Lecture Notes CS:5360 Randomized Algorithms

Lecture 20 and 21: Nov 6th and 8th, 2018
Scribe: Qianhang Sun

1 Probabilistic Method

Turning the "MaxCut proof" into an algorithm.

> Algorithm $\left\{\begin{array}{l}\text { Las Vegas Algorithm } \\ \text { Deterministic Algorithm }\end{array}\right.$
> Derandomization $\left\{\begin{array}{l}\text { Pairwise Independence } \\ \text { Method of Conditional Probabilities }\end{array}\right.$

2 MaxCut Proof

Theorem. Let $G=(V, E)$ be a graph with m edges. G has a cut with no less than $m / 2$ edges crossing it.

```
Algorithm 1: LAS VEGAS ALGORITHM OF MAXCUT :
    repeat
        Throw each vertex independently \(v \in V\) into A or B with prob \(1 / 2\);
        \(C \leftarrow\) edges crossing the (A, B) cut;
    until \(|C| \geq m / 2\);
```

Analyze. Let $p=\operatorname{Pr}(|C| \geq\lfloor m / 2\rfloor)$, then

$$
\begin{aligned}
E[|C|] & =\sum_{c=0}^{m} c \cdot \operatorname{Pr}(|C|=c) \\
& =\sum_{c=0}^{\lfloor m / 2\rfloor-1} c \cdot \operatorname{Pr}(|C|=c)+\sum_{c=\lfloor m / 2\rfloor} c \cdot \operatorname{Pr}(|C|=c) \\
& \leq\left(\frac{m}{2}-1\right) \cdot(1-p)+m \cdot p
\end{aligned}
$$

Since $E[|C|]=\frac{m}{2}$,

$$
\begin{aligned}
\frac{m}{2} & \leq\left(\frac{m}{2}-1\right) \cdot(1-p)+m \cdot p \\
& \leq \frac{m}{2}-1-p \cdot\left(\frac{m}{2}-1\right)+m \cdot p \\
p & \geq \frac{1}{1+\frac{m}{2}}
\end{aligned}
$$

Thus, the expected number of repetitions is $\mathrm{O}(\mathrm{m})$, which is, total running time is polynomial in repetition.

3 Derandomization

Pairwise Independence. Let

$$
X_{v}= \begin{cases}1 & \text { if } \mathrm{v} \text { falls in } \mathrm{A} \\ 0 & \text { otherwise }\end{cases}
$$

We assumed that $\left\{X_{v} \mid v \in V\right\}$ are mutually independent. Suppose $\left\{X_{v} \mid v \in V\right\}$ are only pairwise independent. i.e.

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{u}=1 \mid X_{v}=0\right)=\operatorname{Pr}\left(X_{u}=1\right) \\
& \operatorname{Pr}\left(X_{u}=1 \mid X_{w}=1\right) \neq \operatorname{Pr}\left(X_{u}=1\right)
\end{aligned}
$$

Is it still the case that $E[|C|]=\frac{m}{2}$? Yes. Constructing random variables that are pairwise independent. Let $m \geq 1, n=2^{m}-1$, suppose we are given m mutually independent ($0-1$) random variables $Y_{1}, Y_{2}, Y_{3} \cdots Y_{m}$. Let $S \subseteq 1,2, \cdots m, S \neq \varnothing, X_{s}=X O R o f Y_{i}^{\prime} s, i \in S$. Since the number of such sets S is $2^{m}-1$, we have $\left(2^{m}-1\right)(0-1)$ random variables X_{s}.

Claim. $\quad\left\{X_{s} \mid S\right.$ subsete $\left.1,2,3 \cdots m, S \neq \varnothing\right\}$ are pairwise independent. $\operatorname{Pr}\left(X_{s}=1\right)=\frac{1}{2}$

Figure 1: Pairwise Independent
We need a random variable X_{v} for each vertex $v \in V$. Thus we need $|V|$ pairwise independent random variables $\Rightarrow\left\lceil\log _{2}|V|\right\rceil$ mutually independent random variables are needed. Since we only need $\Rightarrow\left\lceil\log _{2}|V|\right\rceil$ random bits, we can generate all possible settings of These in $O(|V|)$ time and get the entire space. Then we explore each cut in the sample space and pick a cut of size no less than $\frac{m}{2}$, which is guaranteed to exist.

