
CS:3330 Exam 2 Solution, Spring 2017

1. (a) {1, 8, 12, 3, 16, 10}
(b) 1. t← −∞; S ← ∅

2. while there is an interval that starts at or after t do
3. if there is no interval I such that start(I) ≤ t < finish(I) then
4. t← start time of earliest interval that starts after t
5. I ← interval that contains t and has the largest finish time
6. Add I to S
7. t← finish time of I 8. textbfreturn S

(c) Let A = {a1, a2, . . . , ap} be the solution returned by the algorithm, arranged in increasing
order of start times. Note that no two intervals in A can have the same start time. Similarly,
let B = {b1, b2, . . . , bq} be an optimal solution, also arranged in increasing order of start times.
Again, note that no two intervals in B can have the same start time.

Now note that the start times of a1 and b1 are identical and equal to the start time of the
earliest starting interval in the input. Because of the “greedy” choice (Line 5) of a1, the finish
time of a1 is at least as large as the finish time of b1. Therefore, a1 “covers” everything that
b1 “covers” and the set

O1 = {a1, b2, . . . , bq}

is a tiling path and since it has size q, it is also optimal. Also note that the intervals in O1

are listed in increasing order of start time.

As an inductive hypothesis, suppose that the set

Oj = {a1, a2, . . . , aj , bj+1, bj+2, . . . , bq}

is an optimal tiling path with intervals listed in increasing order of start times. Therefore,
interval bj+1 starts after aj starts. If interval bj+1 ends at or before interval aj ends, then
it would be entirely “covered” by aj . We could then drop bj+1 and get a tiling path of size
q − 1 – contradicting the optimality of O. So we can assume that bj+1 ends after aj ends.
After aj has been picked by the algorithm, the variable t is set to the finish time of aj in
Line 7. Now there are two cases depending on whether there exists an interval I such that
start(I) ≤ t < finish(T).

– If there is an interval I such that start(I) ≤ t < finish(I), then both aj+1 and bj+1 start
at or before t and finish after t. Among all such intervals, due to the “greedy” choice,
aj+1 has the highest finish time. Therefore, the intervals {a1, a2, . . . , aj , aj+1} together
cover everything that the intervals {a1, a2, . . . , aj , bj+1} cover. Therefore, the set

Oj+1 = {a1, a2, . . . , aj , aj+1, bj+2, . . . , bq}

obtained by replacing bj+1 by aj+1 in Oj+1 is an optimal tiling path.

– If there is no interval I such that start(I) ≤ t < finish(I), then t is moved forward to the
earliest start time of an interval after t (Line 4) and both aj+1 and bj+1 start at this new
t. Among all such intervals, due to the “greedy” choice, aj+1 has the highest finish time.
Therefore, the intervals {a1, a2, . . . , aj , aj+1} together cover everything that the intervals
{a1, a2, . . . , aj , bj+1} cover. Therefore, the set

Oj+1 = {a1, a2, . . . , aj , aj+1, bj+2, . . . , bq}

obtained by replacing bj+1 by aj+1 in Oj+1 is an optimal tiling path.

Therefore, by induction, Oq = {a1, a2, . . . , aj , aj+1, aj+2, . . . , aq} is an optimal tiling path.
This means that after the algorithm has added intervals a1, a2, . . . , aq to S, there are no
intervals left to add. Hence, p = q and the set returned by the algorithm is optimal.

1

2. (a) The optimal Huffman encoding for the given set of frequencies is the following–

a: 0000000

b: 0000001

c: 000001

d: 00001

e: 0001

f: 001

g: 01

h: 1

Of course, the binary code tree corresponding to the above encoding is also a valid answer.

(b) The optimal binary Huffman encoding of one letter will be n − 1 zeros and the other letter
will be n− 2 zeros followed by a one.

(c) The algorithm to follow here is to take the three least frequent letters and merge them to
form one letter. But we need to add an extra letter with frequency zero to make the number
of letters odd before executing the algorithm.

The reason for this is that since we are removing three letters and adding one (the combination
of the three), we are effectively removing two letters from the input in each iteration. We don’t
want to be in a situation where there are two letters to combine at the last iteration of the
algorithm. This is because the resulting ternary code tree will not be “full” (in a full ternary
tree, every non-leaf node has exactly three children).1

The optimal ternary code is –

a: 0

b: 20

c: 21

d: 1

e: 220

f: 221

And there will be an extra letter with encoding 222 having frequency zero.

3. In this problem, we follow the convention used in class that if a vertex is already in the bag when
we try to insert it, then the distance value of the vertex is updated instead of inserting another
copy in the bag.

The version given in Prof. Jeff Erickson’s notes does not do this so the execution where we have
two copies of a in the stack after iteration 2 is also correct.

