
3. Representing Graphs

t = Wheel@10D; ShowGraph@t, Background -> YellowD

� Graphics �

Edges

? Edges

Edges@gD gives the list of edges in g. Edges@g,
AllD gives the edges of g along with the graphics options
associated with each edge. Edges@g, EdgeWeightD returns
the list of edges in g along with their edge weights.

Edges@tD
881, 10<, 82, 10<, 83, 10<, 84, 10<, 85, 10<, 86, 10<, 87, 10<, 88, 10<, 89, 10<,81, 2<, 82, 3<, 83, 4<, 84, 5<, 85, 6<, 86, 7<, 87, 8<, 88, 9<, 81, 9<<
Edges@t1 = SetGraphOptions@t, 8881, 9<, 82, 3<, EdgeStyle -> Fat<<D, AllD
8881, 10<<, 882, 10<<, 883, 10<<, 884, 10<<, 885, 10<<, 886, 10<<, 887, 10<<,888, 10<<, 889, 10<<, 881, 2<<, 882, 3<, EdgeStyle ® Fat<, 883, 4<<,884, 5<<, 885, 6<<, 886, 7<<, 887, 8<<, 888, 9<<, 881, 9<, EdgeStyle ® Fat<<
ShowGraph@t1D

� Graphics �

Edges@t2 = SetGraphOptions@t, 8881, 9<, 82, 3<, EdgeStyle -> Fat<<DD
881, 10<, 82, 10<, 83, 10<, 84, 10<, 85, 10<, 86, 10<, 87, 10<, 88, 10<, 89, 10<,81, 2<, 82, 3<, 83, 4<, 84, 5<, 85, 6<, 86, 7<, 87, 8<, 88, 9<, 81, 9<<

2 Chapter3.nb

Edges@t, EdgeWeightD
8881, 10<, 1<, 882, 10<, 1<, 883, 10<, 1<, 884, 10<, 1<, 885, 10<, 1<, 886, 10<, 1<,887, 10<, 1<, 888, 10<, 1<, 889, 10<, 1<, 881, 2<, 1<, 882, 3<, 1<, 883, 4<, 1<,884, 5<, 1<, 885, 6<, 1<, 886, 7<, 1<, 887, 8<, 1<, 888, 9<, 1<, 881, 9<, 1<<
? SetEdgeWeights

SetEdgeWeights@gD assigns random real weights in the range @0, 1D
to edges in g. SetWeights accepts options WeightingFunction
and WeightRange. WeightingFunction can take values Random,
RandomInteger, Euclidean, LNorm@nD for non-negative n, or any
pure function that takes as input two points. WeightRange can
be an integer range or a real range. The default value for
WeightingFunction is Random and the default value for WeightRange
is @0, 1D. SetEdgeWeights@g, eD assigns edge weights to the
edges in the edge list e. The options WeightingFunction and
WeightRange apply. SetEdgeWeights@g, wD assigns the weights in the
weight list w to the edges of g. SetEdgeWeights@g, e, wD assigns
the weights in the weight list w to the edges in edge list e.

k = SetEdgeWeights@t,
WeightingFunction -> RandomInteger, WeightRange -> 810, 20<D

�Graph:<18, 10, Undirected>�

Edges@k, EdgeWeightD
8881, 10<, 14<, 882, 10<, 10<, 883, 10<, 10<, 884, 10<, 12<,885, 10<, 19<, 886, 10<, 13<, 887, 10<, 14<, 888, 10<, 16<,889, 10<, 10<, 881, 2<, 19<, 882, 3<, 18<, 883, 4<, 14<, 884, 5<, 11<,885, 6<, 11<, 886, 7<, 14<, 887, 8<, 16<, 888, 9<, 18<, 881, 9<, 10<<

Vertices

? Vertices

Vertices@gD gives the embedding of graph g, that is, the coordinates of
each vertex in the plane. Vertices@g, AllD gives the embedding of
the graph along with graphics options associated with each vertex.

Chapter3.nb 3

Vertices@tD
880.766044, 0.642788<, 80.173648, 0.984808<, 8-0.5, 0.866025<,8-0.939693, 0.34202<, 8-0.939693, -0.34202<, 8-0.5, -0.866025<,80.173648, -0.984808<, 80.766044, -0.642788<, 81., 0<, 80, 0<<
Vertices@
t3 = SetGraphOptions@t, 882, 5, 9, VertexStyle -> Disc@LargeD<<D, AllD

8880.766044, 0.642788<<, 880.173648, 0.984808<, VertexStyle ® Disc@LargeD<,88-0.5, 0.866025<<, 88-0.939693, 0.34202<<,88-0.939693, -0.34202<, VertexStyle ® Disc@LargeD<,88-0.5, -0.866025<<, 880.173648, -0.984808<<, 880.766044, -0.642788<<,881., 0<, VertexStyle ® Disc@LargeD<, 880, 0<<<
ShowGraph@t3D

� Graphics �

4 Chapter3.nb

Vertices@t4 = SetGraphOptions@t, 882, 5, 9, VertexStyle -> Disc@LargeD<<DD
880.766044, 0.642788<, 80.173648, 0.984808<, 8-0.5, 0.866025<,8-0.939693, 0.34202<, 8-0.939693, -0.34202<, 8-0.5, -0.866025<,80.173648, -0.984808<, 80.766044, -0.642788<, 81., 0<, 80, 0<<
ShowGraph@t4D

� Graphics �

V

? V

V@gD gives the order or number of vertices of the graph g.

V@tD
10

Chapter3.nb 5

V@DeleteVertices@t, 81<DD
9

V@RandomGraph@20, .4DD
20

M

? M

M@gD gives the number of edges in the graph g. M@g, DirectedD is
obsolete because M@gD works for directed as well as undirected graphs.

M@tD
18

M@AddEdges@t, 8881, 2<<<DD
19

NOTES

There are no options for M (unlike for the old version of M, that has a Directed/Undirected option). Multiple edges get
counted separately and self−loops get counted once for each loop.

ChangeVertices

? ChangeVertices

ChangeVertices@g, vD replaces the vertices of graph g with the
vertices in the given list v. v can have the form 88x1, y1<, 8x2,
y2<, ...< or the form 888x1, y1<, gr1<, 88x2, y2<, gr2<, ...<,
where 8x1, y1<, 8x2, y2<, ... are coordinates of points and
gr1, gr2, ... are graphics information associated with vertices.

s = SetGraphOptions@t, 881, VertexColor -> Red, VertexStyle -> Disc@LargeD<<D;

6 Chapter3.nb

ShowGraph@sD

� Graphics �

s = ChangeVertices@t, Vertices@CompleteGraph@5, 5D, AllDD;

Chapter3.nb 7

ShowGraph@sD

� Graphics �

s = ChangeVertices@t, Vertices@CompleteGraph@5, 5DDD;

8 Chapter3.nb

ShowGraph@sD

� Graphics �

NOTES

The above example shows us a new 2−leveled embedding of a wheel. Difficult to recognize that the graph is a wheel.
ChangeVertices is therefore a good function to use to produce new embeddings of graphs.

ChangeEdges

? ChangeEdges

ChangeEdges@g, eD replaces the edges of graph g with the
edges in e. e can have the form 88s1, t1<, 8s2, t2<, ...<
or the form 8 88s1, t1<, gr1<, 88s2, t2<, gr2<, ...<, where8s1, t1<, 8s2, t2<, ... are endpoints of edges and gr1,
gr2, ... are graphics information associated with edges.

s = ChangeEdges@t, Edges@CompleteGraph@10D, AllDD;

Chapter3.nb 9

ShowGraph@sD

� Graphics �

s = ChangeEdges@t, Edges@CompleteGraph@5, 5D, AllDD;

10 Chapter3.nb

ShowGraph@sD

� Graphics �

NOTES

ChangeEdges is another way of producing new embeddings of graphs.

AddEdges

? AddEdges

AddEdges@g, edgeListD gives graph g with the new edges in
edgeList added. edgeList can have the form 8a, b< if we want
to add a single edge 8a, b< or the form 88a, b<, 8c, d<, ...<,
if we want to add edges 8a, b<, 8c, d<, ... or the form8 88a, b<, x<, 88c, d<, y<, ...<, where x and y are graphics
information associated with 8a, b< and 8c, d<, respectively.

s = AddEdges@t, 8881, 3<, EdgeStyle -> Fat, EdgeColor -> Red<<D;

Chapter3.nb 11

ShowGraph@sD

� Graphics �

s = AddEdges@t, 881, 2<, 82, 1<<D;

12 Chapter3.nb

ShowGraph@s, VertexNumber -> On, VertexNumberColor -> BlueD

1

2

3

4

5

6

7

8

910

� Graphics �

Chapter3.nb 13

ShowGraph@AddEdges@t, 81, 3<DD

� Graphics �

NOTES

* An edge can be addded along with any associated graphics information.