Method of Conditional Probabilities.

Claim. There exists $x_{k+1} \in\{A, B\}, E\left[C(A, B) \mid x_{1}, x_{2}, \cdots x_{k+1}\right] \geq E\left[C(A, B) \mid x_{1}, x_{2}, \cdots x_{k}\right]$

Figure 2: Note that $E\left[C(A, B) \mid x_{1}, x_{2}, \cdots x_{k}\right]=$ size of a specific cut. $\left\{E\left[C(A, B) \mid x_{1}, x_{2}, \cdots x_{k}\right], x_{i} \in\right.$ $\{A, B\}\}$ denotes the conditional expectation of $\mathrm{C}(\mathrm{A}, \mathrm{B})$, the size of the cut, conditioned on v_{i} falling into x_{i}, for $i=1,2,3 \cdots k$.

Proof:

$$
E\left[C(A, B) \mid x_{1}, x_{2}, \cdots x_{k}\right]=\frac{1}{2} \cdot E\left[C(A, B) \mid x_{1}, x_{2}, \cdots x_{k}, A\right]+\frac{1}{2} \cdot E\left[C(A, B) \mid x_{1}, x_{2}, \cdots x_{k}, B\right]
$$

Algorithm step at node $E\left[C(A, B) \mid x_{1}, x_{2}, \cdots x_{k}\right]$:

- Calculate $E\left[C(A, B) \mid x_{1}, x_{2}, \cdots x_{k}, A\right]$ and $E\left[C(A, B) \mid x_{1}, x_{2}, \cdots x_{k}, B\right]$
- Travel to the "child" node with larger expectation.

How to calculate $E\left[C(A, B) \mid x_{1}, x_{2}, \cdots x_{k}, A\right]$?
(1) Count number of edges with both end points fixed that cross the cut.
(2) The answer $=$ count in $\operatorname{step}(1)+\frac{1}{2}$ (remaining edges)

Note that the "remaining edges" term is the same independent of which set v_{k+1} is assigned to. Thus, v_{k+1} needs to be placed in a set A or B that maximizes the number of edges crossing the cut.

Theorem: The greedy algorithm for MaxCut produces a cut of size no less than $\frac{m}{2}$

4 Lovasz Local Lemma

- "Gem" of the probabilistic method
- 1975 Lovasz \& Erdos: on hypergraph coloring

We have a collection $B_{1}, B_{2}, \cdots B_{n}$ of "bad events". Goal: $\operatorname{Pr}($ no "bad" event occurs) >0. i.e. $\operatorname{Pr}\left(\bigcap_{i=0}^{n} \bar{B}_{i}\right)>0 \Rightarrow$ There exists a "good" element in the sample space. How to show $\operatorname{Pr}\left(\bigcap_{i=0}^{n} \bar{B}_{i}\right)>0$?

Approache 1: $\operatorname{Pr}\left(B_{i}\right)$ is very small, then

$$
\operatorname{Pr}\left(\bigcap_{i=0}^{n} \bar{B}_{i}\right)=1-\operatorname{Pr}\left(\bigcup_{i=0}^{n} B_{i}\right) \geq 1-\sum_{i=1}^{n} \operatorname{Pr}\left(B_{i}\right)
$$

If $\sum_{i=1}^{n} \operatorname{Pr}\left(B_{i}\right)<1$, then $\operatorname{Pr}\left(\bigcap_{i=0}^{n} \bar{B}_{i}\right)>0$. So for example, if $\operatorname{Pr}\left(B_{i}\right)<\frac{1}{n}$, then this holds.

Approache 2: Independence

$$
\operatorname{Pr}\left(\bigcap_{i=0}^{n} \bar{B}_{i}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(\bar{B}_{i}\right) \text { (by independence) }
$$

If $\operatorname{Pr}\left(\bar{B}_{i}\right)>0$ for all i, we are done. In settings where $\operatorname{Pr}\left(\bar{B}_{i}\right)$ is not too small and \bar{B}_{i} 's are not mutually independent, we use Lovasz Local Lemma.

