
Finding Facilities Fast ∗

Saurav Pandit Sriram V. Pemmaraju

May 6, 2009

Abstract

Clustering can play a critical role in increasing the performance and lifetime of wireless networks. The
facility location problem is a general abstraction of the clustering problem and this paper presents the first
constant-factor approximation algorithm for the facility location problem on unit disk graphs (UDGs),
a commonly used model for wireless networks. In this version of the problem, connection costs are not
metric, i.e., they do not satisfy the triangle inequality, because connecting to a non-neighbor costs ∞.
In non-metric settings the best approximation algorithms guarantee an O(log n)-factor approximation,
but we are able to use structural properties of UDGs to obtain a constant-factor approximation. Our
approach combines ideas from the primal-dual algorithm for facility location due to Jain and Vazirani
(JACM, 2001) with recent results on the weighted minimum dominating set problem for UDGs (Huang
et al., J. Comb. Opt., 2008). We then show that the facility location problem on UDGs is inherently
local and one can solve local subproblems independently and combine the solutions in a simple way to
obtain a good solution to the overall problem. This leads to a distributed version of our algorithm in the
LOCAL model that runs in constant rounds and still yields a constant-factor approximation. Even if the
UDG is specified without geometry, we are able to combine recent results on maximal independent sets
and clique partitioning of UDGs, to obtain an O(log n)-approximation that runs in O(log∗ n) rounds.

1 Introduction

The widespread use of wireless multi-hop networks such as ad hoc and sensor networks pose numerous
algorithmic challenges. One of these algorithmic challenges is posed by the need for efficient clustering
algorithms. Clustering can play a critical role in increasing the performance and lifetime of wireless networks
and has been proposed as a way to improve MAC layer protocols (e.g., [11, 31]), higher level routing
protocols (e.g., [28, 29, 30]), and energy saving protocols (e.g., [6, 16]). Clustering problems can be modeled
as combinatorial or geometric optimization problems of various kinds; the minimum dominating set (MDS)
problem, the k-median problem, etc. are some popular abstractions of the clustering problem. Since wireless
networks reside in physical space and since transmission ranges of nodes can be modeled as geometric objects
(e.g., disks, spheres, fat objects, etc.), wireless networks can be modeled as geometric graphs, especially as
intersection graphs of geometric objects. This has motivated researchers to consider a variety of clustering
problems for geometric graphs [26, 3, 4, 1, 7] and attempt to develop efficient distributed algorithms for
these. Most of these clustering problems are NP-hard even for fairly simple geometric graphs and this has
motivated attempts to design fast distributed approximation algorithms.

In this paper, we present the first constant-factor approximation algorithm for the facility location prob-
lem on unit disk graphs (UDGs). For points u and v in Euclidean space we use |uv| to denote the Euclidean
distance in L2 norm between u and v. A graph G = (V, E) is a unit disk graph (UDG) if there is an
embedding of the vertices of G in R

2 (the 2-dimensional Euclidean space) such that {u, v} ∈ E iff |uv| ≤ 1.
The facility location problem on UDGs (in short, UDG-FacLoc) takes as input a UDG G = (V, E), opening
costs f : V → R

+ associated with vertices, and connection costs c : E → R
+ associated with the edges. The

problem is to find a subset I ⊆ V of vertices to open (as “facilities”) and a function φ : V → I that assigns
every vertex (“client”) to an open facility in its neighborhood in such a way that the total cost of opening
the facilities and connecting clients to open facilities is minimized. In other words, the problem seeks to
minimize the objective function

∑

i∈I f(i) +
∑

j∈V c(j, φ(j)). See Figure 1 for an illustration. We assume

∗Department of Computer Science, The University of Iowa, Iowa City, IA 52242-1419. E-mail:
[spandit,sriram]@cs.uiowa.edu. Even though we take blame for the bad title, we confess that the attempted allitera-
tion was inspired by the title of a recent paper: “Leveraging Linial’s Locality Limit” by Lenzen and Wattenhofer, to appear
in DISC 2008.

1

f(5)

e(2)

g(1)

h(2)

a(1)

b(1)

c(1)

d(3)

open

not open

Fig. 1 — A UDG with eight vertices. Opening costs are integers shown next to the vertex names and connection costs of
edges are assumed to be Euclidean lengths. Vertices b, g, and e have been opened as facilities. The solid lines
indicate the assignments of vertices (clients) to open facilites and the dotted lines indicate edges in the UDG
that are not being used for any facility-client connection. Only the disks around the three open facilities are
shown in the figure. The cost of this solution is 4 units (for opening facilities) plus |fg|+|ab|+|cb|+|de|+|he|.

that the connection costs of edges are determined by their Euclidean lengths via a fairly general function.
More precisely, let g : [0, 1] → R

+ be a monotonically increasing function with bounded growth, i.e., for some
constant B ≥ 1, g(x) ≤ B · g(x/3) for all x ∈ [0, 1]. We assume that each edge {i, j} ∈ E get assigned
a connection cost c(i, j) = g(|ij|). Note that the restriction that g has bounded growth still permits cost
functions that are quite general from the point of view of wireless networks. For example, if g(x) = β · xγ

for constants β and γ (as might be the case if connection costs represent power usage), then B = 3γ . It
should be noted that every vertex in G is a “client” and every vertex has the potential to be a “facility.”
Furthermore, a vertex (“client”) can only be connected to (i.e., “serviced” by) another vertex (“facility”) in
its neighborhood and thus the set of open facilities forms a dominating set.