* Adding an edge that already exists results in multiple edges.

DeleteEdges

? DeleteEdges

DeleteEdges@g, edgeListD gives graph g minus list of edges edgeList. If
g is undirected then the edges in edgeList are treated as undirected
edges, or otherwise they are treated as directed edges. If there
are multiple edges that qualify, then only one edge is deleted.
DeleteEdges@g, edgeList, AllD will delete all edges that qualify.
If only one edge is to be deleted, then edgeList can have the form8s, t<, or otherwise it has the form 88s1, t1<, 8s2, t2<, ...<.

14 Chapter3.nb

ShowGraph@sD

� Graphics �

Chapter3.nb 15

ShowGraph@DeleteEdges@s, 881, 2<<DD

� Graphics �

16 Chapter3.nb

ShowGraph@DeleteEdges@s, 881, 2<<, AllDD

� Graphics �

NOTES

* There are three edges between 1 and 2 in the graph s and deleting {1,2} deletes only one edge and leaves two other
edges connecting 1 and 2 behind. The outcome is different when ALL is provided as the third argument.

s = SetGraphOptions@t, EdgeDirection -> OnD;

Chapter3.nb 17

ShowGraph@s, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

NOTES

* If the graph is directed then the edges in the given edge list are also treated as directed edges. Below, the directed edge
{1, 2} is deleted from s. Further below, nothing is deleted since {2,1} is not a directed edge in s.

18 Chapter3.nb

ShowGraph@DeleteEdges@s, 881, 2<<D, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

Chapter3.nb 19

ShowGraph@DeleteEdges@s, 882, 1<<D, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

20 Chapter3.nb

ShowGraph@DeleteEdges@s, 81, 2<DD

� Graphics �

TO DO

* DeleteEdges should also permit the user to use the function by simply typing DeleteEdges[g, {1,2}] if the user is deleting
only one edge.

TIMING DISCUSSION

With and without the ALL argument, deleting d edges from an m−edge graph takes Θ(md) time. In the following expri-
ment, m varies from 110 to 350 in steps of 10 and d is m/2. The expectation is that the running time will show a quadratic
increase in m. The plot below does not show this conclusively. The Select−MemberQ combination seems to work quite
well and keep the constant factors very small. This is shown by using Fit below to obtain a quadratic that fits the data. The
coefficient of x2 is rather small.

? ExactRandomGraph

ExactRandomGraph@n, eD constructs a random
labeled graph of exactly e edges and n vertices.

gt = Table@ ExactRandomGraph@50, 100 + 10 iD, 8i, 25<D;
et = Table@

Edges@gt@@iDDD @@ RandomKSubset@ Range@ 100 + 10 iD, 50 + 5 iD DD, 8i, 25<D;

Chapter3.nb 21

rt = Table@Timing@DeleteEdges@gt@@iDD, et@@iDDD;D@@1DD, 8i, 25<D
80. Second, 0.015 Second, 0.016 Second, 0.016 Second, 0.015 Second,
0.016 Second, 0.031 Second, 0.016 Second, 0.031 Second, 0.031 Second,
0.016 Second, 0.047 Second, 0.031 Second, 0.031 Second, 0.047 Second,
0.047 Second, 0.063 Second, 0.046 Second, 0.063 Second, 0.047 Second,
0.062 Second, 0.063 Second, 0.078 Second, 0.078 Second, 0.078 Second<

ListPlot@Map@First, rtD, PlotJoined -> TrueD

5 10 15 20 25

0.02

0.04

0.06

� Graphics �

Fit@ Map@First, rtD, 81, x, x^2<, xD
0.00672435 + 0.00168886 x + 0.0000483278 x2

AddVertices

? AddVertices

AddVertices@g, nD adds n disconnected vertices to graph g. AddVertices@
g, vListD adds vertices in vList to g. vList contains embedding
and graphics information and can have the form 8x, y< or 88x1, y1<,8x2, y2<...< or the form 888x1, y1<, g1<, 88x2, y2<, g2<,...<,
where 8x, y<, 8x1, y1<, and 8x2, y2< are point coordinates and
g1 and g2 are graphics information associated with vertices.

22 Chapter3.nb

ShowGraph@AddVertices@t, 8.2, .4<DD

� Graphics �

Chapter3.nb 23

ShowGraph@AddVertices@t, 888.2, .4<<<DD

� Graphics �

24 Chapter3.nb

ShowGraph@AddVertices@t,888.2, .4<, VertexColor ® Red<, 88.3, .4<, VertexColor ® Green<<DD

� Graphics �

Chapter3.nb 25

ShowGraph@AddVertices@t, 1DD

� Graphics �

26 Chapter3.nb

ShowGraph@AddVertices@t, 10DD

� Graphics �

NOTES

* Below, 10 vertices, whose embedding is derived from the embedding of K_{5, 5} are added to t. In this particular
example, one of the newly added vertices coincides with a vertex in t and hence seems to be missing.

Chapter3.nb 27

ShowGraph@AddVertices@t, Vertices@CompleteGraph@5, 5D, AllDDD

� Graphics �

DeleteVertices

? DeleteVertices

DeleteVertices@g, vListD deletes vertices in vList from graph g. vList
has the form 8i, j, ...<, where i, j, ... are vertex numbers.

s = DeleteVertices@t, 81, 3, 10<D;
p1 = ShowGraph@t, VertexNumber -> On, GraphicsD;
p2 = ShowGraph@s, VertexNumber -> On, GraphicsD;

28 Chapter3.nb

Show@GraphicsArray@8p1, p2<D, Background -> LightBlue, ImageSize -> 500D

1

2
3

4

5

6
7

8

910

1

2

3

4
5

6

7

� GraphicsArray �

Chapter3.nb 29

ShowGraph@DeleteVertices@DeleteVertices@DeleteVertices@t, 81<D, 83<D, 810<D,
VertexNumber -> OnD

1

2

3

4

5

6

78

� Graphics �

NOTES

* Note how deleting vertices 1, 3, and 10 successively gives a different graph as compared to the one obtained by deleting
the set of vertices {1, 3, 10}. This because vertices are renumbered after each deletion.

Spectrum

? Spectrum

Spectrum@gD gives the eigenvalues of graph g.

30 Chapter3.nb

Spectrum@tD
9-1, -1, 1 - �!!!!!!10 , 1 + �!!!!!!10 ,

1
��I 1����

2
I-1 + ä �!!!!3 MM1�3 + J 1

����
2

I-1 + ä �!!!!3 MN1�3
,

1
��I 1����

2
I-1 + ä �!!!!3 MM1�3 + J 1

����
2

I-1 + ä �!!!!3 MN1�3
,

-
1 - ä �!!!!3

���
22�3 I-1 + ä �!!!!3 M1�3 -

1
����
2

J 1
����
2

I-1 + ä �!!!!3 MN1�3 I1 + ä �!!!!3 M,
-

1 - ä �!!!!3
���
22�3 I-1 + ä �!!!!3 M1�3 -

1
����
2

J 1
����
2

I-1 + ä �!!!!3 MN1�3 I1 + ä �!!!!3 M,
-
1
����
2

I1 - ä �!!!!3 M J 1
����
2

I-1 + ä �!!!!3 MN1�3
-

1 + ä �!!!!3
���
22�3 I-1 + ä �!!!!3 M1�3 ,

-
1
����
2

I1 - ä �!!!!3 M J 1
����
2

I-1 + ä �!!!!3 MN1�3
-

1 + ä �!!!!3
���
22�3 I-1 + ä �!!!!3 M1�3 =

Spectrum@GraphUnion@Cycle@4D, CompleteGraph@1D DD
8-2, 0, 0, 0, 2<
Spectrum@Star@5DD
8-2, 0, 0, 0, 2<
Spectrum@CompleteGraph@3, 4DD
90, 0, 0, 0, 0, -2 �!!!!3 , 2 �!!!!3 =

ToAdjacencyLists

Chapter3.nb 31

? ToAdjacencyLists

ToAdjacencyLists@gD constructs an adjacency list representation for
graph g. It allows an option called Type that takes on values All or
Simple. Type -> All is the default setting of the option, and this
permits self-loops and multiple edges to be reported in the adjacency
lists. Type -> Simple deletes self-loops and multiple edges from
the constructed adjacency lists. ToAdjacencyLists@g, EdgeWeightD
returns an adjacency list reprsentation along with edge weights.

t = AddEdges@t, 8881, 1<<<D;
t = AddEdges@t, 8881, 9<<<D;
t = AddEdges@t, 8882, 3<<<D;
ShowGraph@t, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

