
Information Processing Letters 70 (1999) 229–232

Simple distributed∆+ 1-coloring of graphs

Öjvind Johansson1

Department of Numerical Analysis and Computing Science, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Received 9 December 1998; received in revised form 19 April 1999
Communicated by L.A. Hemaspaandra

Abstract

A very natural randomized algorithm for distributed vertex coloring of graphs is analyzed. Under the assumption that the
random choices of processors are mutually independent, the execution time will be O(logn) rounds almost always. A small
modification of the algorithm is also proposed. 1999 Elsevier Science B.V. All rights reserved.

Keywords:Distributed computing; Randomized algorithms; Vertex coloring of graphs

1. Introduction

To vertex colora graph means to give each vertex a
color in such a way that no two adjacent vertices get
the same color. If at mostk colors are used, the result
is called ak-coloring. Vertex coloring is useful when
edges between vertices signify interference between
the objects of a system. A coloring then partitions
the system into sets which are internally free from
interference. This partition may be the desired end
result, but it could also be of intermediate use to
an algorithm constructing the solution to another
problem, as described in [5].

In this paper we discuss vertex coloring in adis-
tributed network. Thus, we have a setV of processors
and a graphG = (V ,E). Two processors are joined
by a bidirectional communication link if they are ad-
jacent inG. There is no shared memory. Each proces-
sor knows its own links, and it has a unique identifica-
tion number which it knows too, but apart from that,
it has no prior knowledge of the structure ofG. We

1 Email: ojvind@nada.kth.se.

now want these processors to agree upon a coloring
of G. We will assume that the system is synchronized
in phasedcycles: In a first phase, all processors com-
pute; in a second, they send up to one message per
neighbor. In a third and final phase, processors receive
these messages. Thereafter, another cycle begins. The
number of such cycles needed will be our measure of
efficiency.

More precisely, we shall consider the computation
of ∆+ 1-colorings, where∆ is the highest vertex de-
gree in the graph. That such colorings must exist is ev-
ident from the following greedy sequential algorithm:
For each vertexv, assign tov the first color not already
assigned to any neighbor. (We assume that colors are
ordered in a sequence.) But sequential solutions are
not fast enough in the distributed world. We would like
processors to work in parallel. And such an algorithm
lies not so far away. The following randomized one is
mentioned in [1] as “the trivial algorithm”.

The vertex coloring algorithm. As long as it is un-
colored, each vertexu in the graph keeps apalette: a
list (set) of colors not already assigned to any neigh-

0020-0190/99/$ – see front matter 1999 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(99)00064-2



230 Ö. Johansson / Information Processing Letters 70 (1999) 229–232

bor. This list,P(u), is initialized to the firstd(u)+ 1
colors inS, whered(u) is the degree ofu, and where
S is a predefined color sequence. The algorithm then
proceeds inrounds. In a round (which can be imple-
mented with two cycles as above), each uncolored ver-
tex u randomly (uniformly) chooses a tentative color
from its palette. It informs its neighbors and checks if
any of them chose the same color. If not,u keeps this
color — we sayu is colored— and again it informs
its neighbors. If, on the other hand, some neighbor of
u did choose the same color,u does not keep it. (Nor
does the neighbor.) At the beginning of the next round,
u instead updates its palette by removing colors that
were taken permanently by neighbors.

A similar algorithm has been given by Luby [4]. His
algorithm contains an extra feature though; in each
round, each uncolored vertex first “tosses a coin” to
see if it should at all try to take a color during that
round. Processors need then only be pairwise indepen-
dent in their random choices in order to guarantee that,
at each round, any uncolored vertex will get colored
with probability at least 1/4. By relying on pairwise
independence only, Luby was able to derandomize his
algorithm into an efficient deterministic algorithm for
the PRAM model of computation. In the next section,
we shall see that under the assumption of mutual in-
dependence, the “trivial algorithm” also will, in each
round, color any uncolored vertex with probability 1/4
or more. As a result, the expected running time will be
O(logn) in the distributed model.

Interestingly, if we want to find∆ + 1-colorings
with a deterministicdistributed algorithm, we may
have to spend some more time. The best result so far
is stated in [5]: With the technique called network
decomposition, a∆ + 1-coloring can be found in
nO(ε(n)) time, whereε(n)= 1/

√
logn.

2. Analysis

We shall now analyze the vertex coloring algorithm
defined in Section 1. As already stated, we will assume
that random choices are mutually independent.

