Lecture 15: The Floyd-Warshall
Algorithm
CLRS section 25.2

Outline of this Lecture

e Recalling the all-pairs shortest path problem.

e Recalling the previous two solutions.

e The Floyd-Warshall Algorithm.

The All-Pairs Shortest Paths Problem

Given a weighted digraph G = (V, E) with a weight
function w : E — R, where R is the set of real num-
bers, determine the length of the shortest path (i.e.,
distance) between all pairs of vertices in GG. Here we
assume that there are no cycle with zero or negative
COst.

O-2 -0 G2 3
e
OZE 26 00
d C d C

without negative cost cycle with negative cost cycle

Solutions Covered in the Previous Lecture

Solution 1: Assume no negative edges.
Run Dijkstra’s algorithm, n times, once with each
vertex as source.
O(n3logn). O(n3) with more sophisticated data
structures.

Solution 2: Assume no negative cycles.
Dynamic programming solution, based on a nat-
ural decomposition of the problem.
O(n*). O(n3logn) using “ repeated squaring”.

This lecture: Assume no negative cycles.

develop another dynamic programming algorithm, the
Floyd-Warshall algorithm, with time complexity O(n3).
Also illustrates that there can be more than one way
of developing a dynamic programming algorithm.

3

Solution 3: the Input and Output Format

As in the previous dynamic programming algorithm,
we assume that the graph is represented by ann x n
matrix with the weights of the edges:

0 if i = j,
w;; =4 w(i,j) ifie#jand (4,5) € E,
00 ifi = jand (i,7) € E.

Output Format: an n x n distance D = [d;;] where
d;; 1s the distance from vertex ¢ to j.

Step 1: The Floyd-Warshall Decomposition

Definition: The vertices vy, vs, ..., v;_1 are called the
intermediate vertices of the path p = (v1, vp, ..., vp).

o Let d,g.“) be the length of the shortest path from 3
to 5 such that all intermediate vertices on the path
(ifany) areinset {1,2,...,k}.

dg)) Is set to be w;;, I.€., no intermediate vertex.
Let D(¥) be the n x n matrix [dg.“)].

e Claim: dg.z) IS the distance from 7 to 5. So our aim
is to compute D(").

e Subproblems: compute D) fork = 0,1,-- -, n.

Step 2: Structure of shortest paths

Observation 1:

A shortest path does not contain the same vertex twice.
Proof: A path containing the same vertex twice con-

tains a cycle. Removing cycle gives a shorter path.

Observation 2: For a shortest path from 2 to 5 such
that any intermediate vertices on the path are chosen
from the set {1, 2, ..., k}, there are two possibilities:

1. k is not a vertex on the path,

The shortest such path has length a1,

iJ

2. k is a vertex on the path.
The shortest such path has length dgj_l) + d,g;._l).

Step 2: Structure of shortest paths

Consider a shortest path from ¢ to 5 containing the
vertex k. It consists of a subpath from ¢ to k£ and a
subpath from k& to j.

Each subpath can only contain intermediate vertices
in {1,....,k — 1}, and must be as short as possible,
namely they have lengths d,f,f_l) and d,g;_l).

Hence the path has length d(k 1) + d(k L),

Combining the two cases we get

k) — k=1 4(k=1) (k—1)
2.7 mln{ i d —I—d }

Step 3: the Bottom-up Computation

e Bottom: D(0) = [w;;], the weight matrix.

e Compute D) from D(*~1) ysing
(k) _ i (k—1) (k—1) (k—1)
d¥) = min <dij A at)

fork=1,...,n.

The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall(w, n)
{ fori =1tondo initialize
fory =1tondo
{ DO, j]1 = wls, 41;
pred[i, j] = nil;

}

fork=1tondo dynamic programming
fori = 1tondo
forj =1tondo
it (d*=D [, k] 4+ d* D[k, 5] < dF=D, 5])
{dP)i, 5] = d*=D[i, k] + d k=D [k, 5];
pred[i, j] = k;}
else dF)[i, 5] = dk—1D)[;, 4];
return d(™M[1..n, 1..n];

}

Comments on the Floyd-Warshall Algorithm

e The algorithm’s running time is clearly ©(n3).

e The predecessor pointer pred|i, j| can be used
to extract the final path (see later).

e Problem: the algorithm uses ©(n3) space.
It is possible to reduce this down to @ (n?) space
by keeping only one matrix instead of n.
Algorithm is on next page. Convince yourself that
it works.

10

The Floyd-Warshall Algorithm: Version 2

Floyd-Warshall(w, n)
{ fori =1tondo initialize
forj =1ton do
{ dli, 5] = wls, 5
pred[t, j] = nal;

}

for k = 1ton do dynamic programming
for: = 1 ton do
forj =1tondo
it (d[s, k] + d[k, 5] < d[i, 5])
{dls, j] = dli, k] + d[k, j];
pred[i, j] = k;}
return d[1..n, 1..n];

}

11

Extracting the Shortest Paths

The predecessor pointers pred|i, j| can be used to
extract the final path. The idea is as follows.

Whenever we discover that the shortest path from 3
to 5 passes through an intermediate vertex k, we set
pred[i, j] = k.

If the shortest path does not pass through any inter-
mediate vertex, then pred|i, j] = nil.

To find the shortest path from 7 to 4, we consult pred|s, 7].
If it is nil, then the shortest path is just the edge (4, 5).
Otherwise, we recursively compute the shortest path
from i to pred|i, 7] and the shortest path from pred|s, ;]
to j.

12

The Algorithm for Extracting the Shortest Paths

Path(z, 5)
{
if (pred|i, j] = nil) single edge
output (¢, 5);
else compute the two parts of the path

{
Path(z, pred[i, 7]);
Path(pred[s, 5], j);

13

Example of Extracting the Shortest Paths

Find the shortest path from vertex 2 to vertex 3.

2.
2.
2.

3 Path(2,3)
4.3 Path(2,4)
5..4..3 Path(2,5)
5..4..3 Path(5,4)
4.3 Path(4, 3)
4..6..3 Path(4,6)

6..3 Path(6,3)

pred
pred
pred
pred
pred
pred

pred|

2,3

o

nal
nl
nl
nl

Output(2,5)
Output(5,4)

Output(4,6)
Output(6,3)

14

