
Lecture Notes CS:5360 Randomized Algorithms
Week 9: October 22, 2018

Scribe: Yashila Permeswaran

1 Skip Lists

GOAL: Implement a simple data structure that supports search, insert, and delete inO(log n)
time each.

1.1 Initial Idea: ”Deterministic” Skip Lists

The data structure contains some number of levels (L0, L1, ..., LN). Each level is an ordered
list of elements. L0 contains all elements. The set of elements in Li+1 ⊆ set of elements in
Li.

Figure 1: Example Skip List

We used the deterministic rule ”keep every alternate element” in going from Li to Li+1.
Search 16 is represented by the red arrows in the above picture. Elements in the search
path are −∞,−∞, 4, 4, 15, 15. Search returns the largest element smaller than the searched
number (15 in this case).
-Deterministic rule is hard to maintain for insert and delete so we will try to use random-
ization.

1.2 Probabilistic Rule

Each element in Li is chosen independently with probability 1
2

to be copied to Li+1 Search
works as before.

1.2.1 Insert

Insert k works as follows:

• First search for k and find search path et, et−1, ..., e0

• Insert k immediately after e0

• We toss a fair coin to determine if k should be inserted into L1

1

• If we determine k should be inserted, we walk back the search path to the first element
ei in Level L1

• We insert k immediately after ei in L1

• We continue coin tossing until tails

1.2.2 Delete

Delete k also involves doing search on k first and then removing k from all levels it occurs in

1.2.3 Runtime

What is the running time of search, insert, and delete? Search can be viewed as a sequence
of down and right arrow traversals.

Figure 2: Example skip list traversal

Any elements visited when moving right are visited because they are smaller than k. If the
element was on previous levels, we would have visited it.
How many down traversals can we make? Let He denote the height of element e. He is a
geometrically distributed random variable.

P (He ≥ k) =
1

2k−1

∴ Setting k = 3log2n gives us P (He ≥ 3log2n) = 2
n3 .

2

Let H denote maxeHe.

P (H ≥ 3log2n) = P (∃ee : He ≥ 3log2n) (1)

≤
∑

eP (He ≥ 3log2n) (2)

=
2

n2
(3)

(2) is established by union bound. ∴ With probability ≥ 1− 2
n2 , H < 3log2n.

Let L be the length of the search path. We will upper bound P (L ≥ clog2n) for appropriately
chosen c.

P (L ≥ clog2n) = P (L ≥ clog2nH ≥ 3log2n)P (H ≥ 3log2n) (4)

+ P (L ≤ clog2nH < 3log2n)P (H < 3log2n) (5)

≤ 2

n2
+ P (L ≥ clog2nH < 3log2n) (6)

We want to focus on upper bounding P (L ≥ clog2nH < 3log2n).
Now view L as being obtained via a sequence of coin tosses. We are given that the number
of heads < 3log2n.
∴ If L = clog2n, the number of tails ≥ (c− 3) log2 n. The expected number of tails is c

2
log n

Let T = number of tails. We want to use Chernoff bounds to upper bound the P (T ≥
(c− 3) log n).

(1 + δ)µ = (1 + δ)
c

2
log n = (c− 3)log

δ = 1− 6

c
If we pick c > 6, δ will satisfy 0 < δ < 1. Using form (b) of the Chernoff bounds gives us:

P (t ≥ (c− 3) log n) ≤ e
−(1− 6

c)
2

3
c
2
logn (7)

= e
−(c−6)2

6c
logn (8)

We can pick c large enough to make (c−6)2
6c

as large as we want to ensure P (T ≥ (c−3) log n) ≤
1
n2 . Using this, we can plug into equation (6) to get the following:

P (L ≥ c log n) ≤ 2

n2
+

1

n2
(9)

=
3

n2
(10)

Insert time = time to search + height of element being inserted ∴ Insert time is O(log n)
with high probability. The time analysis of delete is similar.