Idea: - $\operatorname{Pr}\left(B_{i}\right) \leq p$

- p is not too small, but small enough relative to the dependencies among the B_{i} 's.

Definition: Let $B_{1}, B_{2}, \cdots B_{n}$ be events, A directed graph $G=(V, E)$ with $V=\{1,2, \cdots n\}$ is a dependency graph of the events if every event B_{i} is mutually independent of $\left\{B_{j} \mid(i, j) \notin E\right\}$

Example: Consider an experiment in which we toss two fair, independent coins.
E_{1} : first coin toss is Head
E_{2} : second coin toss is Head
E_{e} : two coin tosses are identical

Figure 3: Relation of E_{1}, E_{2} and E_{3}
Is E_{1} mutually independent with respect to $\left\{E_{2}, E_{3}\right\}$? No. See edge 1. Also, dependency graph is not unique.

Lovasz Local Lemma: Let $B_{1}, B_{2}, \cdots B_{n}$ be events such that:
(1) $\operatorname{Pr}\left(B_{i}\right) \leq p$, for $\mathrm{i}=1,2, \cdots n$.
(2) Maximum outdegree of a dependency graph of $B_{1}, B_{2}, \cdots B_{n}$ is $\leq d$.
(3) $4 p d \leq 1$ (i.e. $p \leq \frac{1}{4}$)

Then $\left.\operatorname{Pr}\left(\bigcap_{i=0}^{n} \bar{B}_{i}\right)>0\right)$.
Example 1: We are given a n-vertex cycle. We want to properly color the vertices, i.e. no two adjacent vertices have the same color. Then, how many colors are suffice to choose? 3 colors.

Using Lovasz Local Lemma we will show that 8 or 9 colors suffice. Let us start with a palette of c colors. Each vertex is colored uniformly random using a color from the palette. Then, good event $=$ all pairs of adjacent vertices choose different colors.
Let $e_{1}, e_{2} \cdots e_{n}$ be the edges of the cycle. $B_{e_{i}}=$ both endpoints of e_{i} have the same color. Good event $=\bigcap_{i=1}^{n} \overline{B_{e_{i}}}$ and $\operatorname{Pr}\left(B_{e_{i}}\right)=\frac{1}{c}$. What about dependencies among $B_{e_{i}}^{\prime} s$?

Figure 4: Relation of $e_{1}, e_{2} \cdots e_{n}$. In this figure, it is easy to tell $\mathrm{d}=2$.
We need

$$
\begin{aligned}
4 p d & \leq 1 \\
4 \cdot \frac{1}{c} \cdot 2 & \leq 1 \\
c & \geq 8
\end{aligned}
$$

Instead of $d=2$, we had $d=1$, then $c \geq 4$.
Example 2: K-SAT An instance of SAT is a boolean formula in CNF. For example:

$$
(\underbrace{\overbrace{\bar{X}_{1}}^{\text {Literal }} \vee \bar{X}_{2}}_{\text {Clause }}) \wedge(\underbrace{X_{2} \vee \bar{X}_{3} \vee \bar{X}_{4}}_{\text {Clause }}) \wedge(\underbrace{\bar{X}_{1} \vee X_{4}}_{\text {Clause }})
$$

k -SAT $=$ special case of SAT in which each clause has exactly k literals. Is the given instance of k-SAT satisfiable?

Theorem: If each variable appears at most $T:=\frac{2^{k}}{4 k}$ clauses, then the given instance of k-SAT is satisfiable.

Proof: via Lovasz Local Lemma For each variable x_{i}, set it independently to true or false with probability $\frac{1}{2}$ each. For each clause C , define $B_{c}=$ event that C is False. $\operatorname{Pr}\left(B_{c}\right)=\frac{1}{2^{k}}$

Figure 5: k-SAT
Thus, $d \leq \frac{2^{k}}{4}$, Then $4 \cdot \frac{1}{2^{k}} \cdot \frac{2^{k}}{4}=1 \Rightarrow$ Lovasz Local Lemma

