
Lecture Notes CS:5360 Randomized Algorithms
Lecture 3: Aug 28, 2018
Scribe: Runxiong Dong

1 Karger’s Mincut Algorithm

Algorithm 1: KargerMinCut(G):

1 G0 ← G
2 for i← 1 to n− 2 do
3 Pick an edge ei uniformly at random from Gi−1

4 Gi ← CONTRACT (Gi−1, ei)

5 end
6 return The number of edges between two remaining vertices in Gn−2

Figure 1: An example of running KargerMinCut() on a graph G, suppose that the red edge is
selected uniformly at random in each step. In this case, the returned cut size is 4, and this is not
the size of a minimum cut in G.

1

Analysis: Let C be the set of edges in a mincut in G. Note that G could have several mincuts,
and C is one of these chosen arbitrarily. Define following events,

1. Ei = the edge ei is not C.

2. Fi = E1 ∩ E2 ∩ · · · ∩ Ei. Thus, Fi is the event that none of the edges e1, e2, . . . ei belongs
to C.

Lemma 1 Let c be the size of a mincut in G. For any edge e in G, CONTRACT (G, e) has a
mincut of size no less than c.

Proof: By contradiction, suppose G′ = CONTRACT (G, e). Let e = {u, v}. Suppose that G′

has a mincut C ′ of size c′ < c. Now, we undo the CONTRACT operation, i.e., separate out u and
v, adding edges that were originally between u and v, and also separating out edges going to uv
in G′ to either u or v. Because the only new edges we added are between u and v, and they are
in the same side of the cut C ′, the size of this cut remains unchanged. Now, the restored graph is
the exactly the same as G, but it has a cut of size c′ < c. This contracts our assumption that c is
the size of mincut in G.

Recall that Fn−2 is the event that none of e1, e2, . . . en−2 belongs to C. If Fn−2 happens,
we know the algorithm KargerMinCut() will return a right answer. Thus, we are interested in
Pr(Fn−2) and in particular showing that Pr(Fn−2) is large enough.

Pr(Fn−2) = Pr(E1 ∩ E2 ∩ · · · ∩ En−2)

= Pr(E1)Pr(E2|E1)Pr(E3|E1 ∩ E2) · · ·Pr(En−2|E1 ∩ E2 ∩ · · · ∩ En−1)

So we now calculate Pr(E1) using the fact that Pr(E1) = 1−Pr(E1). Since E1 is teh complement
of E1, it is the event that e1 belongs to C. Thus,

Pr(E1) =
c

The number of edges in G0
.

Now note that the number of edges in G0 is at least n·c
2 . This follows from the fact that since the

size of a mincut in G0 is c, every vertex in G0 has degree at least c. Otherwise, we could have
separated that vertex with degree less than c from the rest of the graph by deleting fewer than c
edges. Thus, we would have a cut of size less than c in G0. Thus,

Pr(E1) ≤
c

n · c/2
=

2

n

and therefore

Pr(E1) ≥ 1− 2

n
=

n− 2

n
.

We will next compute Pr(E2|E1). We use Pr(E2|E1) = 1− Pr(E2|E1). As before,

Pr(E2|E1) =
c

The number of edges in G1
.

2

The number of edges in G1 is no less than (n−1)·c
2 , the argument is similar to the above for G0.

Thus,

Pr(E2|E1) ≤
c

(n− 1)c/2
=

2

n− 1

Pr(E2|E1) ≥ 1− 2

n− 1
.

Similarly,

Pr(E3|E1 ∩ E2) ≥ 1− 2

n− 2
...

Pr(En−2|E1 ∩ E2 ∩ · · · ∩ En−3) ≥ 1− 2

3

Then,

Pr(Fn−2) ≥
(

1− 2

n

)(
1− 2

n− 1

)(
1− 2

n− 3

)
· · ·
(

1− 2

3

)
≥
(
n− 2

n

)(
n− 3

n− 1

)(
n− 4

n− 2

)
· · ·
(

3− 2

3

)
≥ 2 · 1

n(n− 1)
=

2

n(n− 1)
.

In other words, Karger’s MinCut algorithm produces a correct answer with probability ≥ 2
n(n−1) .

To amplify the correctness probability, we repeat the alogrithm t times. Then, return the smallest
cut we found. The following shows the algorithm.