32 Chapter3.nb

l0 = ToAdjacencyLists@tD
881, 2, 9, 9, 10<, 81, 3, 3, 10<, 82, 2, 4, 10<, 83, 5, 10<, 84, 6, 10<,85, 7, 10<, 86, 8, 10<, 87, 9, 10<, 81, 1, 8, 10<, 81, 2, 3, 4, 5, 6, 7, 8, 9<<
ToAdjacencyLists@t, EdgeWeightD
8881, 1<, 82, 1<, 89, 1<, 89, 1<, 810, 1<<, 881, 1<, 83, 1<, 83, 1<, 810, 1<<,882, 1<, 82, 1<, 84, 1<, 810, 1<<, 883, 1<, 85, 1<, 810, 1<<,884, 1<, 86, 1<, 810, 1<<, 885, 1<, 87, 1<, 810, 1<<, 886, 1<, 88, 1<, 810, 1<<,887, 1<, 89, 1<, 810, 1<<, 881, 1<, 81, 1<, 88, 1<, 810, 1<<,881, 1<, 82, 1<, 83, 1<, 84, 1<, 85, 1<, 86, 1<, 87, 1<, 88, 1<, 89, 1<<<

NOTES

* t is a graph that has a self−loop {1, 1} and multiple edges: two edges between 2 and 3 and two between 1 and 9.Note that
in the above example the self−loop {1, 1} shows up as the 1 in 1’s adjacency list. The multiple edges {2, 3} show up with
two 3’s in 2’s adjacency list and two 2’s in 3’s adjacency list and the multiple edges {1, 9} show up similarly.

* ToAdjacencyLists[t, EdgeWeight] is a useful analogue to ToAdjacencyLists when we are dealing with edge−weighted
graphs and want the weights organized in a convenient fashion.

ToAdjacencyLists@SetEdgeWeights@t,
WeightingFunction -> Random, WeightRange -> 82, 3<D, EdgeWeightD

8881, 2.38054<, 82, 2.73307<, 89, 2.21706<, 89, 2.21706<, 810, 2.53599<<,881, 2.73307<, 83, 2.9688<, 83, 2.9688<, 810, 2.85859<<,882, 2.9688<, 82, 2.9688<, 84, 2.70583<, 810, 2.45127<<,883, 2.70583<, 85, 2.29361<, 810, 2.84804<<,884, 2.29361<, 86, 2.60012<, 810, 2.77135<<,885, 2.60012<, 87, 2.30085<, 810, 2.48463<<,886, 2.30085<, 88, 2.58848<, 810, 2.38553<<,887, 2.58848<, 89, 2.13815<, 810, 2.01952<<,881, 2.21706<, 81, 2.21706<, 88, 2.13815<, 810, 2.32987<<,881, 2.53599<, 82, 2.85859<, 83, 2.45127<, 84, 2.84804<,85, 2.77135<, 86, 2.48463<, 87, 2.38553<, 88, 2.01952<, 89, 2.32987<<<
s = SetGraphOptions@t, EdgeDirection -> OnD;

Chapter3.nb 33

ShowGraph@s, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

ToAdjacencyLists@sD
881, 2, 9, 9, 10<, 83, 3, 10<, 84, 10<,85, 10<, 86, 10<, 87, 10<, 88, 10<, 89, 10<, 810<, 8<<
l3 = ToAdjacencyLists@t, Type -> SimpleD
882, 9, 10<, 81, 3, 10<, 82, 4, 10<, 83, 5, 10<, 84, 6, 10<, 85, 7, 10<,86, 8, 10<, 87, 9, 10<, 81, 8, 10<, 81, 2, 3, 4, 5, 6, 7, 8, 9<<

FromAdjacencyLists

34 Chapter3.nb

? FromAdjacencyLists

FromAdjacencyLists@lD constructs an edge list representation for
a graph from the given adjacency lists l, using a circular
embedding. FromAdjacencyLists@l, vD uses v as the embedding
for the resulting graph. An option called Type that takes on
the values Directed or Undirected, can be used to affect the
type of graph produced. The default value of Type is Undirected.

ShowGraph@s = FromAdjacencyLists@l0, Vertices@tDDD

� Graphics �

Edges@sD
881, 1<, 81, 2<, 81, 9<, 81, 9<, 81, 10<, 82, 3<, 82, 3<,82, 10<, 83, 4<, 83, 10<, 84, 5<, 84, 10<, 85, 6<, 85, 10<,86, 7<, 86, 10<, 87, 8<, 87, 10<, 88, 9<, 88, 10<, 89, 10<<

NOTES

* Note that in going from edge list representation to adjacency list and back, multiple edges and self−loops are preserved
because these can be inferred from the adjacency list.

Chapter3.nb 35

ShowGraph@FromAdjacencyLists@l0DD

� Graphics �

36 Chapter3.nb

ShowGraph@ FromAdjacencyLists@ ToAdjacencyLists@Star@10DD, Type ® DirectedDD

� Graphics �

ToOrderedPairs

? ToOrderedPairs

ToOrderedPairs@gD constructs a list of ordered pairs representing the
edges of the graph g. If g is undirected each edge is interpreted
as two ordered pairs. An option called Type that takes on values
Simple or All can be used to affect the constructed representation.
Type -> Simple forces the removal of multiple edges and self-
loops. Type -> All keeps all information and is the default option.

NOTES

* In going to ordered pairs, we view every undirected edge as a pair of directed edges. The option values for Type have
obvious meanings. Note that in the example below since there are two undirected edges {1, 9}, these show up as two pairs
{1, 9} and two pairs {9, 1}. The semantics of going from a directed graph to ordered pairs are obvious.

Chapter3.nb 37

l0 = ToOrderedPairs@tD
8810, 1<, 810, 2<, 810, 3<, 810, 4<, 810, 5<, 810, 6<, 810, 7<,810, 8<, 810, 9<, 82, 1<, 83, 2<, 84, 3<, 85, 4<, 86, 5<, 87, 6<, 88, 7<,89, 8<, 89, 1<, 89, 1<, 83, 2<, 81, 10<, 82, 10<, 83, 10<, 84, 10<,85, 10<, 86, 10<, 87, 10<, 88, 10<, 89, 10<, 81, 2<, 82, 3<, 83, 4<,84, 5<, 85, 6<, 86, 7<, 87, 8<, 88, 9<, 81, 9<, 81, 1<, 81, 9<, 82, 3<<
l1 = ToOrderedPairs@t, Type ® SimpleD
881, 2<, 81, 9<, 81, 10<, 82, 1<, 82, 3<, 82, 10<, 83, 2<, 83, 4<, 83, 10<, 84, 3<,84, 5<, 84, 10<, 85, 4<, 85, 6<, 85, 10<, 86, 5<, 86, 7<, 86, 10<, 87, 6<,87, 8<, 87, 10<, 88, 7<, 88, 9<, 88, 10<, 89, 1<, 89, 8<, 89, 10<, 810, 1<,810, 2<, 810, 3<, 810, 4<, 810, 5<, 810, 6<, 810, 7<, 810, 8<, 810, 9<<
s = SetGraphOptions@t, EdgeDirection ® OnD;
ToOrderedPairs@ s D
881, 10<, 82, 10<, 83, 10<, 84, 10<, 85, 10<, 86, 10<,87, 10<, 88, 10<, 89, 10<, 81, 2<, 82, 3<, 83, 4<, 84, 5<,85, 6<, 86, 7<, 87, 8<, 88, 9<, 81, 9<, 81, 1<, 81, 9<, 82, 3<<

FromOrderedPairs

? FromOrderedPairs

FromOrderedPairs@lD constructs an edge list representation from a list
of ordered pairs l, using a circular embedding. FromOrderedPairs@l,
vD uses v as the embedding for the resulting graph. The option Type
that takes on values Undirected or Directed can be used to affect
the kind of graph produced. The default value of Type is Directed.
Type -> Undirected results in the underlying undirected graph.

NOTES

* The semantics of going from ordered pairs to a directed graph are obvious. In going from ordered pairs to an undirected
graph, we get the underlying undirected graph. The Type −> Directed option is the default as well.

s = FromOrderedPairs@l0D;

38 Chapter3.nb

ShowGraph@sD

� Graphics �

s = FromOrderedPairs@l0, Type -> UndirectedD;
l0

8810, 1<, 810, 2<, 810, 3<, 810, 4<, 810, 5<, 810, 6<, 810, 7<,810, 8<, 810, 9<, 82, 1<, 83, 2<, 84, 3<, 85, 4<, 86, 5<, 87, 6<, 88, 7<,89, 8<, 89, 1<, 89, 1<, 83, 2<, 81, 10<, 82, 10<, 83, 10<, 84, 10<,85, 10<, 86, 10<, 87, 10<, 88, 10<, 89, 10<, 81, 2<, 82, 3<, 83, 4<,84, 5<, 85, 6<, 86, 7<, 87, 8<, 88, 9<, 81, 9<, 81, 1<, 81, 9<, 82, 3<<

Chapter3.nb 39

ShowGraph@sD

� Graphics �

40 Chapter3.nb

ShowGraph@FromOrderedPairs@l0, Vertices@CompleteGraph@5, 5DDDD

� Graphics �

BUG?

