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We will spend a substantial amount of time in this course analyzing the running time of
algorithms. The running time of an algorithm is expressed as a mathematical function of
the input size. This document reviews three of the most common classes of functions that
will show up in the running time analysis of algorithms.

Polynomials

A polynomial p(n) in n of degree d is a function of the form{

p(n) = a0 +
dX

i=1

ain
i

where the ai's are the coe�cients of the polynomial and ad 6= 0. A degree 0 polynomial is just
the constant function. Degree 1 polynomials are called linear functions, degree 2 polynomials
are called quadratic functions, and degree 3 polynomials are called cubic functions.

Example 1: 5n3 � 10n� 25 is a cubic polynomial (i.e., a polynomial of degree 3) and the
coe�cients of this polynomial are a0 = �25, a1 = �10, a2 = 0, and a3 = 5.

We will be interested in the behavior of a polynomial as n becomes very large. In general,
the behavior of a function f(n) as n becomes very large is called its asymptotic behavior. It
is not di�cult to see that asymptotically, a polynomial p(n) of degree d behaves just like the
term adn

d because growth-rate of this term\dominates" the growth-rate of all other terms
in the polynomial.

Example 2: Asymptotically, the polynomial 5n3 � 10n� 25 behaves like the simpler poly-
nomial 5n3. This fact can be precisely stated as:

lim
n!1

5n3 � 10n� 25

5n3
= 1:

The above-mentioned fact about the asymptotic behavior of polynomials implies that asymp-
totically, a polynomial of higher degree grows faster than a polynomial of lower degree and
will eventually overtake it. More precisely, for any polynomials p(n) of degree d and q(n) of
degree d0 with d0 > d, we have

lim
n!1

p(n)

q(n)
= 0: (1)

Even though the de�nition of polynomials only permits degrees d that are non-negative
integers, we will also be interested in functions of the form

p
n = n1=2 or n2=3 or n3=2 in which

the exponents are rational numbers. The equation in (1) naturally extends to functions with
rational exponents as follows. For any real numbers d0 > d,

lim
n!1

nd

nd0
= 0: (2)
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Example 3: The equation in (2) implies that limn!1 (
p
n=n) = 0. In other words, the

linear function grows asymptotically faster than the function
p
n. Therefore, functions such

as
p
n are referred to as sublinear functions. With the explosion of sizes of data sets, we

are reaching a point where even algorithms that run in linear time are too slow for some
applications and there is a need to look for sublinear time algorithms.

Exponentials

An exponential function f(n) is a function of the form an, where a is a real number constant.
Here, a is referred to as the base of the function and n is the exponent of the function. Note
that if 0 < a < 1, then an is a decreasing function that approaches 0 asymptotically. On the
other hand, if a > 1, then an is an increasing function. For all real numbers a > 0, m, and
n, exponential functions have the following properties{

a0 = 1
a1 = a
a�1 = 1=a
(am)n = amn

(am)n = (an)m

am � an = am+n

Using these properties we can simplify algebraic expressions and this is useful when we want
to compare two di�erent functions.

Example 3: Consider the expressions 4n and (
p
2)4n. We can rewrite both expressions as

follows so that they base 2:

4n = (22)n = 22n (
p
2)4n = (21=2)4n = 24n=2 = 22n:

This shows that both functions are identical, though this might not have been obvious at
�rst glance.

Using calculus, it is not too di�cult to show that every exponential function grows faster
than every polynomial function. A precise statement of this fact is: for all constants a; b
where a > 1

lim
n!1

nb

an
= 0

Example 4: Consider the polynomial function p(n) = n100 and the exponential function
f(n) = (1:1)n. Even though p(2) = 2100 is huge compared to f(2) = (1:1)2, the fact
mentioned above tells us that f(n) will eventually overtake p(n).

This implies that any algorithm whose running time is an exponential function an, a > 1,
will eventually take more time (i.e., will be slower) than an algorithm whose running time
is a polynomial function. We will discuss this fact more extensively in lecture.
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Logarithms

A logarithm is just the inverse of the exponential function. That is

bx = a implies x = logb (a):

In other words, logb(a) (read as \log of a to the base b")is the quantity that we would raise
b to in order to get a. For example, log2(1024) = 10 because 210 = 1024 and log10(10000) =
4 because 104 = 10000. The following properties of logarithms are a consequence of its
de�nition and the properties of the exponential function: for all real a > 0; b > 0; c > 0, and
n and assuming that none of the bases of logarithms are equal to 1:

a = blogb a

logc (ab) = logc a+ logc b

logb a
n = n logb a

logb 1=a = � logb a

logb a =
logc a

logc b
(change of base formula)

logb a =
1

loga b

alogb c = clogb a

Again, we can use these properties to simplify expressions containing logarithms.

Example 5: Consider the function g(n) = 2(log2 n)
2

. We can rewrite this as

2(log2 n)
2

=
�
2log2 n

�log2 n = nlog2 n:

Note that nlog2 n grows faster than any polynomial function because the exponent is log2 n
which is itself a growing function that will exceed any constant. Thus the function g(n)
grows faster than any polynomial function.

Example 6: Consider the function h(n) = log3 n. Using the change of base formula,
h(n) = log3 n = log2 n= log2 3 � (0:6309) log3 n. Thus log2 n and log3 n are functions that
are constant multiples of each other.

Example 7: Consider the function t(n) = n1= log2 n. This function can be simpli�ed as

n1= log2 n =
�
2log2 n

�1= log2 n = 2
log2 n

log2 n = 2:

Using calculus, it is not di�cult to show that any logarithmic function asymptotically asymp-
totically grows more slowly than any polynomial function. In fact, any constant power of a
logarithmic function grows more slowly than any polynomial function. The precise statement
of this is: for any reals d, d0, and base b > 1:

lim
n!1

(logb n)
d0

nd
= 0:
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Example 8: Thus the function f1(n) = (log2 n)
25 grows asymptotically more slowly than

f2(n) = n2. This is true despite the fact that f1(4) = 225 is huge relative to f2(4) = 42.

Example 9: Reconsider the function g(n) = 2(log2 n)
2

from Example 5. We saw there that
this function asymptotically grows faster than any polynomial function. Now using the
fact that (log2 n)

2 grows asymptotically more slowly than n, we conclude that g(n) grows
asymptotically more slowly than 2n. Thus the asymptotic growth rate of the function g(n)
is \sandwiched" between the class polynomial functions below and the class of exponential
functions above.
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