
Some Experiments with Slow Sorting

Here is a Mathematica implementation of Insertion Sort.

InsertionSort Y_List : �

Module i, j, key, X � Y , Do key � X i ; j � i � 1; While j � 0 && X j � key ,
X j � 1 � X j ; j � � ; X j � 1 � key , i, 2, Length X ; X

Here is a Mathematica implementation of Selection Sort.

Unprotect SelectionSort

SelectionSort

SelectionSort Y_List : � Module i, minIndex, X � Y, j ,
Do minIndex � i; Do If X j � X minIndex , minIndex � j , j, i � 1, Length X ;

X i , X minIndex � X minIndex , X i , i, Length X � 1 ; X

Here random permutations of sizes 100, 200, 300,..., 1000 are constructed.

rps � Table RandomPermutation i , i, 100, 1000, 100 ;

Here are the running times (in seconds) of InsertionSort on the 10 permutations constructed above. It is quite slow − roughly
23 seconds for size−1000 permutation.

ist � Table Timing InsertionSort rps i ; 1, 1 , i, 10

0.2, 0.87, 2.14, 3.54, 5.5, 8.36, 10.77, 15.11, 18.79, 23.

Here are the running times (in seconds) of SelectionSort on the 10 permutations constructed above. It is also quite slow,
however, as expected SelectionSort is a little faster than insertion sort.

sst � Table Timing SelectionSort rps i ; 1, 1 , i, 10

0.17, 0.67, 1.52, 2.73, 4.34, 6.26, 8.57, 11.23, 14.2, 17.47

Here is further confirmation of the slowness of these functions. The in−built sort function in Mathematica is so fast that even
for a permutation of size 1000, its running time does not register!

st � Table Timing Sort rps i ; 1, 1 , i, 10

0., 0., 0., 0., 0., 0., 0., 0., 0., 0.

The running times of the two functions, InsertionSort and SelectionSort are plotted. It is clear that the running times as a
function of the sizes of the permutations are"super−linear" − that is, they grow at a rate that is faster than a linear function. In
fact, the plots seem to indicate that these are growing quadratically.

sorting.nb 1

MultipleListPlot ist, sst, PlotJoined � True

2 4 6 8 10

5

10

15

20

� Graphics �

In fact, further confirmation of this fact comes by computating the ratio: running time on a size−n permutation/ n^2. In both
cases, the ratio seems to be a constant, telling us that the
running times are a constant times n^2, where n is the size of the array being sorted.

Table ist i 100 i ^2, i, 10

0.00002, 0.00002175, 0.0000237778, 0.000022125, 0.000022,
0.0000232222, 0.0000219796, 0.0000236094, 0.0000231975, 0.000023

Table sst i 100 i ^2, i, 10

0.000017, 0.00001675, 0.0000168889, 0.0000170625, 0.00001736,
0.0000173889, 0.0000174898, 0.0000175469, 0.0000175309, 0.00001747

sorting.nb 2

