
Sriram Pemmaraju CS:3330 (Shreyas Pai and Sriram Pemmaraju ): HW3 Solutions

Problem 1

(a) Interpreting log n as log2 n, we can write 2(logn)c as(
2log2 n

)(log2 n)c−1

= n(log2 n)c−1

.

Now note that the exponent (log2 n)c−1 is a growing function in n and therefore n(log2 n)c−1

grows

asymptotically faster than any polynomial function, which has the form na, where a is a positive

integer constant. Also note that since (log n)c grows more slowly than n, we know that 2(logn)c

grows asymptotically more slowly than 2n. So the 2(logn)c is “sandwiched” between polynomial and

exponential functions.

Note: Functions of this form are called quasipolynomial functions and Babai’s now famous paper is

titled “Graph Isomorphism in Quasipolynomial Time.”

(b) To understand f2, let us study the slightly simplified function 22
√

log2 n

. We will first show that 2
√

log2 n

grows faster than (log2 n)c for any constant c. Rewrite (log2 n)c as
(
2log2 log2 n

)c
=
(
2c log2 log2 n

)
. Now,

if we replace log2 n by m, we see that we are comparing 2
√
m with

(
2c log2 m

)
. Since

√
m grows faster

than c log2 m for any constant c, we get that 2
√

log2 n grows faster than (log2 n)c for any constant c.

This fact then implies that f2 grows asymptotically faster than f1 (and therefore, using (a), we see

that f2 grows faster than any polynomial function).

To compare 22
√

log2 n

to 2n, we compare the exponents 2
√

log2 n and n. We then write n as 2log2 n and

this means that we need to compare
√

log2 n with log2 n. Since,
√

log2 n grows more slowly relative

to log2 n, we get that 22
√

log2 n

grows asymptotically more slowly than 2n. Thus, we get

polynomial functions � f1 � f2 � exponential functions.

Note: On Jan 4, 2017, Babai announced on his webpage that an error was discovered in his paper

and that his solution to Graph Isomorphism took f2 time, and not f1 time, as his original paper had

claimed. His announcement had the title “quasipolynomial claim withdrawn.” Happily, just a few

days later, Babai announced that he’d been able to fix his error and he announced “quasipolynomial

claim restored.”

(c) No one knows how to solve Graph Isomorphism in polynomial time. Currently, the fastest algorithm

for the problem is Babai’s quasipolynomial time algorithm. From (a) we know that quasipolynomial

functions grow faster than polynomial time algorithms. From (b) we know that quasipolynomial

functions grow more slowly compared to exponential functions. So we know that it does not take an

exponential function to solve Graph Isomorphism.

Note: This is different from the situation for MVC. For MVC, we don’t know how to solve it in less

than exponential time and the general feeling among algorithms researchers is that an exponential

algorithm is necessary to solve MVC.

Problem 2

(b) Due to the three nested for-loops with indices traveling from 1 through n, the running time of the

algorithm is Θ(n3). The input size is s = Θ(n2) and we can rewrite Θ(n3) as Θ
(
(n2)3/2

)
= Θ(s3/2).

Thus the running time of this algorithm is super-linear, but sub-quadratic.

Page 1 of 3



Sriram Pemmaraju CS:3330 (Shreyas Pai and Sriram Pemmaraju ): HW3 Solutions Problem 2

Algorithm 1 Multiply(A, B)

(a) 1: for i← 1 to n do

2: for j ← 1 to n do

3: C[i, j]← 0

4: for k ← 1 to n do

5: C[i, j]← C[i, j] + A[i, k] ·B[k, j]

6: end for

7: end for

8: end for

9: return C

Problem 3

(a) Initially, all vertices are white. After each iteration of the while loop, the results are as below:

1) white: E,F,G; grey: B,C,D; black: A

2) white: G; grey: C,D,E, F ; black: A,B

3) white: None; grey: C,D,E, F,G; black: A,B,D

The final dominating set is A,B,D.

