
Chapter 1
Calculus with Computers

This book, with its software called �Mathematica NoteBooks�and �Maple Worksheets,�is a new approach
to an old subject: calculus.

Calculus means �stone�or �pebble�in Latin. Roman numerals were so awkward that ancient Romans
carried pebbles to compute their grocery bills and gamble and, as a result, �calculus�also came to be known
as a method for computing things. The speci�c calculus of this book is �di¤erential and integral calculus,�
formerly called �in�nitesimal calculus.�The fundamental things this calculus computes are rates of change
of continuous variables through di¤erentials and the inverse computation: accumulation of known rates of
change through integrals. Derivatives and integrals are illustrated in Figures 1.1 and 1.2.

Figure 1.1: Derivatives of sine and cosine

Calculus is one of the great achievements of the human intellect. It has served as the language of
change in the development of scienti�c thought for more than three centuries. During that time it became
a coherent polished subject, growing hand in hand with physical science and technology. The contemporary
importance of calculus is actually expanding into economics and the social sciences, as well as continuing
to play a key role in its traditional areas of application. Chapter 2 previews its use in the study of epidemic
diseases, where the models can show us such things as the di¤erences in successful vaccination strategies
for polio and measles. Similar models have helped make national health policy changes in screening for
gonorrhea.

The model in Chapter 2 is a system of di¤erential equations, so it may seem technically a little ahead
of the story. The basic ideas are not di¢ cult and require only high school math. There is a straightforward
description of the daily rates of change in numbers of sick people that depends on how many people are
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Figure 1.2: Arctangent as an integral

sick and how many are susceptible. The objective of Chapter 2 is to show that it is relatively easy to
describe the spread of a disease such as measles by writing formulas that say how it changes. One new
thing in our approach to calculus is that you will be expected to use calculus to describe applications that
interest you. (We o¤er many choices, including mathematical ones, ranging from bungee jumping to drug
absorption to price adjustment. See the accompanying book of projects.) This will show you the role of
calculus as a language �you will �speak�it.

Computers make it possible for us to begin the course with a real-life problem such as the study of
epidemics. By describing epidemic changes in computer notation, we will immediately get approximate
answers to many questions about the spread of diseases. Throughout the course, we will use scienti�c
computing, either Mathematica or Maple, that is both powerful and relatively easy to use. Computing will
help us understand and explore mathematics and to expand the power and applicability of the mathematics
we learn. You will leave this course with a good start on learning 21st-century scienti�c computing.

You will also learn all the old things from traditional calculus in this course. In particular, you will
learn to compute derivatives and integrals. Good high school algebra preparation and e¤ort during the
semester are all you need. The rote computations that often dominate traditional calculus take practice
but not very much if you are pro�cient at high school math. If you make this e¤ort, you will be well
prepared for your later science and math courses. Mathematica or Maple may even help you check some
of your rote skills. You will be far better prepared than traditional calculus students in understanding the
role of calculus in science and mathematics.

1.2 Previews of Coming Attractions

Besides basic computing, this chapter shows you some simple examples of the limit that de�nes the deriv-
ative:

lim
�x!0

f [x+�x]� f [x]
�x

= f 0[x]
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Examples of the relationship between a function f [x] and its derivative f 0[x] are

if y = f [x] = x2; then dy
dx = f

0[x] = 2x1

if y = f [x] = x3; then dy
dx = f

0[x] = 3x2

if y = f [x] = x3 � x2 � 5x; then dy
dx = f

0[x] = 3x2 � 2 x� 5

if y = f [x] = Sin[x]; then dy
dx = f

0[x] = Cos[x]

The various derived functions f 0[x] go with the original functions, f [x]. No doubt you can see a pattern
in the �rst few results above, but do not worry if you have not seen this before. The rules for �nding f 0[x]
from formulas for f [x] are the �little pebbles�of calculus. We return to a systematic development of rules
of di¤erentiation in Chapters 5 and 6.