Why is the self−loop an ellipse? Somehow the aspect ratio became something other than 1 when the embedding is
changed?

ToUnorderedPairs

? ToUnorderedPairs

ToUnorderedPairs@gD constructs a list of unordered pairs representing
the edges of graph g. Each edge, directed or undirected, results in a
pair in which the smaller vertex appears first. An option called Type
that takes on values All or Simple can be used, and All is the default
value. Type -> Simple ignores multiple edges and self-loops in g.

t

�Graph:<21, 10, Undirected>�

Chapter3.nb 41

ToUnorderedPairs@tD
881, 10<, 82, 10<, 83, 10<, 84, 10<, 85, 10<, 86, 10<,87, 10<, 88, 10<, 89, 10<, 81, 2<, 82, 3<, 83, 4<, 84, 5<,85, 6<, 86, 7<, 87, 8<, 88, 9<, 81, 9<, 81, 1<, 81, 9<, 82, 3<<
ToUnorderedPairs@t, Type -> NoSelfLoopsD
881, 2<, 81, 9<, 81, 10<, 82, 3<, 82, 10<, 83, 4<, 83, 10<, 84, 5<, 84, 10<,85, 6<, 85, 10<, 86, 7<, 86, 10<, 87, 8<, 87, 10<, 88, 9<, 88, 10<, 89, 10<<
ToUnorderedPairs@t, Type -> NoMultipleEdgesD
881, 2<, 81, 9<, 81, 10<, 82, 3<, 82, 10<, 83, 4<, 83, 10<, 84, 5<, 84, 10<,85, 6<, 85, 10<, 86, 7<, 86, 10<, 87, 8<, 87, 10<, 88, 9<, 88, 10<, 89, 10<<
ToUnorderedPairs@t, Type -> SimpleD
881, 2<, 81, 9<, 81, 10<, 82, 3<, 82, 10<, 83, 4<, 83, 10<, 84, 5<, 84, 10<,85, 6<, 85, 10<, 86, 7<, 86, 10<, 87, 8<, 87, 10<, 88, 9<, 88, 10<, 89, 10<<
s = SetGraphOptions@t, EdgeDirection -> OnD;
ToUnorderedPairs@ s D
881, 10<, 82, 10<, 83, 10<, 84, 10<, 85, 10<, 86, 10<,87, 10<, 88, 10<, 89, 10<, 81, 2<, 82, 3<, 83, 4<, 84, 5<,85, 6<, 86, 7<, 87, 8<, 88, 9<, 81, 9<, 81, 1<, 81, 9<, 82, 3<<

NOTES

* For both undirected and directed graphs in going to unordered pairs, the edges just get reported as they are.

* It is unclear if these functions to go back and forth between a graph and ordered/unordered pairs are needed any more,
since the representation is essentially unordered/ordered pairs. I will check how often I use these functions; I seem to just
use Edges[...] to get the edges of the graph.

FromUnorderedPairs

42 Chapter3.nb

? FromUnorderedPairs

FromUnorderedPairs@lD constructs an edge list representation
from a list of unordered pairs l, using a circular embedding.
FromUnorderedPairs@l, vD uses v as the embedding for the
resulting graph. The option Type that takes on values Undirected
or Directed can be used to affect the kind of graph produced.

NOTES

* In going back from unordered pairs matters are straightforward since unordered pairs cannot be interpreted in different
ways. The option Type −> Directed views every unordered pair as two directed edges.

l0 = ToUnorderedPairs@tD
881, 10<, 82, 10<, 83, 10<, 84, 10<, 85, 10<, 86, 10<,87, 10<, 88, 10<, 89, 10<, 81, 2<, 82, 3<, 83, 4<, 84, 5<,85, 6<, 86, 7<, 87, 8<, 88, 9<, 81, 9<, 81, 1<, 81, 9<, 82, 3<<
ShowGraph@FromUnorderedPairs@l0DD

� Graphics �

Chapter3.nb 43

ShowGraph@FromUnorderedPairs@l0, Type -> DirectedDD

� Graphics �

ToAdjacencyMatrix

? ToAdjacencyMatrix

ToAdjacencyMatrix@gD constructs an adjacency matrix representation
for graph g. An option Type that takes on values All or Simple
can be used to affect the graph constructed. Type -> All is the
default, and Type -> Simple ignores any self-loops g may have.
ToAdjacencyMatrix@g, EdgeWeightD returns edge weights as entries
of the adjacency matrix with Infinity representing missing edges.

NOTES

* As things stand an adjacency matrix is assumed to be binary and hence cannot represent multiple edges, though it can
represent self−loops. Should I change this to make an adjacency matrix be a non−negative integer matrix?

44 Chapter3.nb

ToAdjacencyMatrix@tD �� MatrixForm

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 1
0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 1 1
1 0 0 0 0 0 0 1 0 1
1 1 1 1 1 1 1 1 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
ToAdjacencyMatrix@t, Type ® SimpleD �� MatrixForm

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 1 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 1
0 0 1 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 1
0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 1 1
1 0 0 0 0 0 0 1 0 1
1 1 1 1 1 1 1 1 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
k = SetEdgeWeights@RandomGraph@10, .3D, WeightingFunction -> EuclideanD;
ToAdjacencyMatrix@k, EdgeWeightD �� TableForm

¥ ¥ 1.17557 ¥ 1.90211 ¥
¥ ¥ ¥ ¥ 1.61803 1.90211
1.17557 ¥ ¥ 0.618034 ¥ ¥
¥ ¥ 0.618034 ¥ ¥ ¥
1.90211 1.61803 ¥ ¥ ¥ ¥
¥ 1.90211 ¥ ¥ ¥ ¥
1.90211 2. ¥ ¥ 1.17557 ¥
1.61803 ¥ ¥ ¥ 1.61803 ¥
1.17557 ¥ ¥ ¥ ¥ 1.61803
¥ 1.17557 ¥ 1.90211 ¥ ¥

g = GraphUnion@ CompleteGraph@2D, CompleteGraph@2D, CompleteGraph@2DD;

Chapter3.nb 45

ToAdjacencyMatrix@g, EdgeWeightD
88¥, 1, ¥, ¥, ¥, ¥<, 81, ¥, ¥, ¥, ¥, ¥<, 8¥, ¥, ¥, 1, ¥, ¥<,8¥, ¥, 1, ¥, ¥, ¥<, 8¥, ¥, ¥, ¥, ¥, 1<, 8¥, ¥, ¥, ¥, 1, ¥<<
ToAdjacencyMatrix@gD �� MatrixForm

i
k
jjjjjjjjjjjjjjjjjjjj
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

y
{
zzzzzzzzzzzzzzzzzzzz

FromAdjacencyMatrix

? FromAdjacencyMatrix

FromAdjacencyMatrix@mD constructs an edge list representation
for a graph with adjacency matrix m, using a circular
embedding. FromAdjacencyMatrix@m, vD uses v as the embedding
for the resulting graph. An option Type that takes on the
values Directed or Undirected can be used to affect the type
of graph produced. The default value of Type is Undirected.

tg = FromAdjacencyMatrix@ToAdjacencyMatrix@tDD
�Graph:<19, 10, Undirected>�

46 Chapter3.nb

ShowGraph@tgD

� Graphics �

PseudographQ

? PseudographQ

PseudographQ@gD yields True if graph
g is a pseudograph, meaning it contains self-loops.

PseudographQ@tD
True

PseudographQ@DeleteEdges@t, 881, 1<<DD
False

UnweightedQ

Chapter3.nb 47

? UnweightedQ

UnweightedQ@gD yields True if all edge weights are 1 and False otherwise.

UnweightedQ@tD
True

UnweightedQ@ SetEdgeWeights@t, WeightingFunction ® RandomDD
False

SimpleQ

? SimpleQ

SimpleQ@gD yields True if g is a simple graph,
meaning it has no multiple edges and contains no self-loops.