Algorithm 2: ImprovedKargerMinCut(G):

1 k ←∞
2 for i← 1 to t do
3 z ← KargerMinCut(G)
4 if z < k then
5 k ← z
6 end

7 end
8 return k

Analysis: Let c = the size of minimal cut in graph G, k is the number return by the algorithm.
Then,

Pr(k 6= c) ≤
(

1− 2

n(n− 1)

)t

Here is an inequality that turns out to be super-useful:, 1 + x ≤ ex for all reals x. Thus, we get

Pr(k 6= c) ≤ e
− 2t

n(n−1)

• If we pick t = n(n− 1), then Pr(k 6= c) ≤ e−2 = 1
e2

.

• If we pick t = n(n− 1) lnn, then Pr(k 6= c) ≤ e−2 lnn = 1
n2 .

3

2 Random Variables

Definition: A random variable is a variable that takes on different values with associated prob-
abilities.

EXAMPLE:

Algorithm 3:

1 while not |L|
3
≤ |L1| ≤ 2|L|

3
do

2 (L1,L2)← randomizedPartition(L)
3 end
4 return (L1, L2)

Let I = number of iterations of the Algorihtm 3. The following is the probability distribution
of I.

i 1 2 3 · · · i · · ·

Pr(I = i) 1
3

(
2
3

)
1
3

(
2
3

)2 1
3 · · ·

(
2
3

)i−1 1
3 · · ·

Table 1: The probability distribution of I

This distribution is a geometric distribution with parameter p = 1
3 .

Definition: The expectation of a discrete random variable X denoted E[X] is

E[X] =
∑
i

i · Pr(X = i).

Following the definition, we can compute E[I] by the following formula,

E[I] =
∑
i≥1

i

(
2

3

)i 1

3
=

1

3

∑
i≥1

i

(
2

3

)i

.

S = 1 · (2

3
)0 + 2 · (2

3
)1 + 3 · (2

3
)2 + · · ·+ i · (2

3
)i−1 + · · · (1)

2

3
S = 1 · (2

3
)1 + 2 · (2

3
)2 + · · ·+ (i− 1) · (2

3
)i−1 + i · (2

3
)i + · · · (2)

Subtracting (2) from (1), we get

1

3
S =

(
2

3

)0

+

(
2

3

)1

+

(
2

3

)2

+ · · · = 1

1− 2/3
= 3.

Thus, S = 9 and E[I] = 3. In general, E[X] = 1/p, for a geometric random variable with parameter
p.

4

Lecture Notes CS:5360 Randomized Algorithms
Lecture 4: Aug 30, 2018
Scribe: Runxiong Dong

3 Geometric Random Variable

Definition: A geometric random variable X with parameter p, 0 < p < 1, has the following
probability distribution over i = 1, 2, 3, · · ·

Pr(X = i) = (1− p)i−1p.

It is easy to show the the probabilities indeed add upto 1. In other words,∑
i≥1

Pr(X = i) = 1.

∑
i≥1

Pr(X = i) = p + p(1− p) + p(1− p)2 + · · ·

= p
(
1 + (1− p) + (1− p)2 + · · ·

)
= p(

1

1− (1− p)
)

= p · 1

p
= 1.

From line 2 to line 3, it is because the fact that 1
1−x = 1 + x1 + x2 + · · · , for 0 < x < 1.

Lemma 2 Let X be a discrete random variable that takes on values i = 1, 2, 3, · · · .

E[X] =
∑
i≥1

Pr(X ≥ i)

EXAMPLE: let X be a geometric random variable with parameter p. Pr(X ≥ t) = (1− p)t−1,
since Pr(X ≥ t) means that the first t− 1 trails fail. Then, using this fact and Lemma 2, we can
compute E[X] as following,

E[X] =
∑
i≥1

Pr(X ≥ i)

=
∑
i≥1

(1− p)i−1

=
1

1− (1− p)

=
1

p
.

5

4 Linearity of Expectation

Theorem 3 Let X1, X2, X3, X4, · · · , Xn be random variables with finite expectations. Then,

E[

n∑
i=1

Xi] =

n∑
i=1

E[Xi]

Important note: no independence needed!

Definition: Independence of random variables, random variables X and Y are independent if all
values x, y,

Pr(X = x ∩ Y = y) = Pr(X = x)Pr(Y = y).