Rules are important but are not the whole story. In this chapter, you will see how the computer can help
with the �approximation�part of the rest of the story. Each of the expressions above means that the rate of
change of the function f [x] is approximately f 0[x] or that �small�changes in the function are approximately
linear at rate f 0[x]. (Linear functions change at a constant rate.) Where is the �approximation� in the
foregoing examples? Where is the linearity? Use of rules alone skips the approximation and only gives the
answer. The computer together with some basic high school math can help us see the approximation.

The idea of a limit is based on an approximation. The meaning of

lim
�x!0

f [x+�x]� f [x]
�x

= f 0[x]

is that the expression
f [x+�x]� f [x]

�x
gets close to f 0[x] as �x gets small. Or,

f [x+ �x]� f [x]
�x

� f 0[x]; when �x � 0

How close and how small are the technical details of the approximation that we treat later in the course.
In this chapter we will see two graphical approximations and animate them with the computer. We

return to another view of the main approximation of di¤erential calculus in Chapters 4 and 5. At that
point, you will learn the rules and approximations more systematically.

1.3 An Introduction to Computing

One goal of this chapter is to have you run your �rst Mathematica or Maple program. (They are similar,
and you will use whichever one you or your school owns.)

Both Mathematica NoteBooks and Maple Worksheets include instructions to you, have space for
instructions to the computer, and have places for you to type your own interpretations of results. These
programs can do numeric, symbolic, and graphical computations in the same program.
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A Mathematica NoteBook Window

The folder aComputerIntro uses features of the program to introduce you to Mathematica or Maple.
When you open the programs from that folder, you will see a window that looks something like the one
above, though the control buttons may be a little di¤erent in your version.

You may be using your own computer or using a network of various kinds of computers that belong
to your school. Except for the location of the control buttons, Mathematica or Maple programs run the
same way on all computers. The appropriate programs should be installed on your hard drive or your
school�s network.

There is a Mathematica version of the aComputerIntro, and there is a Maple version. They are
di¤erent in detail but contain the same information. You need to run only one version of each program
depending on your system.

If your machines are networked, you need to learn about the details from your instructor. These vary
from place to place, even with the same kind of machine.

Exercise Set 1.2

1. If your computers are networked, log in, change your password, and log out.

You need to learn to do �mouse� editing. Of course, it is a little frustrating sometimes to use the
computer to get an introduction to the computer. Stick with it; once you learn a little �mouse editing,�
you will �nd that almost all the computer information you need is contained in the Mathematica or Maple
programs. You could also ask a friend or lab monitor to help.

2. Log on to your account with your new password, run the programs in aComputerIntro. Read the

instructions in the programs and do the exercises in it. When you are done, save it.
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Your instructor will tell you how you should save your electronic homework. This depends on the kind
of network and disk drives that are installed with your system.

1.4 Linearity in Local Coordinates

Since we want to understand how calculus approximates nonlinear functions by linear ones, we will �rst
reformulate linear functions in terms of their changes. This is describing a line by its �di¤erential equa-
tion.�

We will look at this formulation symbolically (or algebraically), graphically (or geometrically), and
numerically, since it is often helpful in mathematics to view a topic from all three of the computational
points of view described in the programs of aComputerIntro.

The change in a variable is a di¤erence, the new value minus the old value, so we abbreviate change by
Greek capital delta, � (for di¤erence, small delta is written �). Using these symbols, we have the de�nition

De�nition 1.4.1 y varies Linearly with x

Let y be a real valued function of a real variable x, y = f [x]: We say the dependent variable, y,varies
linearly with the independent variable, x,if the ratio of the change in y over a corresponding change in x
always equals the same constant, m,

�y

�x
= m

for any pair of (x; y) points satisfying y = f [x]. For example, if y1 = f [x1], y2 = f [x2] and y3 = f [x3],
then the following ratios of di¤erences are all equal,

y2 � y1
x2 � x1

=
y2 � y3
x2 � x3

=
y3 � y1
x3 � x1

= m

We use this de�nition to get equations for a line three ways: with �local coordinates� directly, and
with ordinary coordinates to give the point-slope formula, and the two-point form of a line. Algebraic
simpli�cation of these forms leads to the familiar slope-intercept form of a line:

y = f [x] = m x+ b

This algebraically simpli�ed form is often not simplest when we are interested in the change of a nonlinear
function near a certain point. Local coordinates put it in the form �y = m x,�but since (x; y)-coordinates
are already used, we introduce new variables (dx; dy) to do this.