SimpleQ@tD
False

s = RemoveSelfLoops@tD; SimpleQ@sD
False

s = RemoveMultipleEdges@sD; SimpleQ@sD
True

RemoveSelfLoops

48 Chapter3.nb

? RemoveSelfLoops

RemoveSelfLoops@gD returns the
graph obtained by deleting self-loops in g.

s = AddEdges@t, 8882, 2<<<D;
PseudographQ@sD
True

PseudographQ@RemoveSelfLoops@sDD
False

RemoveMultipleEdges

? RemoveMultipleEdges

RemoveMultipleEdges@gD returns the
graph obtained by deleting multiple edges from g.

s = SetGraphOptions@Wheel@10D,8881, 10<, 82, 10<, EdgeStyle -> Fat, EdgeColor -> Green<<D;

Chapter3.nb 49

ShowGraph@ s D

� Graphics �

s = AddEdges@s, 8881, 10<<, 881, 10<<, 882, 10<<, 883, 4<<<D;

50 Chapter3.nb

ShowGraph@ s D

� Graphics �

M@sD
22

ss = RemoveMultipleEdges@sD;
M@ssD
18

Chapter3.nb 51

ShowGraph@ssD

� Graphics �

NOTES

* Suppose there are three edges {a, b} in a graph. RemoveMultipleEdges removes two copies of {a, b}. The choice of
which two to remove is arbitrary and the user cannot depend on which two edges the function removes. This is especially
so because no assumption can be made about the order in which edges are listed in the edge−list representation.

 EmptyQ

? EmptyQ

EmptyQ@gD yields True if graph g contains no edges.

EmptyQ@DeleteEdges@CompleteGraph@2D, 881, 2<<DD
True

EmptyQ@tD
False

52 Chapter3.nb

CompleteQ

? CompleteQ

CompleteQ@gD yields True if graph g is complete. This means
that between any pair of vertices there is an undirected
edge or two directed edges going in opposite directions.

CompleteQ@tD
False

CompleteQ@CompleteGraph@10DD
True

CompleteQ@s = DeleteEdges@CompleteGraph@3D, 881, 2<<DD
False

s = AddEdges@EmptyGraph@3D,8881, 2<<, 881, 3<<, 882, 3<<, 882, 1<<, 883, 1<<, 883, 2<<<D;
CompleteQ@sD
False

s = SetGraphOptions@s, EdgeDirection -> OnD;

Chapter3.nb 53

ShowGraph@sD

� Graphics �

CompleteQ@sD
False

s = AddEdges@SetGraphOptions@EmptyGraph@3D, EdgeDirection ® OnD,8881, 2<<, 881, 3<<, 882, 3<<, 882, 1<<, 883, 1<<, 883, 2<<<D;

54 Chapter3.nb

ShowGraph@sD

� Graphics �

CompleteQ@sD
True

MultipleEdgesQ

? MultipleEdgesQ

MultipleEdgesQ@gD yields True if g has multiple
edges between pairs of vertices. It yields False otherwise.

Sort@Edges@tDD
881, 1<, 81, 2<, 81, 9<, 81, 9<, 81, 10<, 82, 3<, 82, 3<,82, 10<, 83, 4<, 83, 10<, 84, 5<, 84, 10<, 85, 6<, 85, 10<,86, 7<, 86, 10<, 87, 8<, 87, 10<, 88, 9<, 88, 10<, 89, 10<<

Chapter3.nb 55

MultipleEdgesQ@tD
True

MultipleEdgesQ@DeleteEdges@t, 882, 3<, 81, 9<<DD
False

s = AddEdges@t, 8882, 3<<<D; MultipleEdgesQ@ DeleteEdges@s, 882, 3<, 81, 9<<DD
True

MultipleEdgesQ@ DeleteEdges@s, 882, 3<, 81, 9<<, AllDD
False

 InduceSubgraph

? InduceSubgraph

InduceSubgraph@g, sD constructs the
subgraph of graph g induced by the list of vertices s.

p1 = ShowGraph@t, Background -> HotPink,
VertexNumber -> Text@80.02, 0.02<, TextStyle -> 8FontSize -> 12<D, GraphicsD;

p2 = ShowGraph@InduceSubgraph@t, 81, 9, 8, 10<D, Background -> HotPink,
VertexNumber -> Text@80.02, 0.02<, TextStyle -> 8FontSize -> 12<D, GraphicsD

� Graphics �

56 Chapter3.nb

Show@ GraphicsArray@8 p1, p2 <D, Background -> Yellow, ImageSize -> 600D

1

2
3

4

5

6
7

8

910

1

2

34

� GraphicsArray �

Chapter3.nb 57

ShowGraph@InduceSubgraph@t, 81, 9, 8, 10, 5<DD

� Graphics �

58 Chapter3.nb

ShowGraph@InduceSubgraph@t, 81, 9, 8, 10, 5, 4, 6<DD

� Graphics �

Chapter3.nb 59

ShowGraph@InduceSubgraph@t, 81, 2, 4, 3, 5, 6, 7, 8, 9<DD

� Graphics �

NOTES

* Note that the list of vertices need be specified in order and may contain duplicates.

* Below I compare the times of InduceSubgraph in the old and the new versions. It is hard to beat the old implementation
because InduceSubgraph is so naturally and simply expressed as simple matrix operations on the adjacency matrix.

g1 = DiscreteMath‘OldCombinatorica‘GridGraph@30, 30D; g2 = GridGraph@30, 30D;
s = RandomSubset@Range@900DD;
8Timing@DiscreteMath‘OldCombinatorica‘InduceSubgraph@g1, sD;D,
Timing@InduceSubgraph@g2, sD;D<

880.156 Second, Null<, 80.234 Second, Null<<

60 Chapter3.nb

ShowGraph@InduceSubgraph@GridGraph@50, 50D, RandomSubset@Range@2500DDD,
VertexStyle -> Disc@0DD

� Graphics �

NOTES

* One of the CUP referees had complained that InduceSubgraph does not preserve original embedding for the subgraph.
This is not quite true as the following examples show. However, InduceSubgraph is clever in the sense that the subset of
vertices is also viewed as a permutation and the vertex embedding is permuted accordingly. While this is a natural conse-
quence of the implementation of InduceSubgraph, I agree with the referee that viewing subsets as permutations also in this
context is a bit of overload.

* So I have separated the two tasks into two functions: InduceSubgraph and PermuteSubgraph. InduceSubgraph simply
calls PermuteSubgraph with a sorted subset. As a consequence, instead of InduceSubgraph, we use PermuteSubgraph in
functions related to graph isomorphism. PermuteSubgraph has the advantage of providing new embeddings as a result of
permuting the vertices, something that InduceSubgraph did not do.

r = RandomSubset@Range@100DD;
rp = Permute@r, RandomPermutation@Length@rDDD;

Chapter3.nb 61

DiscreteMath‘OldCombinatorica‘ShowGraph@
DiscreteMath‘OldCombinatorica‘InduceSubgraph@
DiscreteMath‘OldCombinatorica‘GridGraph@10, 10D, rDD

� Graphics �

62 Chapter3.nb

ShowGraph@InduceSubgraph@GridGraph@10, 10D, rpDD

� Graphics �

PermuteSubgraph

? PermuteSubgraph

PermuteSubgraph@g, pD permutes the vertices
of a subgraph of g induced by p according to p.

NOTES

* In the example below, 1 −> 2, 2 −> 10, and 10−> 1 with everything else staying in place.

Chapter3.nb 63

ShowGraph@t, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

64 Chapter3.nb

ShowGraph@PermuteSubgraph@t, 82, 10, 3, 4, 5, 6, 7, 8, 9, 1<D,
VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

Chapter3.nb 65

ShowGraph@PermuteSubgraph@t, 82, 10, 3, 4, 5, 9, 1<DD

� Graphics �

Length@rpD
48

66 Chapter3.nb

ShowGraph@PermuteSubgraph@GridGraph@10, 10D, rpDD

� Graphics �

Chapter3.nb 67

ShowGraph@ PermuteSubgraph@ GridGraph@4, 4D, RandomPermutation@16D D D

� Graphics �

NOTES

* This is another way to get new and possibly interesting embeddings of graphs.

* Note how this differs from InduceSubgraph.

Contract

? Contract

Contract@g, 8x, y<D gives the graph resulting
from contracting the pair of vertices 8x, y< of graph g.

NOTES

* In Steve Skiena’s description of Contract in the book, it talks about contracting an edge. I don’t see why contract should
not be defined for ANY pair of vertices. Also, when a pair of vertices that have an edge connecting them is contracted, the
edge becomes a self−loop. This is the definition of contract in West’s graph theory book.

68 Chapter3.nb

ShowGraph@s = Contract@t, 85, 6<D, VertexNumber -> OnD

1

2

3

4

5

6

78

9

� Graphics �

NOTES

* Note the self−loops in s. When 5 and 6 were contracted into vertex 9 we got a self−loop {9. 9}. Also note the multiple
edges {9, 8} − since both 5 and 6 have edges to 8, we get the multiple edges {9, 8}.