Note that UDG-FacLoc is inherently non-metric, i.e., connection costs of edges do not satisfy the triangle
inequality. This is because a vertex cannot be connected to a non-neighbor, implying that the connection
cost of a vertex to a non-neighbor is ∞. There are no known constant-factor approximation algorithms
for the non-metric version of facility location, even for UDGs. In one sense, this is not surprising because
UDG-FacLoc is a generalization of the weighted minimum dominating set (WMDS) problem on UDGs. This
can be seen by noting that an instance of WMDS, namely G = (V, E), w : V → R

+, can be interpreted as
a UDG-FacLoc instance in which the connection costs (of edges) are set to 0 and each opening cost f(i)
is set to the vertex weight w(i). There have been no constant-factor approximation algorithms for WMDS

on UDGs until recently, with the result of Ambühl et al. [1] being the first constant-factor approximation
for WMDS on UDGs. Subsequently, Huang et al. [13] have improved the approximation ratio significantly.
Our technique combines the well known primal-dual algorithm of Jain and Vazirani [15] with these recent
constant-factor approximation algorithms for WMDS on UDGs, to obtain a constant-factor approximation for
UDG-FacLoc. Applicability of our technique to more general models of wireless networks, for example, unit
ball graphs in higher dimensional spaces or doubling metric spaces, disk graphs, growth-bounded graphs, etc.
is only limited by the availability of good approximation algorithms for the WMDS problem on these graph
classes. Using our technique, a constant-factor approximation algorithm for WMDS on any of these graph
classes would immediately imply a constant-factor approximation for facility location on that graph class.

UDGs are simple and popular models of wireless networks and the facility location problem on UDGs is
a general abstraction of the clustering problem on wireless networks. For more background see the recent
survey by Frank [8] on the facility location problem as it arises in the context of wireless and sensor networks.

2

Unlike the WMDS problem that ignores the cost of connecting to dominators, the facility location problem
explicitly models connection costs. As a result, solutions to WMDS may lead to clustering that is quite poor
(e.g. refer to Figure 2). To be more specific consider one common application of dominating sets in wireless

.

d = 1

1 3 4 n2

Fig. 2 — An instance of UDG-FacLoc where n vertices are uniformly spaced on a line segment of unit length. Suppose
that for all i, f(i) = 1/n. Opening all vertices as facilities would cost a total of 1 unit, with connection costs
being 0. An optimal WMDS solution would include just one vertex at cost 1/n. If connection costs are assumed
to be Euclidean distances, then the “connection cost” of the WMDS solution would be Θ(n).

networks, which is to save energy by sending all dominatees into a low power sleep mode and having the
network be serviced exclusively by the dominators. While it makes sense to keep the size or weight of the
dominating set small so that most nodes are in the sleep mode, ignoring the connection costs could yield a
dominating set in which each dominator has to spend a lot of energy in order to reach its dominatees. By
using an objective function that takes opening costs as well as connection costs into account, UDG-FacLoc
yields a set of cluster heads that can service the network with smaller overall cost and for a longer duration.

1.1 Related work

Facility location is an old and well studied problem in operations research ([18, 25, 2, 17, 5]), that arises in
contexts such as locating hospitals in a city or locating distribution centers in a region. A standard instance
of the facility location problem takes as input a complete bipartite graph G = (F, C, E), where F is the set
of facilities and C is the set of cities, opening costs f : F → R

+, and connection costs c : E → R
+. The goal,

as mentioned before, is to find a set of facilities I ⊆ F to open and a function φ : C → I that assigns every
city to an open facility so as to minimize

∑

i∈I f(i) +
∑

j∈C c(j, φ(j)). See Figure 3 for an illustration. In

f(1) = 10

f(2) = 5

f(3) = 2

d

a

b

c

1 2

14

7

5

1

1

4 6

7

6

9

3

1

c(i,x) values

Fig. 3 — An instance of standard FacLoc. The table shows the pairwise connection costs between clients and facilities.
OPT consists of open facilities 2 and 3 with clients a, b and c connected to facility 2 and client d to facility 3.
Total cost of OPT is 11. Note that any solution with a single open facility or with all the facilites open, will
have cost more than 11. So is the case for any solution that opens facility 1.

this context, the connection costs are said to satisfy the triangle inequality if for any i, i′ ∈ F and j, j′ ∈ C,
c(i, j) ≤ c(i, j′) + c(i′, j′) + c(i′, j). In the metric facility location problem the connection costs satisfy
the triangle inequality; when they don’t we have the more general non-metric facility location problem.
UDG-FacLoc can be seen as an instance of the non-metric facility location problem by setting F = V ,
C = V , setting connection costs between a facility and a city that correspond to non-adjacent vertices to

3

∞, setting c(i, i) = 0 for all i ∈ V , and inheriting the remaining connection costs and opening costs in the
natural way. O(log n)-approximation algorithms for the non-metric facility location problem are well known
[12, 19]. Starting with an algorithm due to Shmoys, Tardos and Aardal [24] the metric facility location
problem has had a series of constant-factor approximation algorithms, each improving on the approximation
factor of the previous. In this paper we make use of an elegant primal-dual schema algorithm due to Jain
and Vazirani [15] that provides a 3-approximation to the metric facility location problem. Since UDG-FacLoc
is not a metric version of the facility location problem, we cannot use the Jain-Vazirani algorithm directly.
We use the Jain-Vazirani algorithm to get a “low cost,” but infeasible solution to UDG-FacLoc and then
“repair” this solution via the use of a “low weight” dominating set and show that the resulting solution is
within a constant-factor of OPT.