Example 1.4.2 Geometric Linearity

Two pairs of points on the graph of a linear function are shown in Figure 4.3 along with horizontal and
vertical segments corresponding to the changes in x and y. Notice that the two triangles are similar.
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Figure 4.3: Similar triangles

De�nition 1.4.1 is equivalent to the statement that any two triangles along the curve are similar. This is
because similarity of the geometric �gures means the ratios of corresponding sides are equal. Geometrically,
the constant m in De�nition 1.4.1 is the slope, so �a line has constant slope� is the equivalent geometric
statement that y varies linearly with x.

Example 1.4.3 Numerical Linearity

Data from an accurate experiment might look something like Table 1.1 (where the two place accuracy
removes measurement errors).

Linear (x; y) Data
x 1:0 2:0 5:0 6:3
y 3:0 1:0 �5:0 �7:6

Table 1.1: Linear data

These data are linear because the ratios of all changes equal the same constant.
The change in x from the �rst point to the second is 2:0 � 1:0 = 1:0, the change in y from �rst to

second is 1:0� 3:0 = �2:0 (taking the di¤erence in the same order), and

�y

�x
=
1:0� 3:0
2:0� 1:0 = �2:0

Similarly, the ratio of changes from second to third is

�y

�x
=
�5:0� 1:0
5:0� 2:0 =

�6:0
3:0

= �2:0

The ratio of changes from third to fourth is

�y

�x
=
�7:6� (�5:0)
6:3� 5:0 =

�2:6
1:3

= �2:0

The ratio of changes from second to fourth is

�y

�x
=
�7:6� 1:0
6:3� 2:0 =

�8:6
4:3

= �2:0
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The numerical point of De�nition 1.4.1 is that any way we compute the ratio of changes, we get the same
constant.

There is no reason to separate the numerical, graphical, and symbolic views of a topic; in particular,
it is perfectly natural to graph the data in Table 1.1 as well as to �nd a formula that describes the graph
and data. Both the graph and formula are more powerful representations in the sense that they condense
information about all the points between the data points in convenient forms (although the data may be
all that are scienti�cally known.)

2 3 4 5 6
x

­ 6
­ 4
­ 2

2

y

Graph in Table 1.1

The formula derived from any two (x; y) points of Table 1.1 also provides a simpler way to demonstrate
linearity. The remaining ones can just be checked by substitution into the formula.

Notice that the computer chose axes starting at the �rst point of the table, rather than at (0; 0). In
calculus, we often need a formula for the line with a given slope through a certain point. We will see this as
the tangent line problem in the second half of this section. For this reason, we will develop special �local�
coordinates for this problem. We start with a fresh example and leave a uni�ed approach to the tabular
data to one of your exercises.

Example 1.4.4 Local Coordinates for the Point-Slope Form of a Line

Suppose we know that a line goes through the point (�4; 3) and has slope �2. The easy way to sketch
this line would be to start at the point (�4; 3) and move +1 in the x direction, then �2 in the y direction,
put our ruler down, and draw. We want a symbolic version of this procedure of changing from a base
point.

We de�ne new coordinates (new x, new y) = (dx; dy) called local coordinates through (�4; 3) (Fig-
ure 4.4). These have their origin at (�4; 3) and are parallel to the (x; y) coordinates. Notice that an
amount of dx represents a change in x from the point �4 and an amount of dy represents a change in y
from 3. [The quantities �x and �y of De�nition 1.4.1 represent any di¤erences, not necessarily based at
(�4; 3).] In local coordinates, De�nition 1.4.1 says the equation of our line is

dy

dx
= �2 or dy = �2 dx

Example 1.4.5 The (x; y) Point-Slope Formula from the Local Formula
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Figure 4.4: The line dy = �2 dx