L1 L2 L3

v1

v2

v3

vR vB

Figure 1: A bad example for greedy algorithm for Minimum Dominating Set.

(b) The execution of the greedy algorithm will repeatedly pick the vertex with the maximum number of

white neighbors. In the beginning, v3 has 8 white neighbors from L3 plus v1, v2, vR, vB , which are white

as well. Thus v3 has a white neighborhood size of 13 (including itself). The remaining vertices have the

following white neighborhood sizes: v2: 9, v1: 7, vR: 12, vB : 12, and every vertex x ∈ L1 ∪L2 ∪L3 has

white neighborhood size equal to 3. Thus v3 will be picked first and colored black. Once v3 is colored

black, the white neighborhood sizes become: v2: 4, v1: 2, vR: 3, vB : 3 and every vertex x ∈ L1 ∪ L2

has white neighborhood size equal to 1. Thus v2 will be picked next. Now the white neighborhood

sizes are v1: 2, vR: 1, vB : 1 and every vertex x ∈ L1 has white neighborhood size equal to 1. So

v1 is picked in the last iteration. In this way, the dominating set created by the algorithm is the set

{v1, v2, v3}, but the minimum dominating set is easily seen as {vR, vB}.

(c) The minimum dominating set in Gn has size 2. The greedy algorithm returns a dominating set

{v1, v2, . . . , vn} of size n in Gn.

(d) The graph G21 serves as a counterexample to the claim that the greedy algorithm is a 10-approximation.

This is because the greedy algorithm produces a solution of size 21 which is strictly more than 10 times

the size of a minimum dominating set.

Page 2 of 3



Sriram Pemmaraju CS:3330 (Shreyas Pai and Sriram Pemmaraju ): HW3 Solutions Problem 3

Problem 4

(a) The greedy algorithm in Problem 2 with input adjacency list can be implemented in the following way:

Algorithm 2 Dominate(L)

1: Set nonblack be an empty object to host non-black vertices

2: Let ds be an empty set for hosting the dominating set

3: Let color be a length-n array, all of whose slots are initialized to white

4: for each vertex i in the graph do

5: nonblack.insert(i, L[i ].length+1)

6: end for

7: (v, whiteDeg) ← nonblack.getmax()

8: while whiteDeg > 0 do

9: Save v to ds

10: if color[v] == white then

11: for each neighbor j of vertex v do

12: nonblack.decreaseValue(j, 1)

13: end for

14: end if

15: for each neighbor j of vertex v do

16: if color[j] == white then

17: for each neighbor k of vertex j do

18: nonblack.decreaseValue(k, 1)

19: end for

20: color[j] ← gray

21: end if

22: end for

23: color[v] ← black

24: (v, whiteDeg) ← nonblack.getmax()

25: end while

26: return ds

(b) Given the running time of the 3 methods, getMax, insert, and decreaseValue, we can analyze

the algorithm’s running time complexity as follows. The for-loop (Lines 4-6) executes insert(k, v)

n times, taking O(log n) time for each insertion. Thus, this for-loop will run in O(n log n) time. The

while-loop is executed n times because with each execution, one vertex is deleted from nonblack.

Each execution of getmax, takes O(log n) time and therefore extracting vertices with largest white

neighborhood from nonblack take O(n log n) time. After a vertex v is extracted from nonblack and

added to ds, we have to update white neighborhood sizes associated with vertices in nonblack. Now

note that for each vertex that changes from white to gray or black, we update its neighbors’ values

in nonblack. A vertex changes from white to some other color only once and therefore for each edge

we perform this update at most twice. Updates of these values (via decreaseValue) take O(log n)

time. Thus the total time to update sizes of white neighborhood sizes is O(m log n). Thus the total

running time of this algorithm is O((m + n) log n).

(c) The data structure that can fulfill the runtime specifications is a max-heap implementation of a priority

queue data type..

Page 3 of 3


