
Lecture Notes CS:5360 Randomized Algorithms
Lectures 14 and 15: Oct 9 and Oct 11, 2018

Scribe: Andrew Marmaduke

1 Proof of (Upper Tail) Chernoff Bounds

Theorem 1. Let X1, X2, . . . , Xn be independent 0 − 1 random variables with Pr(Xi = 1) = pi.

Let X =
n∑
i=1

Xi. Let µ denote E[X]. Then for any δ > 0,

Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
Proof: For arbitrary t > 0, Pr(X ≥ a) = Pr(etx ≥ eta). By Markov’s Inequality, Pr(etx ≥ eta) ≤
E[etx]

eta
. To get a good upper bound on the Pr(X ≥ a) we want to find a t > 0 that minimizes

E[etx]

eta
.

In general, bounds of the form Pr(X ≥ a) ≤ min
t>0

E[etx]

eta
are called Chernoff Bounds. Now let us

simplify
E[etx]

eta
. First, etx = et

∑n
i=1Xi =

n∏
i=1

etXi . Next, E[etx] = E[
n∏
i=1

etXi] =
n∏
i=1

E[etXi]. Note

that we can pull the product out of the expectation because the X ′is are independent. Additionally,
it is sufficient to show that this final equality is actually ≤ and the proof will still go through. Now,
with some algebra we have, E[etXi] = 1 + pi(e

t − 1). Using the fact that 1 + x ≤ ex for all x we

have, 1 + pi(e
t − 1) ≤ epi(e

t−1). Thus, E[etx] ≤
n∏
i=1

epi(e
t−1) = e

∑n
i=1 pi(e

t−1) = e(e
t−1)µ. This gives

us, Pr(X ≥ a) ≤ e(e
t−1)µ

eta . We now plug in a = (1 + δ)µ to obtain Pr(X ≥ (1 + δ)µ) ≤ e(e
t−1)µ

et(1+δ)µ
=(

ee
t−1

et(1+δ)

)µ
. Recall that we can pick any t > 0, but we want to minimize this expression. In order

to do so, we pick t = − ln(1 + δ). Therefore, Pr(X ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)1+δ

)µ
.

As an aside, it is useful to think about how the proof structure can apply to relaxed random
variables, like X ′is that take on the values 1 or −1, or X ′is such that 0 ≤ Xi ≤ ci.

Now we will use the more general form (or the (a) form) proved above to derive the (b) and
(c) forms. First, the (b) form:

Corollary 2. For 0 < δ ≤ 1, Pr(X ≥ (1 + δ)µ) ≤ e−µδ2/3

Proof: We will show that for 0 < δ ≤ 1,

(
eδ

(1 + δ)1+δ

)µ
≤ e−µδ2/3. In order to show this, we need

1

δ = 1/2

f(0)

f(1)

Figure 1: Sketch of how the function f(δ) behaves on the interval [0, 1].

to show:

eδ

(1 + δ)1+δ
≤ − δ2/3

δ − (1 + δ) ln(1 + δ) ≤ − δ2/3
δ − (1 + δ) ln(1 + δ) + δ2/3 ≤ 0

Let f(δ) = δ−(1+δ) ln(1+δ)+δ2/3. We will show f(δ) ≤ 0 for 0 < δ ≤ 1. Note that f(0) = 0, and
f(1) = 4/3−2 ln(2) < 0. Next, f ′(δ) = − ln(1+δ)+2δ/3 with f ′(0) = 0 and f ′(1) = 2/3−ln(2) < 0.
Finally, f ′′(δ) = −1

1+δ + 2/3 with f ′′(0) = −1/3 and f ′′(1) > 0. Thus, as δ increases the second
derivative, f ′′(δ), increases with f ′′(1/2) = 0. Therefore, the function f(δ) ≤ 0, for 0 < δ ≤ 1.

Corollary 3. For R ≥ 6µ, Pr(X ≥ R) ≤ 2−R

Proof: Let R = (1 + δ)µ, so R
µ = 1 + δ ≥ 6. Thus, δ ≥ 5. Note that

(
eδ

(1 + δ)1+δ

)µ
≤

2

(
eδ

(1 + δ)1+δ

)µ
eµ, because µ ≥ 0. Now we have:

(
eδ

(1 + δ)1+δ

)µ
≤
(

eδ

(1 + δ)1+δ

)µ
eµ

=

(
e

1 + δ

)µ(1+δ)
≤
(e

6

)µ(1+δ)
≤ (1/2)µ(1+δ)

= 2−R

Therefore, Pr(X ≥ R) ≤ 2−R as desired.
Note that these bounds on δ are not tight. Form (b) applies over a larger range and form (c)

does not need to be as large as stated.

