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(a) The greedy algorithm in Problem 3 with input adjacency list can be implemented in the following way:

Algorithm 1 Dominate(L)

1: Set nonblack be an empty object to host non-black vertices

2: Let ds be an empty set for hosting the dominating set

3: Let color be a length-n array, all of whose slots are initialized to white

4: for each vertex i in the graph do

5: nonblack.insert(i, L[i ].length+1)

6: end for

7: (v, whiteDeg) ← nonblack.getmax()

8: while whiteDeg > 0 do

9: Save v to ds

10: if color[v] == white then

11: for each neighbor j of vertex v do

12: nonblack.decreaseValue(j, 1)

13: end for

14: end if

15: for each neighbor j of vertex v do

16: if color[j] == white then

17: for each neighbor k of vertex j do

18: nonblack.decreaseValue(k, 1)

19: end for

20: color[j] ← gray

21: end if

22: end for

23: color[v] ← black

24: (v, whiteDeg) ← nonblack.getmax()

25: end while

26: return ds

(b) Given the running time of the 3 methods, getMax, insert, and decreaseValue, we can analyze

the algorithm’s running time complexity as follows. The for-loop (Lines 4-6) executes insert(k, v)

n times, taking O(log n) time for each insertion. Thus, this for-loop will run in O(n log n) time. The

while-loop is executed n times because with each execution, one vertex is deleted from nonblack.

Each execution of getmax, takes O(log n) time and therefore extracting vertices with largest white

neighborhood from nonblack take O(n log n) time. After a vertex v is extracted from nonblack and

added to ds, we have to update white neighborhood sizes associated with vertices in nonblack. Now

note that for each vertex that changes from white to gray or black, we update its neighbors’ values

in nonblack. A vertex changes from white to some other color only once and therefore for each edge

we perform this update at most twice. Updates of these values (via decreaseValue) take O(log n)

time. Thus the total time to update sizes of white neighborhood sizes is O(m log n). Thus the total

running time of this algorithm is O((m + n) log n).

(c) The data structure that can fulfill the runtime specifications is a max-heap implementation of a priority

queue.
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