CS:3330 Homework 4, Fall 2015

Due in class on Tue, Nov 3

1. Let G = (V, E) be a connected, undirected graph. An articulation point of G is a vertex in
G whose removal disconnects G. For example, in the graph below, if we delete the vertex
D, the graph that remains has two connected components, one with vertex set {A, B,C}
and the other with vertex set {E, F,G,H,I,J}.

(a) Identify all articulation points in the following graph.

(b) Let T be a depth-first search (DFS) tree of G, rooted at a vertex s € V. Prove that
s is an articulation point if and only if s has at least two children in T'.

(c) Let T be a DFS tree of G, rooted at a vertex s € V. For any vertex v # s, prove
that v is an articulation point of G if and only if v has a child w such that there is
no non-tree edge from the subtree of T' rooted at w to a proper ancestor of v.

Note: To understand this claim take a look at the DFS tree in Fig 3.5(g) (Page 85)
in the textbook. Vertex 3 has two children: vertex 5 and vertex 7. The subtree of
the DFS tree rooted at vertex 5 contains vertices 4, 5, and 6. There are two non-tree
edges from this subtree leading back to a proper ancestor of vertex 3, namely vertex
2. The subtree of the DFS tree rooted at vertex 7 contains vertices 7 and 8. There is
a non-tree edge from this subtree to vertex 3, but not to a proper ancestor of vertex
3. Hence vertex 3 has a child (vertex 7) such that there is no non-tree edge from the
subtree rooted at vertex 7 leading back to a proper ancestor of vertex 3. Therefore,
according to the above claim, vertex 3 is an articulation point. This is easy to see
because deletion of vertex 3 will separate vertices 7 and 8 from the rest of the graph.

2. The two claims stated in Problem 1, parts (b) and (c¢) above can be be used to obtain an
efficient algorithm (based on DFS) for finding all articulation points in a graph. Consider
the following recursive implementation of the DFS algorithm.

DFS(u):
Explored[u] + True
time ¢ time + 1; D[u] ¢ time
for each neighbor v of v do
if not Explored[v] then
DFS(v)

This is essentially the pseudocode in the textbook (Page 84) except that I have added
an array D that keeps track of the “time” at which each vertex is first visited by DFS.



Assume that the variable time that you see in the above pseudocode is a global variable
that is initialized to 0 before DFS is called. Also assume that the array Explored has been
initialized to all False values.

()

()

For each vertex v € V define low[v] as
min ({D[v]} U {D[w] | (u,w) is a non-tree edge for some descendent u of v}).

For the graph provided for Problem 1, draw a DFS tree rooted at vertex A (in the
style of Fig 3.5(g)). For each vertex, show its D-value and low-value and also show all
non-tree edges of G with respect to this DFS tree.

Modify the DFS function to compute the low-values for all vertices v in O(m) time.
(Note that since G is connected, m > n — 1.)

Hint: The recursive structure of the DFS algorithm makes it easy to do this. Once
control returns from all the recursive calls to DFS(v) at children v, then we can use
the low-values computed for children v to compute the low-value at u.

Further modify the DF'S function with low-value computation to show how to identify
all articulation points in G in O(m) time.

3. Problem 11 in Chapter 3 (Pages 111-112). Make sure that you present an arument showing
why your algorithm runs in O(m + n) time.

4. Consider the problem of making change for n cents (for positive integer n) using the fewest
number of coins. Describe a greedy algorithm that uses quarters, dimes, nickels, and
pennies to make change.

Now comes the more interesting question: how do you prove that your algorithm yields an
optimal solution? The next few parts of this problem will lead you through a proof.

(a)

(b)

Let O be optimal change for n. In other words, O is a smallest possible set of coins
using quarters, dimes, nickels, and pennies, whose total value is n. We will first prove
the following claim:

Claim: O contains exactly as many quarters as produced by the greedy
algorithm.

To prove this claim, answer the following questions: what is the maximum number
of pennies that O can contain? what is the maximum number of nickels that O can
contain? what is the maximum number of dimes that O can contain? what are all the
possible combinations of dimes and nickels that O can contain? Using the answers to
these questions, determine the maximum value of dimes, nickels, and pennies in O.
Use this value to prove the claim.

Use the above strategy to prove that O contains exactly as many dimes as produced
by the greedy algorithm and then exactly as many nickels as produced by the greedy
algorithm.

5. Problem 6 in Chapter 4 (Page 191).

6. Problem 17 in Chapter 4 (Page 197).

7. Problem 18 in Chapter 4 (Pages 197-198).