Chapter3.nb 69

ShowGraph@s = Contract@s, 85, 8<D, VertexNumber -> OnD

1

2

3

4

5

6

7

8

� Graphics �

 GraphComplement

? GraphComplement

GraphComplement@gD gives the complement of graph g.

s = Graph@ 8<, 8<D; GraphComplement@sD
�Graph:<0, 0, Undirected>�

70 Chapter3.nb

ShowGraph@GraphComplement@tDD

� Graphics �

p1 = ShowGraph@s = SetGraphOptions@t, EdgeDirection -> OnD, GraphicsD;
p2 = ShowGraph@GraphComplement@sD, GraphicsD;

Chapter3.nb 71

Show@ GraphicsArray@8p1, p2<D, ImageSize -> 500D

� GraphicsArray �

NOTES

* As can be seen from the above examples, GraphComplement works as expected for undirected as well as for directed
graphs.

72 Chapter3.nb

ShowGraph@GraphComplement@CompleteGraph@10, Type -> DirectedDDD

� Graphics �

Chapter3.nb 73

ShowGraph@s = GraphComplement@ GridGraph@4, 4DD, VertexNumber -> OnD

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

� Graphics �

MakeUndirected

? MakeUndirected

MakeUndirected@gD gives the underlying
undirected graph of the given directed graph g.

s = MakeUndirected@tD
�Graph:<21, 10, Undirected>�

74 Chapter3.nb

ShowGraph@sD

� Graphics �

s = SetGraphOptions@CompleteGraph@3D, EdgeDirection -> OnD;

Chapter3.nb 75

ShowGraph@s, ImageSize -> 200D

� Graphics �

s = AddEdges@s, 8882, 1<<<D;
ShowGraph@s, ImageSize -> 200D

� Graphics �

76 Chapter3.nb

ShowGraph@MakeUndirected@sDD

� Graphics �

SetGraphOptions@s, EdgeDirection -> OffD
�Graph:<4, 3, Undirected>�

NOTES

* Note that MakeUndirected takes two directed edges going in opposite directions and converts them into two undirected
edges. Also note the difference between MakeUndirected and simply setting the EdgeDirection Off. MakeUndirected also
makes sure that the edges go from lower numbered vertices to higher numbered vertices. In other words, it is a bad idea to
turn edge−directions off by using SetGraphOptions[...].

UndirectedQ

? UndirectedQ

UndirectedQ@gD yields True if graph g is undirected.

Chapter3.nb 77

UndirectedQ@tD
True

UndirectedQ@s = SetGraphOptions@t, EdgeDirection -> OnDD
False

UndirectedQ@MakeUndirected@s = SetGraphOptions@t, EdgeDirection -> OnDDD
True

MakeSimple

? MakeSimple

MakeSimple@gD gives the undirected graph, free
of multiple edges and self-loops derived from graph g.

tt = MakeSimple@tD;
M@ttD
18

SimpleQ@ttD
True

78 Chapter3.nb

ShowGraph@ tt D

� Graphics �

DepthFirstTraversal

? DepthFirstTraversal

DepthFirstTraversal@g, vD performs a depth-first traversal of graph
g starting from vertex v, and gives a list of vertices in the
order in which they were encountered. DepthFirstTraversal@g, v,
EdgeD returns the edges of the graph that are traversed by the
depth-first traversal in the order in which they are traversed.

TO DO

* DFS should be made more powerful and flexible − it should in addition return a partition of the edges into tree edges,
back edges, forward edges, and cross edges. This should be done through various options to DFS.

s = DeleteEdges@t, 882, 3<<D;

Chapter3.nb 79

ShowGraph@s, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

DepthFirstTraversal@s, 2D
82, 1, 9, 8, 7, 6, 5, 4, 3, 10<
s = DeleteEdges@s, 881, 2<<D;

80 Chapter3.nb

ShowGraph@s, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

DepthFirstTraversal@s, 2D
82, 3, 4, 5, 6, 7, 8, 9, 1, 10<
s = DeleteEdges@s, 882, 3<<D;

Chapter3.nb 81

ShowGraph@s, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

DepthFirstTraversal@s, 2D
82, 10, 1, 9, 8, 7, 6, 5, 4, 3<

82 Chapter3.nb

ShowGraph@Highlight@t, 8Map@Sort, DepthFirstTraversal@t, 2, EdgeDD<,
HighlightedEdgeColors -> 8Blue<D, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

NOTES

* Note that multiple edges are highlighted correctly − and only one of the edges {1,9} is highlighted.

$RecursionLimit = 20000;

s = GridGraph@20, 20D;

Chapter3.nb 83

ShowGraph@Highlight@s, 8Map@Sort, DepthFirstTraversal@s, 2, EdgeDD<,
HighlightedEdgeColors -> 8Blue<D, VertexStyle -> Disc@0DD

� Graphics �

DepthFirstTraversal@s = SetGraphOptions@t, EdgeDirection -> OnD, 1, EdgeD
881, 2<, 82, 3<, 83, 4<, 84, 5<, 85, 6<, 86, 7<, 87, 8<, 88, 9<, 89, 10<<
p1 = ShowGraph@s, GraphicsD;
p2 = ShowGraph@ Highlight@s, 8DepthFirstTraversal@s , 1, EdgeD<,

HighlightedEdgeColors -> 8Green<D, GraphicsD;

84 Chapter3.nb

Show@ GraphicsArray@8p1, p2<D, ImageSize -> 500D

� GraphicsArray �

Note that 10 is a sink and hence no edges are traversed in a depth−first traversal starting from 10.

DepthFirstTraversal@s = SetGraphOptions@t, EdgeDirection -> OnD, 10, EdgeD
8<

NOTES

* DepthFirstTraversal works fine for directed graphs as well.

TIMING DSCUSSION

DFS can be easily implmented so that it runs in O(m+n) time on an n−vertex, m−edge graph. Here are some timing experi-
ments to determine if this is true. The plot below shows that we probably have a quadratic implementation of DFS. The
most likely reason for this state of affairs is the two AppendTo[...] calls in DFS. Each is appending to a list that grows
linearly and since AppendTo[...] takes linear time in Mathematica, we end up with a function that takes quadratic time.
This is unfortunate because DFS is fundamental to the package.

Chapter3.nb 85

gt = Table@ GridGraph@20, 10 iD, 8i, 20<D;
rt = Table@ Timing@DepthFirstTraversal@gt@@iDD, 1D;D, 8i, 20<D
880.032 Second, Null<, 80.109 Second, Null<,80.172 Second, Null<, 80.297 Second, Null<, 80.453 Second, Null<,80.64 Second, Null<, 80.875 Second, Null<, 81.141 Second, Null<,81.484 Second, Null<, 81.907 Second, Null<, 82.343 Second, Null<,82.735 Second, Null<, 83.375 Second, Null<, 84.062 Second, Null<,84.594 Second, Null<, 85.297 Second, Null<, 86.062 Second, Null<,86.735 Second, Null<, 87.609 Second, Null<, 88.797 Second, Null<<
ListPlot@ Map@#@@1, 1DD &, rtD, PlotJoined -> TrueD

5 10 15 20

2

4

6

8

� Graphics �

To make sure that my conjecture about AppendTo[...] being the problem is true, I reproduce the DFS functions below with
the AppendTo[...] deleted. As a result, the new DFS function does a depth first traversal of the graph, but does not remem-
ber the edges or the vertices visited in order. The evidence is conclusive.

NewDepthFirstTraversal@g_Graph, start_Integer, flag_: VertexD :=
Block@8visit = 8<, e = ToAdjacencyLists@gD,

edges = 8<, dfi = Table@0, 8V@gD<D, cnt = 1<, NewDFS@startD;
If@flag === Edge, edges, visitDD

NewDFS@v_IntegerD := Hdfi@@vDD = cnt++;
Scan@HIf@dfi@@#DD � 0, NewDFS@#DDL &, e@@vDDDL

86 Chapter3.nb

gt = Table@ GridGraph@20, 10 iD, 8i, 20<D;
rt = Table@ Timing@NewDepthFirstTraversal@gt@@iDD, 1D;D, 8i, 20<D
880.031 Second, Null<, 80.063 Second, Null<,80.078 Second, Null<, 80.125 Second, Null<, 80.125 Second, Null<,80.172 Second, Null<, 80.187 Second, Null<, 80.25 Second, Null<,80.266 Second, Null<, 80.312 Second, Null<, 80.313 Second, Null<,80.359 Second, Null<, 80.406 Second, Null<, 80.454 Second, Null<,80.5 Second, Null<, 80.484 Second, Null<, 80.547 Second, Null<,80.547 Second, Null<, 80.609 Second, Null<, 80.594 Second, Null<<
ListPlot@ Map@#@@1, 1DD &, rtD, PlotJoined -> TrueD

5 10 15 20

0.1

0.2

0.3

0.4

0.5

0.6

� Graphics �

How does the new implementation compare in running time with the old version? Here are some more timing experiments
to determine this.

gt = Table@ DiscreteMath‘OldCombinatorica‘GridGraph@20, 10 iD, 8i, 5<D;
rt = Table@ Timing@

DiscreteMath‘OldCombinatorica‘DepthFirstTraversal@gt@@iDD, 1D;D, 8i, 5<D
880.203 Second, Null<, 80.781 Second, Null<,81.766 Second, Null<, 83.125 Second, Null<, 84.906 Second, Null<<

The first 5 timings for the new implementation of DFS are: {0.031 Second,Null},{0.047 Second,Null},{0.094 Second,-
Null} ,{ 0.125

Second,Null},{0.125 Second,Null}. So the gains are significant.

