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1 Probabilistic Method

Turning the ”MaxCut proof” into an algorithm.

. Las Vegas Algorithm
Algorithm . ]
Deterministic Algorithm

Pairwise Independence

Derandomization
Method of Conditional Probabilities

2 MaxCut Proof

Theorem. Let G = (V,E) be a graph with m edges. G has a cut with no less than m/2 edges
crossing it.

Algorithm 1: LAS VEGAS ALGORITHM OF MAXCUT :

1 repeat

2 Throw each vertex independently v € V into A or B with prob 1/2;
3 C «+ edges crossing the (A, B) cut;

4 until |C| > m/2;

Analyze. Let p= Pr(|C|> |m/2]), then
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Thus, the expected number of repetitions is O(m), which is, total running time is polynomial in
repetition.



3 Derandomization

Pairwise Independence. Let

1 ifvfallsin A
X, =
0 otherwise

We assumed that {X,|v € V} are mutually independent. Suppose {X,|v € V} are only pairwise
independent. i.e.

Pr(X,=1X,=0)=Pr(X,=1)

Pr(X, =1/X,=1) # Pr(X, =1)
Is it still the case that E[|C|] = %7 Yes. Constructing random variables that are pairwise inde-
pendent. Let m > 1,n = 2™ — 1, suppose we are given m mutually independent (0 — 1) random

variables Y1,Y2,Y3---Y,,. Let S C1,2,---m,S # 9, Xs = XORofY/s,i € S. Since the number of
such sets S is 2™ — 1, we have (2™ — 1) (0 — 1) random variables X.

Claim. {X;|S subseteql,2,3---m,S # ¢} are pairwise independent. Pr(X; =1) = %

S S’

Xs XS’

Figure 1: Pairwise Independent

We need a random variable X, for each vertex v € V. Thus we need |V |pairwise independent
random variables = [log, |V ||mutually independent random variables are needed. Since we only
need = [log, |[V|] random bits, we can generate all possible settings of These in O(|V|) time and
get the entire space. Then we explore each cut in the sample space and pick a cut of size no less
than %, which is guaranteed to exist.

Method of Conditional Probabilities.

Claim. There exists zx41 € {A, B}, E[C(A, B)|z1,x2, - xk+1] > E[C(A, B)|z1, 22, - - Tk]



E [Cut (A, B)] = ?

V1 Vi->A Vi->B
E [Cut (A, B) | A] E [Cut (A, B) | B]
\}] Va->A V2->B Vo->A Vy->B

E [Cut (A, B) | A, B]

Figure 2: Note that E[C(A, B)|x1,z2, - - - x| = size of a specific cut. {E[C(A, B)|x1, 2, - xi],z; €
{A, B}} denotes the conditional expectation of C(A, B), the size of the cut, conditioned on v; falling
into x;, fori =1,2,3--- k.

Proof:
1 1
E[C(Av B)‘lﬁl,xg, e .’L'k] = 5 ’ E[C(A>B>’$17$27 e .’L'k,A] + 5 ’ E[C(AvB)|x17x2> e xkaB]

Algorithm step at node E[C(A, B)|x1,x2, - xk]:
- Calculate E[C(A, B)|z1,x2,- -z, A] and E[C(A, B)|x1,x2, - xk, B]
- Travel to the ”child” node with larger expectation.

How to calculate E[C(A, B)|x1,z2,- -z, A]?
(1) Count number of edges with both end points fixed that cross the cut.
(2) The answer = count in step(1) 4 3(remaining edges)

2

Note that the "remaining edges” term is the same independent of which set vgy is assigned
to. Thus, vk11 needs to be placed in a set A or B that maximizes the number of edges crossing the
cut.

Theorem: The greedy algorithm for MaxCut produces a cut of size no less than %

4 Lovasz Local Lemma

- 7Gem” of the probabilistic method
- 1975 Lovasz & Erdos: on hypergraph coloring

We have a collection By, Ba, - B, of "bad events”. Goal: Pr(no "bad” event occurs) > 0.

ie. Pr(Ni, B;) > 0 = There exists a "good” element in the sample space. How to show
PT(H?ZO Bl) >07



Approache 1: Pr(B;) is very small, then

n n

Pr(ﬁ B)=1- PT(U B;)>1- ZPT(Bz‘)
i=0

=0 i=1

If >°7 | Pr(B;) < 1,then Pr((N, B;) > 0. So for example, if Pr(B;) < %, then this holds.

Approache 2: Independence

B;) = H Pr(B;) (by independence)
0 i=1

Pr(

3.
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If Pr(B;) > 0 for all i, we are done. In settings where Pr(B;) is not too small and B;’s are not
mutually independent, we use Lovasz Local Lemma.

Idea: - Pr(B;)<p
- p is not too small, but small enough relative to the dependencies among the B;’s.

Definition: Let By, Ba,- - B, be events, A directed graph G = (V, E) with V = {1,2,---n} is a
dependency graph of the events if every event B; is mutually independent of {B;|(4, j) ¢ E}

Example: Consider an experiment in which we toss two fair, independent coins.
FEq: first coin toss is Head

FE5: second coin toss is Head

FE.: two coin tosses are identical
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Figure 3: Relation of F, E5 and FEj

Is Ey mutually independent with respect to {FEs, Es} 7 No. See edge 1. Also, dependency
graph is not unique.



Lovasz Local Lemma: Let B, Bo,--- B, be events such that:

(1) Pr(B;) <p, fori=1, 2, ---n.

(2) Maximum outdegree of a dependency graph of By, Ba,- - B, is < d.
(3) 4pd <1 (i.e. p < )

Then Pr(N;_, Bi) > 0).

Example 1: We are given a n-vertex cycle. We want to properly color the vertices, i.e. no two
adjacent vertices have the same color. Then, how many colors are suffice to choose? 3 colors.

Using Lovasz Local Lemma we will show that 8 or 9 colors suffice. Let us start with a palette
of ¢ colors. Each vertex is colored uniformly random using a color from the palette. Then, good
event = all pairs of adjacent vertices choose different colors.

Let e1,e3--- e, be the edges of the cycle. B., = both endpoints of e; have the same color. Good
event = ()i_; Be, and Pr(B,,) = 1. What about dependencies among B/ s ?

N

Many edges here

Figure 4: Relation of ey, es - - - e,. In this figure, it is easy to tell d=2.

‘We need
dpd < 1
1
4.--.2<1
c
c>8

Instead of d = 2, we had d = 1, then ¢ > 4.

Example 2: K-SAT An instance of SAT is a boolean formula in CNF. For example:

Literal
( X1 VX2)A(XaV X3V X4)A(X1VXy)
~~ N——
Clause Clause Clause

!



k-SAT = special case of SAT in which each clause has exactly k literals. Is the given instance of
k-SAT satisfiable?

Theorem: If each variable appears at most T := % clauses, then the given instance of k-SAT is
satisfiable.

Proof: via Lovasz Local Lemma For each variable x;, set it independently to true or false
with probability % each. For each clause C, define B, = event that C is False. Pr(B.) = 2%

2k 2k 2k 2k 2k

4k 4k 4k 4k 4k

Figure 5: k-SAT

Thus, d < %, Then 4 - 2% . % =1 = Lovasz Local Lemma