2 Applications

2.1 Randomized Routing

General Setting. We have a network of processors (or machines or nodes). Each node has some
number of packets it wants to send to possibly different destinations. The goal is to route these
packets in parallel so that time taken by the slowest packet is minimized. In particular, congestion
and bandwidth, are the principle problems. To make the algorithm and analysis simpler we assume
a synchronous system. We assume that nodes are executing a routing protocol over a directed
network with an implicit queuing policy.

Typical step of routing protocol at node v.

1. receive packets sent along its incoming edges at previous step,

2. v performs some computations,

3. v sends packets along outgoing edges.

Note that only one packet can be sent along a directed edge at each step.

3

0000

0100

0010

1000
0001

Figure 2: 4-dimensional hypercube with each vertex labeled with four bits.

Permutation Routing on a Hypercube.

Definition 4. An n-dimensional hypercube contains N = 2n nodes, each with a distinct label from
{0, 1}n (or n-bit binary strings). Two nodes u and v are connected by an edge if label(u) and
label(v) differ in exactly one position.

Example. 5-Dimensional Hypercube Neighborhood

1

2
3

4
5

01001

00001

11001

01000

01011

01101

Figure 3: 5-dimensional hypercube neighborhood around vertex 01001.

4

Observation 5. • Each node in an n-dimensional hypercube has n neighbors

• The number of edges is 2n × n
2

• The diameter of the network is n because all shortest paths have length ≤ n.

Definition 6. Permutation routing is the routing problem in which each node holds a packet and
the destinations of different packets are different.

Example. 2-dimensional hypercube

00 01

1110

11

00

01

10

Figure 4: 2-dimensional hypercube with example packet routing.

Our goal is to solve the permutation routing problem on a hypercube.

Bit-fixing Algorithm. Suppose we have a packet at node (a1, a2, . . . , an) whose destination is
(b1, b2, . . . , bn).

Algorithm 1: Bit Fix Step(Dimension n, Packet Source a, Packet Destination b):

1 for i← 1 to n do
2 if ai 6= bi then
3 send packet along edge in dimension i
4 end

5 end

Example. Node 001011 holds packet with destination 111101.

001011, source

⇒ 101011, bit 1 fixed

⇒ 111011, bit 2 fixed

⇒ 111111, bit 4 fixed

⇒ 111101, bit 5 fixed, destination

We are using a FIFO queuing policy with arbitrary tie-breaking.

5

Observation 7. The algorithm uses a shortest path for every packet.

Lemma 8. The bit-fixing algorithm requires Ω(
√
N) = Ω(2n/2) steps.

We will show an example permutation routing configuration to demonstrate this. The trouble
is ultimately from node congestion. Let n be even. For each ā = (a1, a2, . . . , an/2, an/2+1, . . . , an)
let us use āL to denote (a1, a2, . . . , an/2) and āR = (an/2+1, an/2+2, . . . , an). For a packet at node
ā = āL · āR make its destination āR · āL. For example, a packet at 011001 will be sent to 001011.

source intermediate node destination

āL · āR āR · āR āR · āL
b̄L · āR āR · āR āR · b̄L

There are 2n/2 packets that reach node āR · āR. Since each node has n edges, it takes Ω(2n/2/n)
steps for āR · āR to process all of these packets. This example can be polished to remove the division
by n. This is the best, as far as deterministic protocols, that we know of.

Much Faster Randomized Protocol.
Phase I. Every packet is sent (using bit-fixing) to a randomly selected destination.
Phase II. Every packet is sent (using bit-fixing) from the intermediate random destination to

its final destination.

Theorem 9. With probability ≥ 1− 1
N all packets reach their destinations in O(n) steps.

Proof: Let us assume that Phase II is executed after Phase I is completed. Let M be a packet (or
message). Let T1(M) denote the number of steps it takes for M to reach its Phase I destination.
Let X1(e) denote the number of packets in Phase I that traverse edge e. Then, if M traverses

path P in Phase I, T1(M) ≤
∑
e∈P

X1(e). The intuition behind this is that, worst case, M must

wait at every edge for every packet that traverses that edge. Note that X1 are not 0− 1 mutually
independent random variables. We will bound the right hand side of this inequality. Let T1(P)

denote
∑
e∈P

X1(e).

Definition 10. Let P = (v0, v1, . . . , vm−1, vm) be an arbitrary path of length m. Let the bit in
position j be fixed along edge (vi−1, vi). A packet M is said to be active for vi−1 if it reaches vi−1
before bit j is fixed.

6

v0 vi−1 vi vm

P

M

bit j is
fixed

Figure 5: Example path with pair vi−1 and vi for which M may be active.

Example. Suppose vi−1 = 0000 and vi = 0010 so bit 3 is fixed. Also, that m is at source 1110
with destination 0001 (note that we’re still in Phase I). If M ’s jth bit is fixed prior to vi−1, then
M will not travel to vi. In other words, M would not be active for vi−1.

Proof to be continued

7