TO DO

* Modify DFS so that its running time is indeed linear − asymptotically.

 BreadthFirstTraversal

Chapter3.nb 87

? BreadthFirstTraversal

BreadthFirstTraversal@g, vD performs a breadth-first traversal
of graph g starting from vertex v, and gives the breadth-
first numbers of the vertices. BreadthFirstTraversal@g, v,
EdgeD returns the edges of the graph that are traversed by
breadth-first traversal. BreadthFirstTraversal@g, v, TreeD
returns the breadth-first search tree. BreadthFirstTraversal@
g, v, LevelD returns the level number of the vertices.

ShowGraph@s = DeleteEdges@t, 882, 3<<D, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

88 Chapter3.nb

ShowGraph@s = DeleteEdges@s, 882, 10<<D, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

Chapter3.nb 89

ShowGraph@BreadthFirstTraversal@s, 1, TreeD, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

BreadthFirstTraversal@s, 1, EdgeD
881, 2<, 81, 9<, 81, 10<, 82, 3<, 89, 8<, 810, 4<, 810, 5<, 810, 6<, 810, 7<<
BreadthFirstTraversal@s, 1, LevelD
80, 1, 2, 2, 2, 2, 2, 2, 1, 1<

90 Chapter3.nb

ShowGraph@BreadthFirstTraversal@s, 10, TreeD, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

BreadthFirstTraversal@s, 10, EdgeD
8810, 1<, 810, 3<, 810, 4<, 810, 5<, 810, 6<, 810, 7<, 810, 8<, 810, 9<, 81, 2<<
BreadthFirstTraversal@s, 10, LevelD
81, 2, 1, 1, 1, 1, 1, 1, 1, 0<

Chapter3.nb 91

ShowGraph@BreadthFirstTraversal@s, 5, TreeD, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

BreadthFirstTraversal@s, 5, EdgeD
885, 4<, 85, 6<, 85, 10<, 84, 3<, 86, 7<, 810, 1<, 810, 8<, 810, 9<, 83, 2<<
BreadthFirstTraversal@s, 5, LevelD
82, 3, 2, 1, 0, 1, 2, 2, 2, 1<

92 Chapter3.nb

ShowGraph@Highlight@s, 8Map@Sort, BreadthFirstTraversal@s, 2, EdgeDD<,
HighlightedEdgeColors -> 8Blue<D, VertexNumber -> OnD

1

2

3

4

5

6

7

8

910

� Graphics �

s = GridGraph@30, 30D;

Chapter3.nb 93

ShowGraph@Highlight@s, 8Map@Sort, BreadthFirstTraversal@s, 2, EdgeDD<,
HighlightedEdgeColors -> 8Blue<D, VertexStyle -> Disc@0DD

� Graphics �

s = InduceSubgraph@s, RandomSubset@Range@900DDD;

94 Chapter3.nb

ShowGraph@s, VertexStyle -> Disc@0DD

� Graphics �

BreadthFirstTraversal@s, 2, EdgeD
882, 1<, 82, 3<, 83, 4<, 84, 5<, 85, 6<, 88, 8<, 86, 7<<

Chapter3.nb 95

ShowGraph@Highlight@s, 8Map@Sort, BreadthFirstTraversal@s, 2, EdgeDD<,
HighlightedEdgeColors -> 8Blue<D, VertexStyle -> Disc@0DD

� Graphics �

NOTES

* The eccentricity of a vertex in an unweighted graph can now be easily calculated using the levels returned by BFS. I
have rewritten the function Eccentricity[...] in the package to first test if a graph is weighted and then use BFS or Shortest-
Paths accordingly.

* It is also easy to partion the edges of the graph into same−level edges, tree edges, and other edges. This can be used for
testing bipartiteness and also two coloring a graph if possible.

TO DO

Two other things that can be done to make BFS and related functions more "fun" and accessible are:

(1) Add an option to BreadthFirstSearch that returns the edge partition mentioned above.

(2) Add an option to BFS that returns an embedding that highlights the induced levels. This can be done easily using
RankedEmbedding.

ShowGraph

This is illustrated in a separate notebook.

ShowLabeledGraph

Does not exist. This brings up the question of how we’ll provide support for obsolete functions? Do we keep them in this
version and then throw them away in future versions?

96 Chapter3.nb

CircularVertices

? CircularVertices

CircularVertices@nD constructs a list of n
points equally spaced on a circle. CircularVertices@
gD embeds the vertices of g equally spaced on a circle.

TO DO

A linear embedding in which the edges are shown as circular arcs above or below the line of vertices should be added to
the package.

s = CircularVertices@tD;
ShowGraph@sD

� Graphics �

Chapter3.nb 97

ShowGraph@CircularVertices@CompleteGraph@10, 10DDD

� Graphics �

RankGraph

? RankGraph

RankGraph@g, lD partitions the vertices into classes based
on the shortest geodesic distance to a member of list l.

TO DO

The code here is essentially the bfs code. It is a bad idea to rewrite this code again. NewRankGraph should be calling bfs.
This is yet another reason to make bfs more powerful and more general − with several additional options, possibly.

s = GridGraph@5, 4D;
r = RankGraph@s, 81, 2, 3, 4<D
81, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5<

98 Chapter3.nb

s1 = SetGraphOptions@s, Table@8i, VertexLabel -> 8r@@iDD<<, 8i, Length@rD<DD;
ShowGraph@s1, PlotRange -> Large@0.2DD

1 1 1 1 2

2 2 2 2 3

3 3 3 3 4

4 4 4 4 5

� Graphics �

RankedEmbedding

? RankedEmbedding

RankedEmbedding@g, lD performs a ranked embedding of graph g, with the
vertices ranked in terms of geodesic distance from a member of list l.

TO DO

(1) To be consistent with RankedEmbedding, CircularVertices should be called CircularEmbedding.

(2) To be consistent with CircularEmbedding, RankedVertices should have the same name as RankedEmbedding.

(3) RankGraph, in my view, should dissapear and should just be a call to bfs with certain options.

s = GridGraph@5, 5D;

Chapter3.nb 99

ShowGraph@RankedEmbedding@s, 813<DD

� Graphics �

100 Chapter3.nb

ShowGraph@RankedEmbedding@t, 81<DD

� Graphics �

Eccentricity

? Eccentricity

Eccentricity@gD gives the eccentricity of each vertex v
of graph g, the length of the longest shortest path from v.

g = Wheel@10D;
Eccentricity@gD
82, 2, 2, 2, 2, 2, 2, 2, 2, 1<
g = GridGraph@10, 10D;

Chapter3.nb 101

Eccentricity@ g D
818, 17, 16, 15, 14, 14, 15, 16, 17, 18, 17, 16, 15, 14, 13, 13, 14, 15, 16, 17, 16,
15, 14, 13, 12, 12, 13, 14, 15, 16, 15, 14, 13, 12, 11, 11, 12, 13, 14, 15, 14,
13, 12, 11, 10, 10, 11, 12, 13, 14, 14, 13, 12, 11, 10, 10, 11, 12, 13, 14, 15,
14, 13, 12, 11, 11, 12, 13, 14, 15, 16, 15, 14, 13, 12, 12, 13, 14, 15, 16, 17,
16, 15, 14, 13, 13, 14, 15, 16, 17, 18, 17, 16, 15, 14, 14, 15, 16, 17, 18<
Timing@ Eccentricity@gD;D
81.984 Second, Null<
g = SetEdgeWeights@gD;
Timing@ Eccentricity@gD; D
83.844 Second, Null<

NOTES

* In general computing eccentricities of vertices in a graph is time consuming − typically cubic (for dense graphs). How-
ever, the eccentricites in an unweighted graph are much faster to compute than those in a weighted graph since BFS can be
used instead of shortest path algorithms. I have separated the computation of Eccentricites of weighted and unweighted
graphs − the difference is significant.

g = DiscreteMath‘OldCombinatorica‘GridGraph@10, 10D;
Timing@ DiscreteMath‘OldCombinatorica‘Eccentricity@gD; D
86.016 Second, Null<

Diameter

? Diameter

Diameter@gD gives the diameter of graph g, the length
of the longest shortest path between two vertices of g.

g = CompleteGraph@20D;

102 Chapter3.nb

Diameter@gD
1

g = RandomGraph@25, .3D;
Diameter@gD
4

g = RandomGraph@50, .3D;
Diameter@gD
3

g = RandomGraph@100, .3D;
Diameter@gD
2

TO DO

For fixed p, as n−>Infinity the expected diameter of the random graph goes to 2. I should expriment with this some more.