No. Contents of Stack Vertex out of Stack Relaxed edges New dist(·) values
1. s s s→ a, s→ b a = 4, b = −3
2. a, b b b→ a, b→ d a = 3, d = 9
3. a, d d d→ c c = 14
4. a, c c c→ e e = 13
5. a, e e None None
6. a a a→ c c = 5
7. c c c→ e e = 4
8. e e e→ d d = 6
9. d d None None

1Since this was not pointed out in the problem, students were given full credit if they happen to miss this issue. Good
job if you saw or fixed this issue!

2

4. For this problem we will maintain a counter hops(·) for each vertex in the graph where hops(v)
denotes the number of hops that the shortest path from s to v takes. The definition of a tense edge
will need to be modified –

An edge e = (u, v) is tense if dist(v) > dist(u)+w(e) or if dist(v) = dist(u)+w(e) and hops(u)+1 <
hops(v).

When we relax an edge (u, v) we update hops(v) = 1+hops(u) in addition to updating the distance
value and predecessor pointer.

The priorities in the priority queue are also modified to break ties in favour of nodes that have a
lower hops(·) value. That is if dist(u) = dist(v) and hops(u) < hops(v) then the node u will have
higher priority.

5. (a) The running time of the implementation of Prim’s algorithm discussed in class is O(m log n).
To improve this running time to O(m), we replace the min-heap priority queue data structure
that holds edges leaving the component C, by a size-10 array A[1 . . . 10] of sets, where A[j] is
the set of all edges of weight j leaving the component C. In each iteration of Prim’s algorithm,
we look in A for a safe edge for C and on finding a safe edge {u, v}, u ∈ C, v 6∈ C, we add
vertex v to C and then process all edges incident on v, deleting some of these edges from A
and adding some of these edges to A.

Since A has size 10, it takes O(1) time to scan A left-to-right and find the first non-empty set
in A. This yields a lightest edge in A, which in turn is a safe edge for C. Assume that the safe
edge that was found was {u, v}, u ∈ C, v 6∈ C. After adding v to C, we process every edge
{v, w} incident on v and if w ∈ C, we delete {v, w} from A and otherwise we add {v, w} to A.
Both the Delete and Add operations take O(1) time because A is of size 10 and therefore
it takes O(1) + O(degree(v)) time to find the safe edge {u, v} and process edges incident on
v. Summing this over all vertices v, we get a total running time of O(n + m) = O(m).

(b) We initialize a size-10 array A[1 . . . 10] of edge-sets and consider each edge e in the input graph
and add it to the (initially empty) set A[weight(e)]. This sorts the edges by weight and we
now consider edges in A[1] first, then edges in A[2], then edges in A[3], etc. For the rest of
Kruskal’s algorithm we use the shallow threaded tree with union by size implementation of
the Disjoint Set Union Find data structure.

Sorting the edges in the manner described above takes O(m) time because each edge can be
inserted into the array A in O(1) time. (This algorithm is sometimes called bucket sort.) The
shallow threaded tree with union by size implementation of the Disjoint Set Union Find
data structure supports MakeSet in O(1) time, Find in O(1) time, and Union in O(log n)
amortized time (amortized over the n − 1 Union operations). Thus the running time of the
rest of the algorithm is O(n) (for the n MakeSet operations at the beginning), plus O(m)
(for the 2m Find operations), plus O(n log n) (for the n − 1 Union operations). Thus the
total running time is O(m + n log n).

6. Suppose we have a length-m intermixed sequence of Push, Pull, and Decimate operations. Each
Push operation takes O(1) time and so we charge $1 to the element that was pushed by the Push

operation. Each Pull operation takes O(1) time and so we charge $1 to the element that was
pulled by the Pull operation. Each Decimate operation takes O(n) time when it is applied on a
dequeue with n elements. Also, the Decimate operation pulls out n/10 elements from this dequeue
and so we can charge $10 to each of the n/10 elements that were pulled out. In this manner, the
O(n) cost of Decimate has been equally distributed among the n/10 elements that were pulled
out. This charging scheme ensures that the total running time of the m operations in the given
sequence has been charged to elements that spent at least some time in the dequeue.

Now I argue that at the end of the m operations in the given sequence each element that has spent
any time in the dequeue is charged at most $11. Any element that is currently is the queue is
charged $1 by the Push that pushed it in. Any element that was in the queue in the past, but

3

is not currenty in the queue, is charged either $2 or $11, depending on whether it left the queue
because of a Pull operation or because of a Decimate operation.

Let K be the total number of elements that spent any time ever in the dequeue. Thus, we have
shown that the total running time of all m operations is at most 11 ·K. Therefore the amortized
running time over the m operations is at most 11 ·K/m. Now note that for every element that has
ever spent any time in the dequeue, there is a Push operation that pushed that element in. Hence,
m ≥ K, and therefore 11 ·K/m ≤ 11 = O(1).

4