Several researchers have attempted to devise distributed algorithms for the facility location problem;
these attempts differ in the restrictions placed on the facility location problem and in the network and dis-
tributed computing models. For example, Moscibroda and Wattenhofer [20] present a distributed algorithm
for the standard non-metric facility location problem. The network on which their algorithm runs is the
complete bipartite graph on F , the set of facilities and C, the set of cities. Since this network has diameter 2,
one way to solve the problem would be for a node to gather information about the entire network in constant
number of communication rounds and just run a known sequential algorithm locally. Thus this problem
is uninteresting in the LOCAL model [21] of distributed computation. The problem becomes interesting
in the CONGEST model, where a reasonable bound, such as O(log n) bits, is imposed on each message
size. In such a model, exchanging a lot of information costs a lot of rounds and Moscibroda and Watten-
hofer [20] present an approximation algorithm for non-metric facility location that, for every k, achieves

an O(
√

k(mρ)1/
√

k log(m + n))-approximation in O(k) communication rounds. Here m is the number of
facilities, n is the number of clients, and ρ is a coefficient that depends on the numbers (i.e., opening costs
and connection costs) that are part of the input. The main thrust of this result is that even with a constant
number of communication rounds, a non-trivial approximation factor can be achieved. However, it should
be noted that no matter how large k is (e.g., k = polylog(n)), the approximation factor of this algorithm is
Ω(log(m + n)).

Frank and Römer [9] consider facility location on multi-hop networks (like we do), but assume that
given edge weights, the connection cost c(i, j) for any pair of vertices i and j is simply the shortest path
distance between i and j. This turns their problem into a metric problem and thus they can use known
sequential algorithms; in particular, they use the 1.61-approximation due to Jain et al. [14]. Frank and
Römer [9] show how to implement the sequential algorithm of Jain et al. [14] in a distributed setting
without any degradation in the approximation factor, but they do not provide any non-trivial running time
guarantees. Frank and Römer [9] do mention the version of the problem in which connection costs between
non-neighboring vertices is ∞, but they just observe that since this is a non-metric problem, constant-factor
approximation algorithms are not known.

Gehweiler et al. [10] present a constant-approximation, constant-round distributed algorithm using only
O(log n)-bits per message, for the uniform facility location problem. In this problem, all opening costs
are identical and the underlying network is a clique. The authors make critical use of the fact that all
facility opening costs are identical in order to obtain the constant-approximation. The uniform opening
costs assumption is restrictive for certain settings. For example, if we want opening costs to reflect the
amount of battery power that nodes have available – more the available power at a node, cheaper it is to
open that node, then this assumption requires the battery power at all nodes to remain identical through
the life of the network. This may be untenable because nodes will tend to expend different amounts of power
as they perform different activities. The interesting aspect of the Gehweiler et al. [10] algorithm is that all
message sizes are bounded above by O(log n).

1.2 Main results

We assume that we are given a UDG along with its geometric representation. Let g : [0, 1] → R
+ be

a monotonically increasing function with bounded growth, i.e., there exists a constant B such that g(x) ≤
B ·g(x/3) for all x ∈ [0, 1]. Each edge {i, j} ∈ E gets assigned a connection cost c(i, j) = g(|ij|), representing
the dependence of the connection cost on the Euclidean distance between the involved vertices. For any
ε > 0, we present a (6 + B + ε)-approximation algorithm for UDG-FacLoc. To put this result in context,
observe that if connection costs are exactly Euclidean distances, i.e., g(x) = x, then B = 3 and we have
a (9 + ε)-approximation. If the connection costs are meant to represent energy usage, then a function

4

such as g(x) = β · xγ for constants β and 2 ≤ γ ≤ 4 may be reasonable. In this case, B = 3γ and
we get a (3γ + 6 + ε)-approximation, still a constant-factor approximation. We then present a distributed
implementation of our algorithm that runs in just O(1) rounds and yields an O(B)-approximation. To obtain
this result we show that UDG-FacLoc can be solved “locally” with only a constant-factor degradation in the
quality of the solution. One aspect of our result, namely the constant approximation factor, depends crucially
on the availability of a geometric representation of the input UDG. If we are given only a combinatorial
representation of the input n-vertex UDG, then our algorithm runs in O(log∗ n) rounds yielding an O(log n)-
approximation. This result depends on two recent results: (i) an O(log∗ n)-round algorithm for computing
a maximal independent set (MIS) in growth-bounded graphs [23] and (ii) an algorithm that partitions a
UDG, given without geometry, into relatively small number of cliques [22]. Overall, our results indicate
that UDG-FacLoc is as “local” a problem as MIS is, provided one is willing to tolerate a constant-factor
approximation. Our techniques extend in a straightforward manner to the connected UDG-FacLoc problem,
where it is required that the facilities induce a connected subgraph; we obtain an O(1)-round, O(B)-
approximation for this problem also.

2 Sequential Algorithm

Now we present a high level three step description of our algorithm for finding a constant-factor approxima-
tion for UDG-FacLoc. Let G = (V, E) be the given UDG with an opening cost f(i) for each vertex i ∈ V and
connection cost c(i, j) for each edge {i, j} ∈ E. We assume that there is a monotonically increasing function
g : [0, 1] → R

+ satisfying g(x) ≤ B · g(x/3) for all x ∈ [0, 1] for some B ≥ 1, such that c(i, j) = g(|ij|).