How can we change the local equation dy = �2 dx to our original (x; y)�coordinates? The (dx; dy)
origin is the same as the (x; y) point (�4; 3). Local coordinates measure changes in x and y from this
point. This means we could have de�ned the local coordinates symbolically by

dx = x� (�4) = x+ 4
dy = y � 3

so the line can be written in either of the forms

dy

dx
= �2 , y � 3

x+ 4
= �2

Here is another explanation. The change in y moving from 3 to the generic value y is the di¤erence
in y, �y = y � 3, and the change in x in moving from �4 to the generic value x is the di¤erence in x,
�x = x� (�4) = x+ 4, as shown in Figure ??.

Figure 4.5: Changes from (�4; 3) to (x; y)

The ratio of any pair of corresponding di¤erences equals the constant slope m, �y�x = m, and our particular
changes are dx and dy, so the following are equivalent:

dy

dx
= m , �y

�x
= m , y � 3

x+ 4
= �2
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We can simplify this equation algebraically, but it is often best left in this form when we are interested in
the changes in the variable near (�4; 3). Local coordinates build this feature in by moving the origin to
this point. The algebraically simpli�ed formula has the more compact form y = m x+ b, but the di¤erence
form (above at the right) shows the point and the slope. Local coordinates are already simpli�ed at their
own origin.

In general, the local coordinates can be de�ned by

De�nition 1.4.6 (dx; dy) Coordinates

The local coordinates through the �xed (x; y) point (x0; y0) are given by

dx = x� x0
dy = y � y0

Local coordinates are nothing mysterious, but they are very useful in calculus.

Procedure 1.4.7 The General (x; y) Point-Slope Formula

Find the (x; y) equation of a line of slope m through the �xed point (x0; y0).

1. Write the local equation:
dy

dx
= m

2. Replace dy and dx by their de�nition in terms of x and y:

y � y0
x� x0

= m

You should verify that this is the same as the point-slope formula if you memorized that in high school.

Example 1.4.8 Two-Point Formula from the Change Formula

Here is another example of using change to describe a line. Suppose our line goes through the points
(x; y) = (�2; 3) and (x; y) = (1; 4).

Before we can use Procedure 1.4.7, we need to compute the slope. The two given points tell us the
slope:

�y

�x
= constant

4� 3
1� (�2) =

4� 3
1 + 2

=
1

3

The di¤erences needed to compute the slope are shown on Figure 4.6.
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x

y

(x,y)
(1,4)

(­2,3)

y ­ 3

x + 2

4 ­ 3

1 + 2

Figure 4.6: Two points determine the line y = 1
3x+

11
3

Now step (1) of Procedure 1.4.7 says the equation in local coordinates at (x; y) = (�2; 3) is:
�y

�x
= constant

dy

dx
=
1

3

Step (2) replaces local coordinates at (x; y) = (�2; 3) by di¤erences in the original coordinates:

dy

dx
=

y � 3
x� (�2) =

y � 3
x+ 2

=
1

3

The general di¤erences y � 3 and x+ 2 are shown on Figure 4.6.
We can also solve this problem using the change in moving from (1; 4) to the general (x; y) point:

dy

dx
=
1

3
y � 4
x� 1 =

1

3

In local coordinates the equation is
dy

dx
=
1

3
, but the point at which we localize a¤ects the x�y� form.

The equations we got from the di¤erent base points are equivalent:

y � 3
x+ 2

=
1

3
, y � 4

x� 1 =
1

3

The easiest way to see this is to simplify both algebraically, putting them in the form y = m x+ b:

y � 3
x+ 2

=
1

3

y � 4
x� 1 =

1

3

y � 3 = 1

3
(x+ 2) y � 4 = 1

3
(x� 1)

y � 3 = 1

3
x+

2

3
y � 4 = 1

3
x� 1

3

y =
1

3
x+

2

3
+ 3 y =

1

3
x� 1

3
+ 4

y =
1

3
x+

11

3
y =

1

3
x+

11

3
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In high school, you learned various symbolic forms of the equation of a line: the point-slope formula,
the two-point formula, as well as slope-intercept formula. You do not need to remember the high school
formulas as long as you can use De�nition 1.4.1. In any case, start to think in terms of changes rather
than only the �xed form y = m x+ b.