Theorem 1. In each round of the algorithm, any
uncolored vertex will be colored with probability at
least1/4.

Proof. We study the algorithm at the beginning of
some arbitrary round. (When we refer to palettes,
we imply that these have been updated with respect
to the previous round.) Letu be a vertex which is
still uncolored, and letCu be the event thatu gets
colored in the present round. (In the following, we
will simply say “u gets colored”.) The probability
for this is a function only of the palettes ofu and
its uncolored neighbors, the latter vertices which we
denote byN(u). To find a lower bound for Pr[Cu], we
shall alter, if needed, the palettes of vertices inN(u),
such that Pr[Cu] will be easier to compute, but without
increasing it.

First, let us look at the situation prior to such
alterations. The following trivial fact is of course
crucial for the algorithm to work.

Proposition 2. For any uncolored vertexv, |P(v)| >
|N(v)| + 1.

Proof. By definition, the inequality holds at the out-
set. From then on, a color may be removed from the
palette ofv only if it is taken by a neighbor.2

To further estimate palette sizes, we look at neigh-
borhoods. IfN(u) is empty (this can only occur at the
first round), then surelyu will be colored immediately.
We can assume therefore thatu has at least one uncol-
ored neighbor. As a consequence, we have:

Proposition 3. Vertexu and its uncolored neighbors
all have palettes of size at least2.

Next, it is time to formulate the probability thatu
will get colored. For a colorc and a vertexv, letWc,v

be the event thatv choosesc. And for a colorc and
a vertex setV , let Wc,V be the event that none of the
vertices inV choosesc. We get:

Pr[Cu] =
∑
c∈P(u)

Pr
[
Wc,u ∧Wc,N(u)

]
=

∑
c∈P(u)

Pr[Wc,u] ·Pr
[
Wc,N(u)

]
= 1

|P(u)|
∑
c∈P(u)

Pr
[
Wc,N(u)

]
. (1)



Ö. Johansson / Information Processing Letters 70 (1999) 229–232 231

For an uncolored neighborv of u, we can then describe
the impact of the palette ofv on Pr[Cu]. For each color
c ∈ P(u), we have

Pr
[
Wc,N(u)

]= Pr
[
Wc,N(u)\v ∧Wc,v

]
= Pr

[
Wc,N(u)\v

] · Pr
[
Wc,v

]
= Pr

[
Wc,N(u)\v

] · (1−Pr[Wc,v]
)
,

so Eq. (1) gives

Pr[Cu]
= 1

|P(u)|
∑
c∈P(u)

Pr[Wc,N(u)\v] ·
(
1−Pr[Wc,v]

)
. (2)

We are now ready to show how palettes can be
altered. For the following three propositions, we will
refer to Eq. (2) when we modify the palette of an
uncolored neighborv of u. It should be noticed then
that Pr[Wc,N(u)\v] does not depend on this palette,
whereas Pr[Wc,v] equals 1/|P(v)| if c ∈ P(v), and
zero otherwise.

Proposition 4. Let v ∈ N(u). To find a lower bound
for Pr[Cu], we may assume thatP(v)⊆ P(u).

Proof. Let us call colors inP(u) “valid” and the re-
maining colors “invalid”. Suppose we have a situation
in which the palette ofv contains some invalid col-
ors. Let us then remove these successively. At each re-
moval, add a valid color instead, unlessP(v) already
contains all valid colors. During this process, Pr[Wc,v]
will not decrease for anyc ∈ P(u), so Pr[Cu] will not
increase, as Eq. (2) shows. Because of the addition of
valid colors, Proposition 3 will remain true.2
Proposition 5. Let v ∈ N(u), and letP(v) ⊆ P(u).
Then we may also assume that|P(v)| = 2.

Proof. By Proposition 3,|P(v)| > 2. Suppose that
|P(v)| > 2. Then letc′ be any colorc ∈ P(v) which
minimizes Pr[Wc,N(u)\v], and removec′ from P(v).
This will make∑
c∈P(u)

Pr
[
Wc,N(u)\v

] · Pr[Wc,v]

at least as large as before. (We have simply transferred
probability fromWc′,v to eventsWc,v that yield no
less in this sum.) By Eq. (2), Pr[Cu] will not increase.
Repeat the process until|P(v)| = 2. 2

vertex palette

w α γ

x γ δ

y β γ

z α β

u α β γ δ ε

Fig. 1. An example illustrating the proof of Proposition 6. Vertices
w, x, y, and z are the uncolored neighbors ofu. Three of their
palettes containγ . We can avoid this without increasing Pr[Cu].
For example, letP (w) be{α, ε} instead.