Step 1. Convert the given instance of UDG-FacLoc into a standard non-metric instance of facility location.
This transformation is as described in the previous section. Run the primal-dual algorithm of Jain
and Vazirani [15] on this instance to obtain a solution S. The solution S may contain connections
that are infeasible for UDG-FacLoc; these connections have connection cost ∞ and they connect pairs
of non-adjacent vertices in G.

Step 2. Assign to each vertex i of G a weight equal to f(i). Compute a dominating set of G with small
weight. For this we can use the (6 + ε)-approximation algorithm due to Huang et al. [13]. Let D∗

denote the resulting solution.

Step 3. For each vertex j ∈ V that is connected to a facility by an edge of cost ∞, reconnect j to an
arbitrarily chosen neighbor d ∈ D∗. Think of the vertices d ∈ D∗ as facilities and declare them all
open. Let the new solution to UDG-FacLoc be called S∗.

We will prove the following theorem in the next subsection.

Theorem 1 Let OPT denote the cost of an optimal solution to a given instance of UDG-FacLoc. Then
cost(S∗) ≤ (6 + B + ε) · OPT .

2.1 Analysis

To analyze our algorithm we need some details of the Jain-Vazirani primal-dual algorithm used in Step
1. For a more complete description see [15]. The starting point of this algorithm is the following Integer
Program (IP) representation of facility location. Here yi indicates whether facility i is open and xij indicates
if city j is connected to facility i. The first set of constraints ensure that every city is connected to a facility
and the second set of constraints guarantee that each city is connected to an open facility.

minimize
∑

i∈F,j∈C

c(i, j) · xij +
∑

i∈F

f(i) · yi

subject to
∑

i∈F

xij ≥ 1, j ∈ C

yi − xij ≥ 0, i ∈ F, j ∈ C
xij ∈ {0, 1}, i ∈ F, j ∈ C
yi ∈ {0, 1}, i ∈ F

5

As is standard, we work with the LP-relaxation of the above IP obtained by replacing the integrality
constraints by xij ≥ 0 for all i ∈ F and j ∈ C and yi ≥ 0 for all i ∈ F . The dual of this LP-relaxation is
the following:

maximize
∑

j∈C

αj

subject to αj − βij ≤ c(i, j), i ∈ F , j ∈ C
∑

j∈C

βij ≤ f(i), i ∈ F

αj ≥ 0, j ∈ C
βij ≥ 0, i ∈ F , j ∈ C

The dual variable αj can be interpreted as the amount that city j is willing to pay in order to connect
to a facility. When αj ≥ c(i, j) for any i, then out of αj , c(i, j) goes towards paying for connecting to
facility i, whereas the “extra,” namely βij , is seen as the contribution of city j towards opening facility i.
Initially all the αj and βij values are 0. The Jain-Vazirani algorithm initially raises all of the αj values in
synch. When αj reaches c(i, j) for some edge {i, j}, then the connection cost c(i, j) has been paid for by j
and any subsequent increase in αj is accompanied by a corresponding increase in βij so that the first dual
constraint is not violated. The quantity βij is j’s contribution towards opening facility i and when there
is enough contribution, i.e.,

∑

j βij = f(i), then the facility i is declared temporarily open. Furthermore,
when facility i is temporarily opened, all unconnected cities j that are making positive contribution towards
f(i), i.e., βij > 0, are declared connected to i. Also, any unconnected city j that has completely paid its
connection cost c(i, j), but has not yet started paying towards βij , i.e., αj = c(i, j) and βij = 0, is also
declared connected to j. The opening of a facility i corresponds to setting yi = 1 and declaring a city j
connected to i corresponds to setting xij = 1. Once a facility i is open and cities connected to it, then the
dual variables of these cities are no longer raised; otherwise the dual constraint

∑

j∈C βij ≤ f(i) would be
violated. The algorithm proceeds in this way until every city has been connected to some open facility. This
is the end of Phase 1 of the algorithm.

It is easy to check that at the end of Phase 1, {αj , βij} define a feasible dual solution and {yi, xij} define
a feasible integral solution. If the cost of the primal solution is not too large compared to the cost of the dual
solution, then by the Weak Duality Theorem, we would have a solution to facility location that is not too
far from a lower bound on OPT . However, the gap between the costs of the dual and the primal solutions
can be quite high because a single city may be contributing towards the connection costs and opening costs
of many facilities. To fix this problem, Phase 2 of the algorithm is run. Let Ft be the set of temporarily
open facilities. Define a graph H on this set of vertices with edges {i, i′} whenever there is a city j such
that βij > 0 and βi′j > 0; in other words, city j is contributing a positive amount towards the opening
of both facilities i and i′. Compute a maximal independent set (MIS) I of H and declare all facilites in
I open (permanently) and close down all facilities in Ft \ I, i.e., set yi = 0 for all i ∈ Ft \ I. Due to the
shutting down of some facilities, some cities may be connected to closed facilities implying that the primal
solution may be infeasible, due to violation of the yi − xij ≥ 0 constraints. Call a city j a Class I city if it
is connected to an open facility. Denote the set of Class I cities by C1. We’ll call cities outside of C1, Class
II cities. At this point in the algorithm the primal and the dual solution satisfy the following properties.

Lemma 2 [Jain-Vazirani [15]] The dual solution {αj , βij} is feasible. The primal solution {yi, xij} is
integral, but may not be feasible. Furthermore,

∑

j∈C1

αj =
∑

j∈C1

c(j, φ(j)) +
∑

i∈I

f(i).