Example 1.4.9 Linearity and Constant Rates

When we view the independent variable as time, De�nition 1.4.1 of linearity is equivalent to the
statement that the dependent variable changes at a constant rate. Time rates of change are important in
many applications of calculus, and we will see them often later in the course. Once we understand an idea
in x and y, it is often advantageous to understand it in terms of other variables, such as time, t.

Exercise Set 1.3

1. Local Coordinates for a Line

(a) Suppose a line goes through the point (5;�4) and has slope �3. De�ne local coordinates (dx; dy)
with origin at the point (5;�4), giving formulas for dx and dy in terms of x and y.
What is the (dx; dy) equation for this line?
What is the (x; y) equation of the line?
What is the (x; y) slope-intercept form (y = m x+ b) of this line?

(b) Suppose a line goes through the �xed point (x0; y0) and has slope m.
What are the local (dx; dy) coordinates through (x0; y0)?
What is the (dx; dy) equation of the line?
What is the (x; y) equation of the line? What is the (x; y) slope-intercept form (y = m x + b)
of this line (b =?)?

2. Point-Slope Form to Slope-Intercept Form

(a) Algebraically simplify the expression
y � 3
x+ 4

= �2 showing that it is equivalent to the expression
y = �2 x� 5 (when x 6= �4).

i. This line has slope �2. Use both formulas to show this.
ii. This line contains the point (3;�4). Use both formulas to show this.
iii. This line crosses the y-axis at y = �5. Use both formulas to show this.

(b) Simplify the following expressions and give the slope and y-intercept :

i) y�2
x�3 = �4 ii) y�2

x+3 = 4 iii) y+2
x�3 = �4

iv) y
x�3 = 1 v) y�3

x = �2 vi) y
x = 3

(c) Simplify the expression
y � y0
x� x0

= m, showing that it is equivalent to y = m x+b (when x 6= x0),
where b = y0 �m x0. What is the slope of this line? Use both formulas to show that the line
contains the point (x0; y0).
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3. Two Points Determine a Line

(a) Suppose a line goes through the points (3;�2) and (�4; 5). Find its slope.
i. Use the slope and the point (3;�2) to �nd its (x; y) equation.
ii. Use the slope and the point (�4; 5) to �nd its (x; y) equation.
iii. Compare the two equations by putting both in slope-intercept form.

(b) Find the slope-intercept equation of the line that passes through:

i) (1; 2) and (3; 4) ii) (2;�1) and (�3; 4) iii) (�2; 3) and (5;�7)

4. Graphics to Symbolics

Find an equation for each of the graphs shown below.

­ 2 ­ 1 1 2
d x

­ 2

­ 1 . 5

­ 1

­ 0 . 5

0 . 5

1

1 . 5

2

d y

­ 2 ­ 1 1 2
d x

­ 2

­ 1 . 5

­ 1

­ 0 . 5

0 . 5

1

1 . 5

2

d y

­ 2 ­ 1 1 2
d x

­ 2

­ 1 . 5

­ 1

­ 0 . 5

0 . 5

1

1 . 5

2

d y

­ 2 ­ 1 1 2
d x

­ 2

­ 1 . 5

­ 1

­ 0 . 5

0 . 5

1

1 . 5

2

d y

5. Numerics to Symbolics

(a) Find an equation satis�ed by all the points on Table 1.1.

(b) (Optional) Solve this with the computer using the program LinearIntro.

6. The LinearIntro Program

Run the program LinearIntro in the Chapter 1 folder of the course software and answer the questions
in it. Save the results in your computer account (or homework disk). LinearIntro shows you how to
solve Exercise 4 with the computer. Comparing your paper-and-pencil work with your electronic work
should help you begin the course computing.
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7. Newton�s Law of Cooling says that the rate of cooling of an object is proportional to the di¤erence
between the temperature of the object and the temperature of its surroundings. Let F denote the
Farenheit temperature of the object and t denote the time in minutes beginning with t = 0 at our �rst
observation. (See Chapters 4 and 8.)