Proposition 6. Let all uncolored neighbors ofu have
palettes of size2. We may then assume that for each
color c ∈ P(u), there are at most two uncolored neigh-
bors ofu whose palettes containc. This condition is
equivalent toPr[Wc,N(u)]> 1/4.

Proof. We will use the termN(u)-palette for the
palette of a vertex inN(u). Since all of these are of
size 2, it follows from Proposition 2 applied tou that
there are at most 2|P(u)| − 2 color occurrences in all
theN(u)-palettes. Suppose now that a colorc′ ∈ P(u)
is contained in more than twoN(u)-palettes. Then
take one of these and letv be its “owner”. By the
pigeon-hole principle, there are at least two colors in
P(u) which are contained in at most oneN(u)-palette
each. Among these two or more colors, we can find
c′′ /∈ P(v). (See Fig. 1 for an example assisting the
following argument. In the example,c′ = γ . With v =
w, c′′ can be eitherδ or ε.) Note that Pr[Wc′′,N(u)\v]>
1/2, since eitherc′′ is in noN(u)-palette, or it is in
one, which is of size 2. Note also that Pr[Wc′,N(u)\v]6
(1/2)2, since c′ is contained in at least twoN(u)-
palettes other than that ofv, each of size 2. Therefore,
by removingc′ from P(v) and includingc′′ instead
(which means that we transfer probability fromWc′,v
to Wc′′,v), Pr[Cu] will be reduced, as Eq. (2) shows.
Repeat the above process untilc′ is contained in at
most twoN(u)-palettes. Since these are both of size 2,
we have Pr[Wc′,N(u)]> (1/2)2. 2

We now conclude the proof of Theorem 1. We
have seen that to find a lower bound for Pr[Cu], we
only have to consider cases satisfying the inequality
in Proposition 6. Using Eq. (1), we get Pr[Cu] >
1/4. 2



232 Ö. Johansson / Information Processing Letters 70 (1999) 229–232

Corollary 7. The algorithm runs inO(logn) rounds
almost always. More precisely, for the running time
T (n) on a graph withn vertices, we have, for any
positive integert :

Pr
[
T (n)> blog4/3nc + t + 1

]
6
(

3

4

)t−1

.

Proof. This follows from Theorem 1 above with the
help of Theorem 1 in [2] (Theorem 1.1 in [3]).2

3. Suggestion

It is clear from the proof that Theorem 1 would hold
even if the palette of a vertexu were initialized to any
d(u)+ 1 or more colors among the∆+ 1 first colors
in S (see the definition of the algorithm). Using larger
palettes could mean a shorter running time, since many
vertex pairs would then have a smaller probability of
a choice clash (although for some palette pairs, an
additional color in their intersection would increase
this probability). However, ifu does not know∆,
but only its own degree, it cannot start with a larger
palette than defined. To try to exploit some more colors
anyway, we can extend the algorithm as follows:

Modification. In the first round,u initializes a new
variable d̂(u) to d(u) and sends this value to its
neighbors. From then on, let̂d(u) be the highest

degree thatu has heard of in previous rounds. Each
round thatd̂(u) increases,u passes the new value on,
and beforeu makes its random choice of color, it
extends its palette, as if̂d(u)+ 1 had been the initial
palette size.

Acknowledgements

I thank Alessandro Panconesi, who introduced me
to the problem, and who has inspired and assisted me
in writing this paper. I also thank Stefan Arnborg and
the two referees for their comments.

References

[1] D.A. Grable, A. Panconesi, Fast distributed algorithms for
Brooks–Vizing colourings, in: Proceedings of the Ninth An-
nual ACM–SIAM Symposium on Discrete Algorithms, 1998,
pp. 473–480.

[2] R.M. Karp, Probabilistic recurrence relations, in: Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing,
1991, pp. 190–197.

[3] R.M. Karp, Probabilistic recurrence relations, J. ACM 41 (1994)
1136–1150.

[4] M. Luby, Removing randomness in parallel computation with-
out a processor penalty, J. Computer System Sci. 47 (1993) 250–
286.

[5] A. Panconesi, A. Srinivasan, On the complexity of distributed
network decomposition, J. Algorithms 20 (1996) 356–374.