The above lemma is essentially saying that the Class I cities completely pay for connections to and the
opening of facilities in I. The goal now is to fix the infeasibility of the primal solution, i.e., find connections
for cities outside C1, without increasing the cost of the primal solution too much relative to the cost of
the dual. Let j be a city that is connected to a closed facility. If there is a open facility i to which j has
already paid connection cost, i.e., αj ≥ c(i, j), then simply connect j to one such city. Since αj ≥ c(i, j),
the connection cost is paid for by αj and furthermore the opening cost of i has been paid for by other cities.
This leaves a set C′ of cities such that for each j ∈ C′, αj < c(i, j) for all open facilities i. This may happen,

6

jj’

i’ i

a
j

(closed)(open)

Fig. 4 — Client j is connected to temporarily open facility i at the end of Phase 1. Client j′ contributes positively to
the opening cost of both i and i′. Facility i is closed at the beginning of Phase 2 and facility i′ becomes a
candidate for connecting j to.

for example, if none of j’s neighbors in G have been opened as facilities and therefore for every open facility
i, c(i, j) = ∞. Note that at the end of Phase 1, there was a temporarily open facility, say i, to which j was
connected and in Phase 2, i was shut down. This implies that (i) αj ≥ c(i, j) and (ii) there exists a city j′

that is paying a positive amount towards the opening of two facilities i and i′ and this “double payment”
is responsible for i being shut down. See Figure 2.1 for an illustration. In such a case, the Jain-Vazirani
algorithm simply connects j to i′. In the metric facility location case, Jain and Vazirani are able to show
that the connection cost c(j, i′) is not too big relative to c(i, j) (they show, c(j, i′) ≤ 3 · c(i, j)). In our case,
i′ may be outside the neighborhood of j and therefore c(j, i′) = ∞ and therefore connecting j to i′ is too
costly. This possible mistake is fixed in the subsequent two steps of our algorithm, via the use of a WMDS

solution. We now include the last two steps of our algorithm in the analysis to show that we are able to find
a facility that is not too costly for j to connect to. More precisely, if i′ is in the neighborhood of j, then
c(i′, j) < ∞ and we are able to show that connecting j to i′ is a good idea. On the other hand, if i′ is not a
neighbor of j, then we show that connecting j to some neighbor in the WMDS solution D∗ will not increase
the cost of the solution too much. We make use of the following inequalities that Jain and Vazirani prove.
The first inequality was mentioned earlier in this paragraph, but the remaining two inequalities take a little
bit of work to prove and we refer the reader to the Jain-Vazirani paper [15].

Lemma 3 [Jain-Vazirani [15]] αj ≥ c(i, j), αj ≥ c(i, j′) and αj ≥ c(i′, j′).

Lemma 4 Let B ≥ 1 be a constant satisfying g(x) ≤ B · g(x/3) for all x ∈ [0, 1]. If i′ is a neighbor of j,
then j is connected to i′ in Step 1 and c(i′, j) ≤ B · αj. If i′ is not a neighbor of j, then j is connected to
some neighbor i∗ ∈ D∗ in Step 3 and c(i∗, j) ≤ B · αj.

Proof: Since Euclidean distances satisfy triangle inequality, we have

|ij| + |ij′| + |i′j′| ≥ |i′j|.
Let y denote the largest of the three terms on the left hand side above. Then y ≥ |i′j|/3. Suppose that i′

is a neighbor of j. Then |i′j| ≤ 1 and c(i′, j) = g(|i′j|) < ∞. Then,

c(i′, j) = g(|i′j|) ≤ B · g
(|i′j|

3

)

(due to bounded growth of g)

≤ B · g(y) (due to monotonicity of g)

≤ B · αj (due to Lemma 3).

Now suppose that i′ is not a neighbor of j. Then |i′j| > 1 and for any neighbor i∗ of j, |i′j| > |i∗j|.
Since y ≥ |i′j|/3, it follows that y > |i∗j|/3. Then, by the same reasoning as above, we get

c(i∗, j) = g(|i∗j|) ≤ B · g
(|i∗j|

3

)

≤ B · g(y)

≤ B · αj .

7

Lemma 5 Let S∗ be the solution produced by our algorithm. Then, cost(S∗) ≤ (6 + B + ε) · OPT , where
OPT is the cost of an optimal solution to UDG-FacLoc.

Proof: The cost of the entire solution can be expressed as





∑

i∈I

f(i) +
∑

j∈C1

c(φ(j), j)



 +





∑

i∈D∗

f(i) +
∑

j∈C2

c(φ(j), j)



 .

By Lemma 2, the first term in the above sum equals
∑

j∈C1
αj . Let OPTDOM denote the weight of an

optimal dominating set when each vertex i of G is assigned weight f(i). Then,

∑

i∈D∗

f(i) ≤ (6 + ε) · OPTDOM ≤ (6 + ε) · OPT (1)

because we use the (6 + ε)-approximation algorithms of Huang et al. [13] to compute a dominating set of
small weight. Also, by Lemma 4,

∑

j∈C2

c(φ(j), j) ≤ B ·
∑

j∈C2

αj . (2)

Together the above inequalities yield

cost(S∗) =





∑

i∈I

f(i) +
∑

j∈C1

c(φ(j), j)



 +





∑

i∈D∗

f(i) +
∑

j∈C2

c(φ(j), j)





≤
∑

j∈C1

αj + (6 + ε) · OPT + B ·
∑

j∈C2

αj

≤ B ·
∑

j∈C

αj + (6 + ε) · OPT (since B ≥ 1)

≤ (B + 6 + ε) · OPT (by Weak Duality Theorem).