(a) Suppose an object is 75� when we �rst observe it and it cools to 60� ten minutes later. What is
its (average) rate of cooling over this time period?

(b) Sketch the line segment passing through the points (t; F ) = (0; 75) and (10; 60).

(c) What is the slope of this segment?

(d) What is the equation of the line through these two points?

Newton�s Law of Cooling does not give the temperature as a function of the time, but rather
says, R = k (F �F0), where R is the rate of cooling, F0 is the temperature of the surroundings,
and k is a constant. The line through the points above is not a good long-term prediction of
temperature because its slope is constant and that slope is the rate referred to in Newton�s Law.
Calculus will give us a simple exponential formula.

8. The downward velocity v of an object released in vacuum near the surface of the earth satis�es a
linear equation, v = g t+ v0, where g is Galileo�s universal gravitational constant, g = 9:8 m/sec2 or
g = 32 ft/sec2. (See Chapter 10.)

(a) Suppose we �rst observe a falling object traveling 13 ft/sec downward. How fast will it be falling
2 seconds later?

(b) Suppose we �rst observe an object thrown 13 ft/sec upward. How fast will it be falling 2 seconds
later?

1.5 Derivatives for Explicit Formulas

This section begins with more data. The data are NOT linear because the ratios of all changes do NOT
equal the same constant.

NonLinear (x; y) Data
x �1:000 0:000 1:000 1:500 2:000
y �1:000 0:000 1:000 3:375 8:000

Table 1.2: Table Caption

Four di¤erences from �rst to second, second to third, etc. are:

0:0� (�1:0)
0:0� (�1:0) = 1;

1:0� 0:0
1:0� 0:0 = 1;

3:375� 1:0
1:5� 1:0 = 4:75;

8:0� 3:375
2:0� 1:5 = 9:25

A graph of the data is shown in Figure 5.7
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x

y

Figure 5.7: The data of Table 1.2 connected by lines

The slopes of segments connecting points on this curve do NOT remain the same.
These points lie on the curve y = f [x] = x3 as shown in Figure 5.8

Figure 5.8: The data on y = f [x] = x3

The slope of the curve varies �continuously�as a point moves along it. The derivative measures this
changing slope.

Example 1.5.1 The Symbolic Derivative of y = x3

One way to approach the derivative is to choose a �xed (x; y) point and look at the slope of the segment
that di¤ers by a small amount �x in x. The corresponding change in y now must be computed with the
function f [x] = x3 at the new x point x+�x. This is

f [x+�x] = (x+�x)3 = x3 + 3x2 �x+ 3x(�x)2 + (�x)3

The change in y is the new value minus the old value:

�y = f [x+�x]� f [x] = (x+�x)3 � x3

= x3 + 3x2�x+ 3x(�x)2 + (�x)3 � x3

= 3x2 �x+ 3x(�x)2 + (�x)3

= 3x2 ��x+ (3x+�x) � (�x)2

The ratio of these changes is
�y

�x
= 3x2 + (3x+�x) � (�x)
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In particular, if x = 1:0 and �x = 1:0, we have

�y

�x
= 3 x2 + (3 x+�x) � (�x)

= 3 � 12 + (3 � 1 + 1) � 1
= 7

We could have seen this particular result more easily from

(f [x+�x]� f [x])=(�x) = (23 � 1)=(1� 0) = (8� 1)=1 = 7

but the symbolic expression is more powerful. It lets us see what happens as �x gets small:

lim
�x!0

�y

�x
= lim
�x!0

3x2 + (3x+�x) � (�x)

= 3x2 + lim
�x!0

(3x+�x) � (�x)

= 3x2 + 0

The limit is 3 x2 because 3 x2 does not change as �x gets smaller and smaller, whereas the remaining
expression,

(3x+�x) � (�x)

tends to zero. It gets small as �x gets small since it is multiplied by the small number �x. For example,
suppose we want the error (3x+�x) � (�x) to be less than 1=1000 and we know that jxj < 1; 000; 000. The
term j3x+�xj < 3; 000; 001, so if we take any j�xj < 1=(4� 109), the error is less than a thousandth.

