log[e + (2:8 �
2:71828 � � � )].

5.5 Continuity and the Derivative

This section shows that locally linear implies continuous and uniform derivatives are continuous.

We saw in the Exercise 3.2.1 that a function can be continuous but still not smooth or di¤erentiable.
An o¢ cial de�nition of continuity is the following

De�nition 5.3 Continuity of f [x]
A real function f [x] is continuous at the real point a if f [a] is de�ned and

lim
x!a

f [x] = f [a]

Intuitively, this just means that f [x] is close to f [a] when x is close to a, for every x � a, f [x] is de�ned
and

f [x] � f [a]
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Theorem 5.4 Continuity of f [x] and f 0[x]
If f[x] is smooth on the interval a < x < b, then both f [x] and f 0[x] are continuous at every point c in
(a; b).

Intuitive Proof for f [x]:
Proof of continuity of f is easy algebraically but is obvious geometrically: A graph that is indistin-

guishable from linear clearly only moves a small amount in a small x-step. Algebraically, we want to
show that if x1 � x2 then f [x1] � f [x2]. Take x = x1 and �x = x2 � x1 and use the approxima-
tion f [x2] = f [x + �x] = f [x1] + f

0[x1]�x + " �x where [f 0[x1] + "]�x is medium times small = small, so
f [x1] � f [x2]. That is the algebraic proof. Draw the picture on a small scale.
Intuitive Proof for f 0[x]:

Proof of continuity of f 0[x] requires us to view the increment from both ends. First take x = x1 and
�x = x2 � x1 and use the approximation

f [x2] = f [x+�x] = f [x1] + f
0[x1]�x+ "1�x:

Next let x = x2, �x = x1 � x2 and use the approximation

f [x1] = f [x+�x] = f [x2] + f
0[x2]�x+ "2�x:

The di¤erent x-increments are negatives, so we have

f [x1]� f [x2] = f 0[x2](x1 � x2) + "2(x1 � x2)

and
f [x2]� f [x1] = f 0[x1](x2 � x1) + "1(x2 � x1)

Adding, we obtain
0 =

��
f 0[x2]� f 0[x1]

�
+ ("2 � "1)

	
(x1 � x2)

Dividing by the non-zero (x1 � x2), we see that

f 0[x2] = f
0[x1] + ("1 � "2); so f 0[x2] � f 0[x1]

Note:
The derivative de�ned in many calculus books is a weaker pointwise notion than the notion of smooth-

ness we have de�ned. The weak derivative function need not be continuous. (The same approximation
does not apply at both ends with the weak de�nition.) This is explained in the Mathematical Background
Chapter on �Epsilon - Delta�Approximations.

Exercise Set 5.5

1. Suppose that f [x] is smooth on an interval around a so that the �microscope� increment equation is
valid. Suppose that x � a so that x = a+ �x for �x � 0. Show that f [x] = f [a+ �x] � f [a]; in other
words, show that smooth real functions are continuous at real points.

2. Consider the real function f [x] = 1=x, which is unde�ned at x = 0. We could extend the de�nition
by simply assigning f [0] = 0. Show that this function is not continuous at x = 0 but is continuous at
every other real x.
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3. Give an intuitive graphical description of the de�nition of continuity in terms of powerful microscopes
and explain why it follows that smooth functions must be continuous.

4. The function f [x] =
p
x is de�ned for x � 0; there is nothing wrong with f [0]. However, our

increment computation for
p
x above was not valid at x = 0 because a microscopic view of the graph

focused at x = 0 looks like a vertical ray (or half-line). Explain why this is so, but show that f [x] is
still continuous �from the right;� that is, if 0 < x � 0, then

p
x � 0 but

p
x
x is very large.

5.6 Projects and Theory

5.6.1 Hubble�s Law and the Increment Equation

R[t+ �t] = R[t] +R0[t] �t+ " �t

Evidence of an expanding universe is one of the most important astronomical observations of this
century. Light received from a distant galaxy is �old� light, generated millions of years ago at a time te
when it was emitted. When this old light is compared to light generated at the time received tr, it is
found that the characteristic colors, or spectral lines, do not have the same wavelengths. All the current
wavelengths are longer, �[te] < �[tr]. This means that light is �redder�now; this is the famous red shift.

The Scienti�c Project on Hubble�s Law shows you an explanation for the expanding universe that is
based just on using the increment approximation. Recently, there has been some reexamination of Hubble�s
Law indicating that Hubble�s �constant�may not be constant. This is still compatible with an increment
derivation of the law, which relies on the tiny time increment of only a few human generations.

5.6.2 Numerical Approximation of Exponential Derivatives

The project on Exponential Derivatives has you calculate the constants

ka = lim
�x!0

a�x � 1
�x

and then adjust a until you make ka = 1. This is one way to compute the natural base e � 2:71828 : : : :

5.6.3 Small Enough Real Numbers or �Epsilons and Deltas�

The increment approximation used to estimate Sin[�29 degrees�] was very close, but how do we know
that the increment approximation gets close for real increments, not just close for small increments? The
Mathematical Background chapter on �epsilons and deltas� answers this question. All the theorems are
proved in detail in the Mathematical Background.