3 Distributed Algorithm

In this section, we present an O(1)-round distributed implementation of the above algorithm in the LOCAL
model [21]. In the LOCAL model there is no upper bound placed on the message size and due to this, a
node can collect all possible information (i.e., node IDs, topology, interactions) about its k-neighborhood in
k communication rounds. We show in this section that UDG-FacLoc is inherently a “local” problem provided
we are willing to tolerate a constant-factor approximation in the cost of the solution. This property of
UDG-FacLoc allows us to solve a version of the problem independently on small squares and combine the
solutions in a simple way to get the overall solution. We partition the plane into squares by placing on the
plane an infinite grid of 1/

√
2 × 1/

√
2 squares. This is a standard and simple way of partitioning a UDG

with geometric representation into cliques. The square Sij for i, j ∈ Z, contains all the points (x, y) with
i√
2
≤ x < i+1√

2
and j√

2
≤ y < j+1√

2
. Let G = (V, E) be the given UDG. For a square Sij that has at least

one node in V , let Vij ⊆ V be the set of vertices that lie in Sij . Let N(Vij) denote the set of all vertices in
V \ Vij that are adjacent to some vertex in Vij . Now consider the subproblem, denoted UDG-FacLocij , in
which we are allowed to open facilities from the set Vij ∪N(Vij) with the aim of connecting all the nodes in
Vij as clients to these facilities. The objective function of the problem remains the same: minimize the cost
of opening facilities plus the connection costs. See Figure 3 for an illustration.

Let {Fij , φij} denote a solution to UDG-FacLocij , where Fij ⊆ Vij ∪ N(Vij) is the set of open facilities
and φij : Vij → Fij is the assignment of clients to open facilities. Let ∪ij{Fij , φij} denote a solution to
UDG-FacLoc in which the set of open facilities is ∪ijFij and the assignment φ : V → ∪ijFij is defined by
φ(v) = φij(v) if v ∈ Vij . Thus ∪ij{Fij , φij} defines a simple way of combining solutions of UDG-FacLocij to
obtain a solution of UDG-FacLoc. The following lemma shows that if the small square solutions ∪ij{Fij , φij}

8

outside
facilities

(not open)

facilities
open

Fig. 5 — An instance and a possible solution of UDG-FacLocij . Each vertex inside the square has to be connected as a
client to an open facility. Any vertex that resides inside the square or outside the square can be opened as a
facility as long as a client inside the square can connect to it. Note that the “outside vertices” more than 1
unit away from all the “inside vertices” can be ignored, giving us a local instance of UDG-FacLoc.

are good then combining them in this simple way yields a solution to UDG-FacLoc that is also quite good.
This lemma is a generalization of a result due to Ambühl et al. [1] that was proved in the context of the
WMDS problem for UDGs.

Lemma 6 For each i, j ∈ Z, let OPTij denote the cost of an optimal solution to UDG-FacLocij and
let {Fij , φij} be a solution to UDG-FacLocij such that for some c, cost({Fij , φij}) ≤ c · OPTij. Then
cost(∪ij{Fij , φij}) ≤ 16c · OPT . Here OPT is the cost of an optimal solution to UDG-FacLoc.

Proof: Let {F ∗, φ∗} be an optimal solution to UDG-FacLoc, i.e., cost(F ∗, φ∗) = OPT . For any i, j ∈ Z, let
{F ∗(Sij), φ

∗(Sij)} denote the restriction of {F ∗, φ∗} to square Sij . More precisely, F ∗(Sij) = F ∗ ∩ (Vij ∪
N(Vij)) and φ∗(Sij) is the restriction of φ∗ to the domain Vij . Note that φ∗(Sij) maps every vertex in Vij

to some vertex in F ∗(Sij) and therefore {F ∗(Sij), φ
∗(Sij)} is a feasible solution to UDG-FacLocij , implying

that
OPTij ≤ cost(F ∗(Sij), φ

∗(Sij)). (3)

Furthermore,

∑

i,j

cost(F ∗(Sij), φ
∗(Sij)) ≤ 16 ·

∑

i∈F∗

f(i) +
∑

j∈V

c(j, φ∗(j))

≤ 16 ·





∑

i∈F∗

f(i) +
∑

j∈V

c(j, φ∗(j))





= 16 · OPT.

The first inequality above follows from the fact that a unit disk can intersect at most 16 squares of dimensions
1/

√
2 × 1/

√
2. This implies that a facility in F ∗ may be servicing clients from at most 16 different squares

and therefore may appear at most 16 times in the sum on the left hand side. Finally, we bound the cost of
the solution obtain by simply “unioning” the small square solutions as follows:

cost(∪{Fij , φij}) ≤
∑

i,j

cost(Fij , φij)

≤ c ·
∑

i,j

OPTij (by lemma hypothesis)

≤ c ·
∑

i,j

cost(F ∗(Sij), φ
∗(Sij)) (from (3))

≤ 16c · OPT.

The above lemma implies the following simple distributed algorithm.

9

Step 1. Each node v gathers information (i.e., coordinates of nodes, opening costs of nodes, and connection
costs of edges) about the subgraph induced by its 2-neighborhood.

Step 2. Each node v in Sij then identifies Vij and N(Vij). Recall that Vij ⊆ V is the set of nodes that
belong to square Sij and N(Vij) ⊆ V \ Vij is the set of nodes outside of Vij that have at least one
neighbor in Vij .

Step 3. Each node v locally computes the solution of UDG-FacLocij , thereby determining whether it should
be opened as a facility and if not which neighboring facility it should connect to.

