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Scribe: Qianhang Sun

1 Probabilistic Method

Turning the ”MaxCut proof” into an algorithm.

Algorithm

{
Las Vegas Algorithm

Deterministic Algorithm

Derandomization

{
Pairwise Independence

Method of Conditional Probabilities

2 MaxCut Proof

Theorem. Let G = (V,E) be a graph with m edges. G has a cut with no less than m/2 edges
crossing it.

Algorithm 1: las vegas algorithm of maxcut :

1 repeat
2 Throw each vertex independently v ∈ V into A or B with prob 1/2;
3 C ← edges crossing the (A, B) cut;

4 until |C| ≥ m/2;

Analyze. Let p = Pr(|C| ≥ bm/2c), then

E[|C|] =
m∑
c=0

c · Pr(|C| = c)

=

bm/2c−1∑
c=0

c · Pr(|C| = c) +
∑

c=bm/2c

c · Pr(|C| = c)

≤ (
m

2
− 1) · (1− p) + m · p

Since E[|C|] = m
2 ,

m

2
≤ (

m

2
− 1) · (1− p) + m · p

≤ m

2
− 1− p · (m

2
− 1) + m · p

p ≥ 1

1 + m
2

Thus, the expected number of repetitions is O(m), which is, total running time is polynomial in
repetition.
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3 Derandomization

Pairwise Independence. Let

Xv =

{
1 if v falls in A

0 otherwise

We assumed that {Xv|v ∈ V } are mutually independent. Suppose {Xv|v ∈ V } are only pairwise
independent. i.e.

Pr(Xu = 1|Xv = 0) = Pr(Xu = 1)

Pr(Xu = 1|Xw = 1) 6= Pr(Xu = 1)

Is it still the case that E[|C|] = m
2 ? Yes. Constructing random variables that are pairwise inde-

pendent. Let m ≥ 1, n = 2m − 1, suppose we are given m mutually independent (0 − 1) random
variables Y1, Y2, Y3 · · ·Ym. Let S ⊆ 1, 2, · · ·m,S 6= ø, Xs = XORofY ′i s, i ∈ S. Since the number of
such sets S is 2m − 1, we have (2m − 1) (0− 1) random variables Xs.

Claim. {Xs|S subseteq1, 2, 3 · · ·m,S 6= ø} are pairwise independent. Pr(Xs = 1) = 1
2

Figure 1: Pairwise Independent

We need a random variable Xv for each vertex v ∈ V . Thus we need |V |pairwise independent
random variables ⇒ dlog2 |V |emutually independent random variables are needed. Since we only
need ⇒ dlog2 |V |e random bits, we can generate all possible settings of These in O(|V |) time and
get the entire space. Then we explore each cut in the sample space and pick a cut of size no less
than m

2 , which is guaranteed to exist.

Method of Conditional Probabilities.

Claim. There exists xk+1 ∈ {A,B}, E[C(A,B)|x1, x2, · · ·xk+1] ≥ E[C(A,B)|x1, x2, · · ·xk]
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Figure 2: Note that E[C(A,B)|x1, x2, · · ·xk] = size of a specific cut. {E[C(A,B)|x1, x2, · · ·xk], xi ∈
{A,B}} denotes the conditional expectation of C(A, B), the size of the cut, conditioned on vi falling
into xi, for i = 1, 2, 3 · · · k.

Proof:

E[C(A,B)|x1, x2, · · ·xk] =
1

2
· E[C(A,B)|x1, x2, · · ·xk, A] +

1

2
· E[C(A,B)|x1, x2, · · ·xk, B]

Algorithm step at node E[C(A,B)|x1, x2, · · ·xk]:
- Calculate E[C(A,B)|x1, x2, · · ·xk, A] and E[C(A,B)|x1, x2, · · ·xk, B]
- Travel to the ”child” node with larger expectation.

How to calculate E[C(A,B)|x1, x2, · · ·xk, A]?
(1) Count number of edges with both end points fixed that cross the cut.
(2) The answer = count in step(1) + 1

2(remaining edges)

Note that the ”remaining edges” term is the same independent of which set vk+1 is assigned
to. Thus, vk+1 needs to be placed in a set A or B that maximizes the number of edges crossing the
cut.