To summarize the example so far, we have shown

lim
�x!0

f [x+�x]� f [x]
�x

= f 0[x]

lim
�x!0

(x+�x)3 � x3
�x

= 3x2

What does this computation mean? Graphically, we have found that the slope of the segment from
the point (x; f [x]) to the point (x+�x; f [x+�x]) gets closer and closer to 3 x2 as �x gets smaller and
smaller. In other words, the slope of the line through closer and closer points on the curve tends to 3 x2.
You can see this dynamically on the computer program DerivLimit in the course software. Figure 5.9
shows three successively closer points.

Figure 5.9: Successively closer points on y = x3

The successive lines tend toward the graph of the line dy = m dx in local coordinates through (x; f [x])
where m = 3 x2 and x is considered �xed for the (dx; dy)-plot. The equation

dy = 3x2 dx
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Figure 5.10: y = x3 and dy = 3x2 dx on one graph

gives the local coordinates of the tangent line to the curve at the point shown in Figure 5.10:
We summarize the limit computation by the following statement:

If y = f [x] = x3, then dy
dx = f

0 [x] = 3x2

The new function f 0[x] = 3x2 is called the derivative of f [x] = x3, and we say that the slope of the curve
at the single point x is f 0[x] since its tangent line at this point has this slope.

We can also see the convergence of the limit

lim
�x!0

f [x+�x]� f [x]
�x

= f 0[x]

by plotting both (f [x + �x] � f [x])=�x and the function f 0[x] on the same (x; y) graph for smaller and
smaller �x. The program DerivLimit also shows the convergence of the approximate formulas to the
limiting formula. It can even do this dynamically as an animation or computer generated movie.

Figure 5.11: f [x+�x]�f [x]�x and f 0 [x] for �x = 1=2; 1=8; 1=32

Exercise Set 1.4

1. For the function f [x] = x3, verify that when x = 1:0 and �x = 0:5 the expression

�y

�x
=
f [x+�x]� f [x]

�x
= 4:75
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but that when x = 1:5 and �x = 0:5 the expression

�y

�x
=
f [x+�x]� f [x]

�x
= 9:25

2. Let f [x] = x2. This exercise has you show step by step that f 0[x] = 2x. Expand the expression
f [x+�x] = (x+�x)2. Use your expansion to show that f [x+�x]� f [x] = 2x ��x+ (�x)2. Show
that the lim�x!0

f [x+�x]�f [x]
�x = 2x. Check your work with the Symbolics program in aComputerIntro.

3. Let f [x] = x4. This exercise has you show step by step that f 0[x] = 4x3. Expand the expression
f [x + �x] = (x + �x)4. Use your expansion to show that f [x + �x] � f [x] = 4x3 � �x + (�x)2 �
(stu¤). Show that the lim�x!0

f [x+�x]�f [x]
�x = 4x3. Check your work with the Symbolics program in

aComputerIntro.

4. Run the computer program DerivLimit, and verify convergence behind the rules

if y = f [x] = x2; then
dy

dx
= f 0[x] = 2x1

if y = f [x] = x4; then
dy

dx
= f 0[x] = 4x3

if y = f [x] = x3 � x2 � 5x; then
dy

dx
= f 0[x] = 3x2 � 2 x� 5

if y = f [x] = Sin[x]; then
dy

dx
= f 0[x] = Cos[x]

1.6 Review of High School Math

Chapter 28 reviews some of the most important high school math topics needed in calculus. Take a brief
look at it now, and return to it as needed throughout the course. Here are a few topics from the review
chapter.