Radius

? Radius

Radius@gD gives the radius of graph
g, the minimum eccentricity of any vertex of g.

g = Wheel@100D;

Chapter3.nb 103

Radius@gD
1

GraphCenter

? GraphCenter

GraphCenter@gD gives a list of the
vertices of graph g with minimum eccentricity.

g = Wheel@100D;
GraphCenter@gD
8100<

RadialEmbedding

? RadialEmbedding

RadialEmbedding@gD constructs a radial embedding
of graph g, radiating from the center of the graph.

TO DO

(1) To be consistent with CircularEmbedding and RankedEmbedding, RadialEmbedding should also have a version that
simply returns the embedding of the vertices.

(2) This remark actually applies to the functions above − Eccentricity, Diameter, Radius, and GraphCenter. For trees, the
general form of the functions should not be used. It is easy to calculate the graph center of a tree − can be done in linear
time. So that is what should be used.

s = RandomTree@20D;

104 Chapter3.nb

ShowGraph@sD

� Graphics �

Chapter3.nb 105

ShowGraph@RadialEmbedding@s, 11D, VertexNumber -> OnD

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

� Graphics �

106 Chapter3.nb

ShowGraph@RadialEmbedding@RandomTree@20D, 11D, VertexNumber -> OnD

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

� Graphics �

Chapter3.nb 107

ShowGraph@RadialEmbedding@RandomTree@20D, 11D, VertexNumber -> OnD

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

� Graphics �

NOTES

We can get strange embeddings as shown below by constructing RadialEmbeddings of graphs that are not trees.

108 Chapter3.nb

ShowGraph@RadialEmbedding@ GridGraph@3, 3DDD

� Graphics �

RootedEmbedding

? RootedEmbedding

RootedEmbedding@g, vD constructs a
rooted embedding of graph g with vertex v as the root.

s = RandomTree@20D;

Chapter3.nb 109

ShowGraph@RootedEmbedding@s, 1D, VertexNumber -> On, PlotRange -> Large@0.05DD

1

2

3

4

5 6 7

8

9

1011 12

1314 15 16 17

18

19 20

� Graphics �

110 Chapter3.nb

ShowGraph@RootedEmbedding@s, 3D, VertexNumber -> OnD

1

2

3

4

5 6 7

8

9

10

11

12

1314

15

1617

18

19

20

� Graphics �

Chapter3.nb 111

ShowGraph@RootedEmbedding@s, 19D, VertexNumber -> Center,
VertexNumberColor -> White, VertexStyle -> Disc@LargeD,
PlotRange -> Large@0.03D, Background -> LightBlueD

1

2

3

4

5 6 7

8

9

10

11

12

1314

15

1617

18

19

20

� Graphics �

TranslateVertices

? TranslateVertices

TranslateVertices@v, 8x, y<D adds the vector 8x, y< to the vertex
embedding location of each vertex in list v. TranslateVertices@g,8x, y<D translates the embedding of the graph g by the vector 8x, y<.

TO DO

TranslateVertices will be more useful when subsets of vertices can be translated. I should generalize the function to be able
to do this.

t

�Graph:<21, 10, Undirected>�

112 Chapter3.nb

TranslateVertices@t, 8.001, .002<D
�Graph:<21, 10, Undirected>�

DilateVertices

? DilateVertices

DilateVertices@v, dD multiplies each coordinate of each vertex position
in list l by d, thus dilating the embedding. DilateVertices@
g, dD dilates the embedding of the graph g by the factor d.

TO DO

The user should be able to dilate subsets of vertices as well.

t

�Graph:<21, 10, Undirected>�

DilateVertices@t, 2D
�Graph:<21, 10, Undirected>�

RotateVertices

? RotateVertices

RotateVertices@v, thetaD rotates each vertex position in list v by theta
radians around the origin H0, 0L. RotateVertices@g, thetaD rotates
the embedding of the graph g by theta radians about the origin H0, 0L.

TO DO

 Same as for the previous 2 functions. We should be able the Rotate a subset of the vertices.

Chapter3.nb 113

ShowGraph@s = CompleteGraph@3, 2, 2, 4DD

� Graphics �

114 Chapter3.nb

ShowGraph@RotateVertices@s, Pi � 2DD

� Graphics �

Chapter3.nb 115

ShowGraph@RotateVertices@s, Pi � 4DD

� Graphics �

NormalizeVertices

? NormalizeVertices

NormalizeVertices@vD gives a list of
vertices with a similar embedding as v but with all
coordinates of all points scaled to be between 0 and 1.

s = CompleteGraph@7D
�Graph:<21, 7, Undirected>�

Vertices@sD
880.62349, 0.781831<, 8-0.222521, 0.974928<, 8-0.900969, 0.433884<,8-0.900969, -0.433884<, 8-0.222521, -0.974928<, 80.62349, -0.781831<, 81., 0<<

116 Chapter3.nb

s = TranslateVertices@s, 80.5, 0.3<D
�Graph:<21, 7, Undirected>�

Vertices@sD
881.12349, 1.08183<, 80.277479, 1.27493<,8-0.400969, 0.733884<, 8-0.400969, -0.133884<,80.277479, -0.674928<, 81.12349, -0.481831<, 81.5, 0.3<<
Vertices@NormalizeVertices@sDD
880.826886, 0.807732<, 80.437903, 0.896515<, 80.125962, 0.647751<,80.125962, 0.248764<, 80.437903, 0.<, 80.826886, 0.0887829<, 81., 0.448258<<

ShakeGraph

? ShakeGraph

ShakeGraph@g, dD performs a random perturbation
of the vertices of graph g, with each vertex moving,
at most, a distance d from its original position.

s = RankedEmbedding@Wheel@10D, 81, 2, 3, 4, 5, 6, 7, 8, 9<D
�Graph:<18, 10, Undirected>�

Chapter3.nb 117

ShowGraph@sD

� Graphics �

ss = ShakeGraph@sD;

118 Chapter3.nb

ShowGraph@ssD

� Graphics �

ss = ShakeGraph@s, 0.3D;

Chapter3.nb 119

ShowGraph@ssD

� Graphics �

120 Chapter3.nb

ShowGraph@CompleteGraph@2, 2, 2D, VertexNumber -> OnD

1

2

3

4

5

6

� Graphics �

Chapter3.nb 121

ShowGraph@ShakeGraph@CompleteGraph@2, 2, 2D, 0.3D, VertexNumber -> OnD

1

2

3

4

5

6

� Graphics �

GraphOptions

? GraphOptions

GraphOptions@gD returns the display options associated
with g. GraphOptions@g, vD returns the display options
associated with vertex v in g. GraphOptions@g, 8u, v<D
returns the display options associated with edge 8u, v< in g

GraphOptions@sD
8<
r = SetGraphOptions@CompleteGraph@5, 5D, VertexColor ® Red, EdgeColor ® GreenD
�Graph:<25, 10, Undirected>�

122 Chapter3.nb

ShowGraph@rD

� Graphics �

GraphOptions@rD
8VertexColor ® RGBColor@1., 0., 0.D, EdgeColor ® RGBColor@0., 1., 0.D<

NOTES

* This function’s behavior might change when I make changes to ShowGraph.

SpringEmbedding

? SpringEmbedding

SpringEmbedding@gD beautifies the embedding of
graph g by modeling the embedding as a system of springs.

s = MakeGraph@Permutations@81, 2, 3, 4<D, HCount@#1 - #2, 0D == 0L &D;

Chapter3.nb 123

oldS = DiscreteMath‘OldCombinatorica‘MakeGraph@
Permutations@81, 2, 3, 4<D, HCount@#1 - #2, 0D == 0L &D;

ShowGraph@sD

� Graphics �

V@sD
24

M@sD
216

Timing@r = SpringEmbedding@sD;D
82.172 Second, Null<

124 Chapter3.nb

ShowGraph@rD

� Graphics �

Timing@r = DiscreteMath‘OldCombinatorica‘SpringEmbedding@oldSD;D
80.75 Second, Null<

ReadGraph

Not yet implemented. Probably will not be implemented.

WriteGraph

Not yet implemented. Probably will not be implemented.

Chapter3.nb 125