Theorem: The greedy algorithm for MaxCut produces a cut of size no less than m
2

4 Lovasz Local Lemma

- ”Gem” of the probabilistic method
- 1975 Lovasz & Erdos: on hypergraph coloring

We have a collection B1, B2, · · ·Bn of ”bad events”. Goal: Pr(no ”bad” event occurs) > 0.
i.e. Pr(

⋂n
i=0 B̄i) > 0 ⇒ There exists a ”good” element in the sample space. How to show

Pr(
⋂n

i=0 B̄i) > 0 ?
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Approache 1: Pr(Bi) is very small, then

Pr(

n⋂
i=0

B̄i) = 1− Pr(

n⋃
i=0

Bi) ≥ 1−
n∑

i=1

Pr(Bi)

If
∑n

i=1 Pr(Bi) < 1,then Pr(
⋂n

i=0 B̄i) > 0. So for example, if Pr(Bi) <
1
n , then this holds.

Approache 2: Independence

Pr(

n⋂
i=0

B̄i) =

n∏
i=1

Pr(B̄i) (by independence)

If Pr(B̄i) > 0 for all i, we are done. In settings where Pr(B̄i) is not too small and B̄i’s are not
mutually independent, we use Lovasz Local Lemma.

Idea: - Pr(Bi) ≤ p
- p is not too small, but small enough relative to the dependencies among the Bi’s.

Definition: Let B1, B2, · · ·Bn be events, A directed graph G = (V,E) with V = {1, 2, · · ·n} is a
dependency graph of the events if every event Bi is mutually independent of {Bj |(i, j) /∈ E}

Example: Consider an experiment in which we toss two fair, independent coins.
E1: first coin toss is Head
E2: second coin toss is Head
Ee: two coin tosses are identical

Figure 3: Relation of E1, E2 and E3

Is E1 mutually independent with respect to {E2, E3} ? No. See edge 1. Also, dependency
graph is not unique.
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Lovasz Local Lemma: Let B1, B2, · · ·Bn be events such that:
(1) Pr(Bi) ≤ p, for i=1, 2, · · ·n.
(2) Maximum outdegree of a dependency graph of B1, B2, · · ·Bn is ≤ d.
(3) 4pd ≤ 1 (i.e. p ≤ 1

4)
Then Pr(

⋂n
i=0 B̄i) > 0).

Example 1: We are given a n-vertex cycle. We want to properly color the vertices, i.e. no two
adjacent vertices have the same color. Then, how many colors are suffice to choose? 3 colors.

Using Lovasz Local Lemma we will show that 8 or 9 colors suffice. Let us start with a palette
of c colors. Each vertex is colored uniformly random using a color from the palette. Then, good
event = all pairs of adjacent vertices choose different colors.
Let e1, e2 · · · en be the edges of the cycle. Bei = both endpoints of ei have the same color. Good
event =

⋂n
i=1 B̄ei and Pr(Bei) = 1

c . What about dependencies among B′eis ?

Figure 4: Relation of e1, e2 · · · en. In this figure, it is easy to tell d=2.

We need

4pd ≤ 1

4 · 1

c
· 2 ≤ 1

c ≥ 8

Instead of d = 2, we had d = 1, then c ≥ 4.

Example 2: K-SAT An instance of SAT is a boolean formula in CNF. For example:

(

Literal︷︸︸︷
X̄1 ∨X̄2︸ ︷︷ ︸
Clause

) ∧ (X2 ∨ X̄3 ∨ X̄4︸ ︷︷ ︸
Clause

) ∧ (X̄1 ∨X4︸ ︷︷ ︸
Clause

)
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k-SAT = special case of SAT in which each clause has exactly k literals. Is the given instance of
k-SAT satisfiable?

Theorem: If each variable appears at most T := 2k

4k clauses, then the given instance of k-SAT is
satisfiable.

Proof: via Lovasz Local Lemma For each variable xi, set it independently to true or false
with probability 1

2 each. For each clause C, define Bc = event that C is False. Pr(Bc) = 1
2k

Figure 5: k-SAT

Thus, d ≤ 2k

4 , Then 4 · 1
2k
· 2k4 = 1⇒ Lovasz Local Lemma
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