Based on the above description, it is easily verified that the algorithm takes 2 rounds of communication.
Note that the instance of UDG-FacLocij solved in Step 3 is slightly different from UDG-FacLoc, in that only
certain vertices (namely, the vertices in Vij) need to connect to open facilities, whereas every vertex (both in
Vij and in N(Vij)) is a potential facility. This difference is minor and the (6+B+ε)-approximation algorithm
described in the previous section, can be essentially used without any changes, to solve UDG-FacLocij .
Lemma 6 then implies that the distributed algorithm above would yield a 16 · (6 + B + ε)-approximation
algorithm. We can do better by making use of an intermediate result due to Ambühl et al. [1] that presents
a 2-approximation algorithm for the WMDS problem on each square Sij . Using arguments from the previous
section, we can use this to obtain a (B+2)-approximation for UDG-FacLocij and a 16 ·(B+2)-approximation
for UDG-FacLoc.

4 Solving the Problem without Geometry

The distributed algorithm described in the above section depends crucially on the given UDG’s geometric
representation. In this section we sketch a distributed algorithm running in O(log∗ n) rounds that yields an
O(log n)-approximation to UDG-FacLoc, when the input UDG G = (V, E) is given without any associated
geometric information.

Step 1. Compute a maximal independent set (MIS) I of G. Since G is growth bounded this can be done in
O(log∗ n) rounds using the recent algorithm of Schneider and Wattenhofer [23].

Step 2. Assign each vertex v in V \ I to an arbitrary neighbor in I. For each v ∈ I let Sv denote the set
{v}∪{u | u is assigned to v}. Partition each Sv into a constant number of cliques using the algorithm
due to Pemmaraju and Pirwani [22].

Step 3. Let C1, C2, . . . , Ct be the resulting cliques from the above step. For each i, 1 ≤ i ≤ t, define
UDGFacLoci as the subproblem in which vertices in Ci are the clients and these have to be connected
to facilities chosen from Ci ∪ N(Ci), where N(Ci) is the set of all vertices that have a neigbor in Ci.

Step 4. Solve UDG-FacLoci independently and combine the solutions to the subproblems in the simple way
described in the previous subsection.

Two remarks about this algorithm sketch are in order. First, we do not know how to obtain a constant-
factor approximation for UDG-FacLoci because we do not know how to obtain a constant-factor approxima-
tion to WMDS in this non-geometric setting. The best we can do is use a simple greedy algorithm to obtain an
O(log n)-approximation to WMDS. This is what leads to the O(log n) approximation factor for UDG-FacLoci.
Second, the clique-partitioning algorithm of Pemmaraju and Pirwani [22] yields a cluster graph with degree
bounded above by a constant. This means that Lemma 6 holds in the non-geometric setting also (for a
constant that is different than 16) and as a result the O(log n)-approximation for UDG-FacLoci leads to an
O(log n)-approximation for UDG-FacLoc as well.

Thus if we could improve the approximation factor of the WMDS algorithm to a constant, we would get
a constant-factor algorithm for UDG-FacLoc, running in O(log∗ n) rounds. It is worth pointing out that the
usual greedy algorithm can produce a dominating set whose weight is Ω(log n) times the weight of OPT even
for WMDS instances on small squares. More precisely, consider a vertex-weighted UDG G = (V, E) such that
V is partitioned into two sets I and O, where I is the set of vertices that lie inside a 1/

√
2 × 1/

√
2 square

and every vertex in O has at least one neighbor in I. The problem is to find O∗ ⊆ O of minimum total
weight such that O∗ is a dominating set for I, i.e., every vertex in I has a neighbor in O∗. The standard
greedy algorithm for this problem would repeatedly pick from O a vertex v that maximizes the coverage per

10

unit weight, i.e., ratio of the number of as yet uncovered neighbors in I to w(v). Figure 6 shows a simple
instance of this problem for which this greedy algorithm yields a set of vertices whose weight is Ω(log n)
times the weight of OPT .

.

.

.

2
k−1

2
k−2

2
1

2
0

.

.

.

v
k

v
k−1

v

v
1

2

u

w(u) = 2

outside vertices

w(v) = 1

cluster of 2 vertices

i

i

Fig. 6 — In the first step, the greedy algorithm will pick vk over u because vk covers 2k−1 uncovered vertices per unit
weight, whereas u covers 2k−1 − 1

2
uncovered vertices per unit weight. In every subsequent step, a vi will be

picked over u and we get a dominating set of weight k, whereas OPT = 2. Since k = Θ(log n), the lower
bound follows.

5 Future Work

One open question implied by this work is whether we can obtain a constant-factor approximation algorithm
for facility location on more general classes of wireless network models. We believe that a first step towards
solving this problem would be to obtain a constant-factor approximation algorithm for UDG-FacLoc when
the input UDG is given without any geometry. The only obstacle to obtaining such an approximation, using
our techniques, is the lack of a constant-factor approximation to WMDS on UDGs given without geometry.
We intend to focus on this problem in the future.

The distributed algorithm we present runs in O(1) rounds in the LOCAL model, which assumes that
message sizes are unbounded. Our algorithm depends on each node v being able to gather information about
its 2-neighborhood in O(1) rounds. This volume of communication is clearly not possible in O(1) rounds in
the CONGEST model. We would like to extend our distributed algorithm to the CONGEST model.

Finally, we would like to investigate the effect of non-uniform demands and capacities on the complexity
of facility location problems on UDGs.

References

[1] Christoph Ambühl, Thomas Erlebach, Matús Mihalák, and Marc Nunkesser. Constant-factor approximation for
minimum-weight (connected) dominating sets in unit disk graphs. In APPROX-RANDOM, pages 3–14, 2006.