1.6.1 Function Notation and Substitution of Expressions in Functions

Chapter 28 has a careful explanation of function notation and substitution of expressions in functions such
as the one used in our preview of derivatives:

f [x+�x]� f [x]
�x

=
(x+�x)3 � x3

�x

=
(x3 + 3x2 �x+ 3x(�x)2 + (�x)3)� x3

�x
= 3x2 + 3x(�x) + (�x)2
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1.6.2 Types of Explicit Functions

The basic high school functions de�ned by explicit formulas are

Linear Functions y = mx+ b or
�y

�x
= m

Polynomials y = a0 + a1x+ : : :+ anx
n; aj constants

Trigonometric Functions y = Sin[�]; y = Cos[�]; y = Tan[�]

Inverse Trig Functions � = ArcTan[y]

Exponential Functions y = a � bx; a, b > 0 constants

The Natural Logarithm x = Log[y]

Note: Natural log is sometimes denoted ln(y) in high school texts, where log(y) denotes the base 10 log.

1.6.3 Format for Homework

Chapter 28 includes a general approach to �word problems.�In homework problems involving applications

Procedure 1.6.1 Homework Format

(a) Explicitly list your variables with units and sketch a �gure if appropriate.

(b) Translate the information stated in the problem into formulas in your variables. (If this transla-
tion is di¢ cult, you may not have chosen the best variables.) Often it is helpful to balance units
on both sides of an equation.

(c) Formulate the question in terms of your variables and solve.

(d) Explicitly interpret your solution.

There are practice word problem examples in Chapter 28.

1.6.4 Review as You Go

We will review several important high school topics in the main text at the beginning of sections where
they are needed. At those places, we will also reference the relevant parts of Chapter 28. We urge you to
forge ahead with calculus and brush up on high school material as needed when you need it.

1.7 Free Advice

We know that the �rst few computer exercises take a long time and may be frustrating for people who are
not used to �windows�and �mouse editing.� These initial frustrations will seem very simple in a week or
so if you confront them now. DO NOT GET BEHIND IN YOUR HOMEWORK.
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We encourage you to work with a friend on the computing in this course. Often two heads are better
than one because one of you can concentrate on the machine details while the other thinks about the main
mathematical task you are trying to accomplish. As long as you change roles occasionally, you will both
learn faster.

There are several kinds of problems for you to work in this course.

1.7.1 Drill Exercises

Routine algorithms that just need practice and not much thinking are called �drill exercises.� Some of
these are expanded on in the companion book, Foundations of In�nitesimal Calculus. Some instructors
like to give drill tests as �barrier exams.�This means that you have several chances to pass a skill exam
but that you must get 90% of the problems completely correct. You do not get a grade for the skill test
but cannot pass the course unless you hurdle it. These are necessary skills, but the skills alone do not
mean that you understand the material.

1.7.2 Exercises

Regular �exercises� may require a little more thought about the current material than drill exercises.
Calculus is important because the basic skill algorithms have important meanings. The skills themselves
are not the whole story, and exercises sometimes take a step in the direction of their meaning. Exercises are
sometimes �electronic�; that is, they require you to use a Mathematica NoteBook or Maple Worksheet.
Most instructors assign one large electronic homework assignment per week. These assignments show you
how to do basic calculations on the computer. Once you have done these, you can use the computer to
solve regular homework exercises and work projects.

1.7.3 Problems

�Problems�are larger exercises that are meant to help you organize your thinking. They go beyond exercises
in that they usually have several parts and ask you to write summary explanations of the combined meaning
of the parts. Your written explanations are very important. You will �nd that it is sometimes di¢ cult
to put your ideas into words. You �understand�but �nd it hard to explain the problem. Wrestling with
this di¢ culty improves your understanding and helps you to combine the parts of calculus that you have
learned into coherent understanding.

1.7.4 Projects

�Projects�are larger problems - serious applications of calculus, not fragmented parts of applications or
text exercises contrived to come out in whole numbers. Scienti�c Projects comprise a paperback book
accompanying this text. You should look through the table of contents of the Scienti�c Projects to get an
idea of how widely YOU can apply calculus. There are projects on topics ranging from bungee jumping to
extinction of whales.


