
CS:5350 Homework 4, Spring 2016
Due in class on Thu, Feb 25

Collaboration: You are welcome to form groups of size 2 and work on your homeworks in
groups. Of course, you are not required to work in groups. Every group should make one
submission and names of both group members should appear on the submission and both students
in a group will receive the same score. Other than the TA and the professor, you can only discuss
homework problems with your group partner. Collaboration can be positive because talking to
someone else about these problems can help to clarify your ideas and you will also (hopefully) get
to hear about different ways of thinking about the problem. On the other hand, collaboration
can be negative if one member of the group rides on work being done by the other member –
please avoid this situation. If your solutions are (even partly) based on material other than what
has been posted on the course website, you should clearly acknowledge your outside sources.
Late submissions: No late submissions are permitted. You will receive no points for your
submission if your submission is not turned in at the beginning of class on the due date.
Evaluation: Your submissions will be evaluated on correctness and clarity. Correctness is of
course crucial, but how clearly you communicate your ideas is also quite important.

1. This problem is related to the weighted interval scheduling (WIS) problem discussed in
class. For ease of exposition, let us assume that all start and finish times of intervals are
distinct. Also recall that the weights of all intervals are non-negative.

(a) Suppose that we label the intervals I1, I2, . . . , In in left-to-right order of start times.
In other words, the labeling I1, I2, . . . , In is such that s1 < s2 < · · · < sn. Let OPT (j)
denote the weight of an optimal solution to WIS with input {I1, I2, . . . , Ij}. Prove
or disprove the following recurrence:

OPT (j) = max{OPT (j − 1), OPT (p(j)) + wj}

for all j, 1 ≤ j ≤ n, and OPT (0) = 0.

Here p(j) is the maximum index k < j such that Ik does not intersect Ij . If no such
k exists, then p(j) = 0.

(b) Assume the same labeling as in part (a). But, now let OPT (j) be the weight of
an optimal solution to WIS with input {Ij , Ij+1, . . . , In}. Prove or disprove the
following recurrence:

OPT (j) = max{OPT (j + 1), OPT (q(j)) + wj}

for all 1 ≤ j ≤ n and OPT (n + 1) = 0.

Here q(j) is the minimum index k > j such that Ik does not intersect Ij . If no such
k exists, then q(j) = n + 1.

2. (This problem is from “Algorithms” by Dasgupta, Papadimitriou, and Vazirani.) A certain
string-processing language offers a primitive operation which splits a string into two pieces.
Since this operation involves copying the original string, it takes n units of time for a string
of length n, regardless of the location of the cut. Suppose, now, that you want to break
the string into many pieces. The order in which the breaks are made can affect the total
running time. For example, if you want to cut a 20-character string at positions 3 and 10,
then making the first cut at position 3 incurs a cost of 20 + 17 = 37, whereas cutting at
position 10 first, incurs a cost of 20 + 10 = 30.

Give a dynamic programming algorithm that, given the locations of m cuts in a string of
length n, finds the minimum cost of breaking the string into m + 1 pieces.

Notes: To be more concrete, suppose that the given string is S = s1s2 . . . sn. A cut at
position i, 1 ≤ i ≤ n − 1, partitions S into a prefix s1s2 . . . si and a suffix si+1si+2 . . . sn.

1



The input to the problem is a string S = s1s2 . . . sn and a set {j1, j2, . . . , jm} of m cut
positions. For each k, 1 ≤ k ≤ m, jk satisfies 1 ≤ jk ≤ n− 1.

How to write your solution: (i) First define your subproblems carefully. Your sub-
problems will be defined using some number of parameters; make sure you clearly state
the range of values these parameters can take. (ii) Second, state the recurrence the relates
the cost of an optimal solution of a subproblem to costs of optimal solutions to smaller
subproblems. Make sure that the base cases of your recurrence are accurately specified.
(iii) Third, describe how you plan to store solutions of your subproblems and the order in
which your data structure will be filled. (iv) Finally, write pseudocode that implements the
dynamic programming algorithm that computes the minimum cost of cutting the string
via the given cuts.

3. (This problem is also from “Algorithms” by Dasgupta, Papadimitriou, and Vazirani.)
Given integers n and k, along with probabilities p1, p2, . . . , pn ∈ [0, 1], you want to de-
termine the probability of obtaining exactly k heads, when n biased coins are tossed inde-
pendently at random, where pi is the probability that the ith coin comes up heads. Give
an O(nk) dynamic programming algorithm for this task. Assume that you can multiply
and add numbers in the range [0, 1] in constant time each.

Notes: The guidelines on “How to write your solution” from Problem 2 apply to this
problem as well.

2