[2] M. L. Balinski. On finding integer solutions to linear programs. In Proceedings of IBM Scientific Computing
Symposium on Combinatorial Problems, pages 225–248, 1966.

[3] Vittorio Bilò, Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanellopoulos. Geometric clustering
to minimize the sum of cluster sizes. In ESA, pages 460–471, 2005.

[4] Xiuzhen Cheng, Xiao Huang, Deying Li, Weili Wu, and Ding-Zhu Du. A polynomial-time approximation scheme
for the minimum-connected dominating set in ad hoc wireless networks. Networks, 42(4):202–208, 2003.

[5] G. Cornuejols, G. Nemhouser, and L. Wolsey. Discrete Location Theory. Wiley, 1990.

[6] Budhaditya Deb and Badri Nath. On the node-scheduling approach to topology control in ad hoc networks. In
MobiHoc ’05: Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing,
pages 14–26, 2005.

[7] Thomas Erlebach and Erik Jan van Leeuwen. Domination in geometric intersection graphs. Lecture Notes in
Computer Science, 4957:747–758, 2008.

11

[8] Christian Frank. Algorithms for Sensor and Ad Hoc Networks. Springer, 2007.

[9] Christian Frank and Kay Römer. Distributed facility location algorithms for flexible configuration of wireless
sensor networks. In Proceedings of the 3rd IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS 2007), pages 124–141, Santa Fe, NM, USA, June 2007.

[10] Joachim Gehweiler, Christiane Lammersen, and Christian Sohler. A distributed o(1)-approximation algorithm
for the uniform facility location problem. In SPAA ’06: Proceedings of the eighteenth annual ACM symposium
on Parallelism in algorithms and architectures, pages 237–243, New York, NY, USA, 2006. ACM.

[11] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan. Energy-efficient communication
protocol for wireless microsensor networks. In HICSS ’00: Proceedings of the 33rd Hawaii International Con-
ference on System Sciences-Volume 8, page 8020, 2000.

[12] Dorit S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical Programming, 22(1):148–162,
1982.

[13] Yaochun Huang, Xiaofeng Gao, Zhao Zhang, and Weili Wu. A better constant-factor approximation for weighted
dominating set in unit disk graph. Journal of Combinatorial Optimization, 2008.

[14] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V. Vazirani. Greedy facility
location algorithms analyzed using dual fitting with factor-revealing lp. J. ACM, 50(6):795–824, 2003.

[15] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and k-median problems
using the primal-dual schema and lagrangian relaxation. J. ACM, 48(2):274–296, 2001.

[16] Jaewon Kang, Yanyong Zhang, and Badri Nath. Analysis of resource increase and decrease algorithm in wireless
sensor networks. In ISCC ’06: Proceedings of the 11th IEEE Symposium on Computers and Communications,
pages 585–590, 2006.

[17] Leon Kaufman, Marc Vanden Eede, and Pierre Hansen. A plant and warehouse location problem. Operational
Research Quarterly, 28(3):547–554, 1977.

[18] Alfred A. Kuehn and Michael J. Hamburger. A heuristic program for locating warehouses. Management Science,
9(4):643–666, 1963.

[19] Jyh-Han Lin and Jeffrey Scott Vitter. e-approximations with minimum packing constraint violation (extended
abstract). In STOC ’92: Proceedings of the twenty-fourth annual ACM symposium on Theory of computing,
pages 771–782, 1992.

[20] Thomas Moscibroda and Roger Wattenhofer. Facility location: distributed approximation. In PODC ’05:
Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed computing, pages 108–
117, 2005.

[21] David Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathe-
matics, 2000.

[22] Sriram Pemmaraju and Imran Pirwani. Good quality virtual realizations of unit ball graphs. In Algorithms -
ESA 2007, pages 311–322, 2007.

[23] Johannes Schneider and Roger Wattenhofer. A Log-Star Distributed Maximal Independent Set Algorithm for
growth-Bounded Graphs. In 27th ACM Symposium on Principles of Distributed Computing (PODC), Toronto,
Canada, August 2008.

[24] David B. Shmoys, Éva Tardos, and Karen Aardal. Approximation algorithms for facility location problems
(extended abstract). In STOC ’97: Proceedings of the twenty-ninth annual ACM symposium on Theory of
computing, pages 265–274, 1997.

[25] John F. Stollsteimer. A working model for plant numbers and locations. Management Science, 45(3):631–645,
1963.

[26] Kunal Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In STOC ’04: Proceedings
of the thirty-sixth annual ACM symposium on Theory of computing, pages 281–290, 2004.

[27] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[28] Peng-Jun Wan, Khaled M. Alzoubi, and Ophir Frieder. Distributed construction of connected dominating set
in wireless ad hoc networks. Mob. Netw. Appl., 9(2):141–149, 2004.

[29] Yu Wang and Xiang-Yang Li. Localized construction of bounded degree and planar spanner for wireless ad hoc
networks. In DIALM-POMC ’03: Proceedings of the 2003 joint workshop on Foundations of mobile computing,
pages 59–68, 2003.

[30] Yu Wang, Weizhao Wang, and Xiang-Yang Li. Distributed low-cost backbone formation for wireless ad hoc
networks. In MobiHoc, pages 2–13, 2005.

[31] Tao Wu and Subir Biswas. Minimizing inter-cluster interference by self-reorganizing mac allocation in sensor
networks. Wireless Networks, 13(5):691–703, 2007.

12