2 Extensions to Chernoff Bounds

2.1 Negative Dependence

Let X1, X2, ..., Xn be a random variable such that for any I, J ⊆ 1, 2, ..., n with I ∩ J = ∅
given that X ′is where i ∈ I take on ”high values”, the probability that X ′js where j ∈ J take
on ”low values” increases.

3

2.1.1 Example: Balls in Bins

For i = 1, 2, ..., n let

Bi =

{
1 if bin is empty

0 otherwise
(11)

B1, B2, ...Bn exhibit negative dependence.
Implications of negative dependence

1. If X1 and X2 exhibit negative dependence then

E[X1X2] ≤ E[X1]E[X2]

This makes sense because

P (X1 = high ∩X2 = high) ≤ P (X1 = high)P (X2 = high)

2. If X1, X2, ..., Xn exhibit negative dependence then

E[
n∏
i=1

fi(Xi)] ≤
n∏
i=1

E[fi(Xi)]

for non-decreasing function fi. A special case of 2. is

E[
n∏
i=1

etxi] ≤
n∏
i=1

E[etxi]

Mutual independence gave us = in place of the ≤.

Let B =
∑n

i=1Bi so B denotes the number of empty bins.

E[B] =
n∑
i=1

E[Bi] (12)

=
n∑
i=1

P (Bi = 1) (13)

=
n∑
i=1

(1− 1

n
)n (14)

≈ n

e
(15)

So let µ denote n
e
. Since B′is exhibit negative dependence, we can use Chernoff Bounds

on B.

∴ P (B ≥ (1 + δ)
n

e
) ≤ e−

δ2

3
µ (16)

≤ 1

exp(n)
(17)

for any small constant δ where 0 < δ < 1

4

2.2 K-Wise Independence

Recall that X1, X2, ..., Xn are k-wise independent if for any I ⊆ 1, 2, ..., n, |I| ≤ k and any
i ∈ I

P (Xi = xi| ∧j∈I Xj = xj) = P (Xi = xi)

The setting k = 2 is called pair-wise independence. There are Chernoff bounds for k-wise
independent random variables (Srinivasan, Schmidt, Siegel).

2.3 Bounded Dependence

Each random variable is independent with respect to all other random variables except for
at most d. This is usually defined with a dependency graph.

Figure 3: Example of bounded dependency graph. X1 is independent of X2 and X5. The outdegree of each
node ≤ d

Chernoff Bounds worsen an exponential ”1
d
” factor

2.3.1 Example

P (X ≥ (1 + δ)µ) ≤ (e
−δ2µ

3)
1
d

2.4 Chernoff-Hoeffding bounds

There are extensions to Chernoff bounds that allow X ′is to take on values other than 0 and
1. THese are called Chernoff-Hoeffding bounds.

3 Probabilistic Method

Refers to technique for proving that an object with certain properties exist. Sometimes
probabilistic method proofs can be turned into algorithms. These algorithms may be slightly
weaker and not hold all the properties that the proof does.

3.1 Example: MaxCut

INPUT: A graph G = (V,E)
OUTPUT: A partition of V into (V1, V2) such that the number of edges between V1 and V2
is maximized.

5

This is NP-hard. Could we get an efficient approximation algorithm? i.e. could we design
an algorithm such that the number of edges crossing the partition it produces ≥ 90% of the
size of the optimal cut.

Theorem 1. Let G = (V,E) be a graph with m edges. Then there exists a partition (V1, V2)
of V such that ≥ m

2
edges cross that (V1, V2) partition.

Proof. Take each vertex v ∈ V and place it in A or in B independently with probability =
1
2
. Let the edges be e1, e2, ..., em. For i = 1, 2, ...,m let

Xi =

{
1 if ei crosses the (A,B) partition

0 otherwise
(18)

P (Xi = 1) =
1

2

E[Xi] =
1

2

E[X] =
m

2

where

X =
m∑
i=1

Xi

X = number of edges crossing (A,B) partition. Since m
2

is the average, there must be some
cut that is at least m

2
.

6