EXAMPLE: let X = sum of two 6-sided dice outcomes. To compute E[X], we have two ways,
first directly by definition. Looking at the following probability distribution table. So we can

i 2 3 4 · · · 11 12

Pr(X = i) 1
36

2
36

3
36 · · · 2

36
1
36

Table 2: The probability distribution of X

calculate E[X] as follows.

E[X] =
12∑
i=2

Pr(X = i) · i

However, this sum is kind of tedious to deal with. So let us look at this another way, using linearity
of expectation. For i = 1, 2: Xi = outcome of ith dice. Then,

X = X1 + X2

E[X] = E[X1 + X2]

= E[X1] + E[X2]

= 2 E[X1]

= 2 · 1

6
· (1 + 2 + 3 + 4 + 5 + 6)

= 7

Theorem 4 Let X, Y be random variables with finite expectation, then E[X +Y] = E[X] +E[Y].

6

Proof:

E[X + Y] =
∑
i

∑
j

(i + j)Pr(X = i ∩ Y = j)

=
∑
i

∑
j

i · Pr(X = i ∩ Y = j) +
∑
i

∑
j

j · Pr(X = i ∩ Y = j)

=
∑
i

i
∑
j

Pr(X = i ∩ Y = j) +
∑
j

j
∑
i

Pr(X = i ∩ Y = j)

=
∑
i

i · Pr(X = i) +
∑
j

j · Pr(Y = j)

= E[X] + E[Y]

5 Coupon Collector’s Problem

Suppose each box of cereal contain one of n distinct coupons, and assume a coupon in a box
is chosen uniformly at random from n distinct coupons. You win once you obtain at least one of
every distinct type of coupon. The question is how many boxes of cereal you must buy to win. Let
X = the number of boxes to buy for winning. Apparently, X is a random variable, you can be
luck enough so that only buy n boxes to win, but this is just high unlikely when n is large. We are
interested in E[X]. Let Xi = the number of boxes you need to buy while you have i − 1 distinct
coupons.

Figure 2: The visualization of buying enough cereal boxes to win

By the definition of Xi, i = 1, 2, · · · , n.

X = X1 + X2 + · · ·+ Xn

7

Xi is a geometric random variable with p = n−(i−1)
n . Thinking of Xi, when you have i − 1

distinct coupons, the probability to obtain a new distinct coupon is 1− i−1
n = n−(i−1)

n , every time
you buy one cereal box. Therefore,

E[Xi] =
1

p
=

n

n− (i− 1)

E[X] = E[X1 + X2 + X3 + · · ·+ Xn]

= E[X1] + E[X2] + E[X3] + · · ·+ E[Xn]

=

n∑
i=1

n

n− i + 1

= n

n∑
i=1

1

n− i + 1

= n (1 +
1

2
+

1

3
+ · · ·+ 1

n
)

Hn is the nth harmonic number,

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
= lnn + O(1)

6 Randomized QuickSort

Algorithm 4: QuickSort(L[1..n]):

1 /* Assume L contains distinct elements, which can be removed later
2 c← some constant
3 if n ≤ c then
4 BubbleSort(L)
5 return L

6 else
7 p← index chosen from {1, 2, , · · · , n} uniformly at random
8 L1, L2 ← ∅
9 for i← 1 to n do

10 if L[i] < L[p] then
11 L1 ← L1 ◦ L[i]
12 end
13 if L[i] > L[p] then
14 L2 ← L2 ◦ L[i]
15 end

16 end
17 QuickSort(L1)
18 QuickSort(L2)

19 end
20 return L1 ◦ L[p] ◦ L2

8

In the worst case, QuickSort form Ω(n2) comparison. If the pivot is always the median of
current array, then

T (n) = 2 T (dn
2
e) + O(n)

T (n) = O(n log n)

This is the best case, and we don’t have to be that lucky, if pivot partition L into sublists L1, L2

such that
|L|
3
≤ |L1| ≤

2|L|
3

we can also have a good running time on expectation. If the above relation fulfilled, then

T (n) < T (
n

3
) + T (

2n

3
) + O(n)

⇒ T (n) = O(n log n)

L1, L2 ←RandomizedPartition(L) is a way to achieve it.

9

