
CS:3330 Exam 2 Solution, Fall 2015
Thursday, Oct 29 2015, 6:30 pm to 8:30 pm

1. You are given a graph G in which each edge has weight 1 or 2. You would like to find
shortest paths in this graph and know that you can use Dijkstra’s shortest path algorithm to
do so. However, you wonder if it may be more efficient to turn G into an unweighted graph
(i.e., a graph with no edge weights) and then use BFS instead of Dijkstra’s shortest path
algorithm. Your plan for transforming G into an unweighted graph consists of replacing
each edge {u, v} in G with weight 2 by a path of length 2 (as shown below). Note that
this results is a new vertex (called x in the example below) being added to the graph for
every weight-2 edge in G.

u v
2

u vxreplaced by

new vertex

(a) Let H be the graph obtained from the given graph G by the above-described trans-
formation. If G has n vertices and m edges, what is the maximum number of vertices
that H can have (as a function of m and n)? Similarly, what is the maximum number
of edges H can have?

Solution: The maximum number of vertices H can have is m+n and the maximum
number of edges H can have is 2m.

(b) Suppose G is represented as an adjacency list. Describe an efficient algorithm that
constructs an adjacency list representation of H. (Recall from part (a) that H is the
unweighted graph obtained from G by using the above-described transformation.)

Solution: In the following code n is the number of vertices in G and m is the
number of edges of G. Also, weight(v, w) is just a shorthand to refer to the weight
of edge {v, w}, which is stored in two places – in HAdjList[v], along with w and in
HAdjList[w], along with v.

c← n + 1; create HAdjList, an array of length m + n
for each vertex v in G do

Create HAdjList[v].neighbors, a linked list to hold neighbors of v
for each neighbors w of v do

if weight(v, w) = 1 then
HAdjList[v].neighbors.insert(w)

else if weight(v, w) = 2 and w > v then
HAdjList[v].neighbors.insert(c)
HAdjList[w].neighbors.insert(c)
Create HAdjList[c].neighbors
HAdjList[c].neighbors.insert(v)
HAdjList[c].neighbors.insert(w)
c← c + 1

(c) What is the running time of the above algorithm? Express your answer in asymptotic
notation, as a function of m and n.

Solution: Θ(m + n) in the worst case.

(d) Suppose you wanted to solve the Single Source Shortest Path (SSSP) problem on G.
Based on your answer to (c), which one of the two options would you choose: (i)

1



transform G into H and use BFS on H or (ii) use Dijkstra’s shortest path algorithm,
as it is, on G?

Solution: (i). The worst case running time of the transformation algorithm in (b)
is Θ(m + n). Also, BFS runs in Θ(m + n) time. Therefore, using the transformation
algorithm followed by BFS yields a solution to SSSP tha runs in Θ(m + n) time.
The min-heap based implementation of Dijkstra’s shortest path algorithm runs in
Θ((m + n) log n) time in the worst case, which is asymptotically worse than option
(i).

Remarks: Some students were a bit careless about avoiding adding two new vertices for
each weight 2 edges. Also, a few students had trouble with the running time analysis of
the pseudocode in (b).

2. Below I provide a version of the depth-first search (DFS) algorithm on a directed graph in
which each vertex is assigned a “discovery” time (using the array D) and a “finish” time
(using the array F). I show not only the function DFS, but also the “main program” further
below that performs initializations and also calls DFS repeatedly until the entire graph is
explored. Note that if some of the vertices in the graph are not reachable from the first
source vertex, then subsequent calls to DFS starting from as-yet unexplored vertices are
required in order to explore the entire graph.

DFS(u):
Explored[u] ← True

time ← time + 1; D[u] ← time

for each out-neighbor v of u do
if not Explored[v] then

DFS(v)
time ← time + 1; F[u] ← time

Comment: Below is the main program that calls DFS repeatedly until the entire graph is explored.
time ← 0
for each vertex u ∈ V do

Explored[u] ← False

for each vertex u ∈ V do
if not Explored[u] then

DFS(u)

(a) Execute the above algorithm on the directed graph given below. Assume that vertices
are considered in alphabetical order in all three for-loops you see in the code. Thus
the first call to DFS is initiated at vertex A. Draw the resulting collection of DFS
trees. For each vertex, show their D-value and F-value also.

Solution: Next to each vertex v in the figure below, I show the tuple [D(v), F(v)].

2



A E

D C F

B

G

Figure 1: Directed graph to use as input for DFS.

A

B

C

D

E G

F

[1, 8]

[2, 7]

[3, 6]

[4, 5]

[9, 12]

[10, 11]

[13, 14]

(b) Suppose that G is a DAG. If we execute the DFS algorithm described above on G
and examine the F-values of G, we see that the F-values tell us how to topologically
order the vertices of G. Discover and state this connection precisely.

Solution: The sequence of vertices of G in decreasing order of their F-value is a
topologically sorted order of vertices in G.

(c) Describe the resulting algorithm (based on computing F-values using DFS) for topo-
logical sorting in 2-3 sentences. What is the running time of this algorithm, stated in
asymptotic notation, as a function of m and n?

Solution: When DFS completes processing a vertex u, append it to a list L. Thus
L will contain vertices in increasing order of “finish” time. Reversing this list in
Θ(n) time will yield a topologically sorted order of vertices. The running time of this
algorithm is dominated by the running time of depth-first search and is thus Θ(m+n).

Remarks: Most students solved (a) correctly. A number of students made the correct
connection between F-values and topological sort in part (b), but decided to solve (c)
by running DFS followed by sorting. This is of course not incorrect, but unnecssarily
inefficient. Even, if one wants to sort F-values after DFS has been completed, it can
be done in Θ(n) by noting the fact that F-values are all distinct and come from the set
{1, 2, . . . , n}. Unfortunately, most students did not notice this feature of the F-values that
makes it rather easy to sort, without using a full-fledged sorting algorithm.

3. You are given a set X = {x1, x2, . . . , xn} of points on the real line. Your task is to design
a greedy algorithm that finds a smallest set of intervals, each of length 2, that contains all
the given points.

Example: Suppose that X = {1.5, 2.0, 2.1, 5.7, 8.8, 9.1, 10.2}. Then the three intervals
[1.5, 3.5], [4, 6], and [8.7, 10.7] are length-2 intervals such that every x ∈ X is contained

3



in one of the intervals. Note that 3 is the minimum possible number of intervals because
points 1.5, 5.7, and 8.8 are far enough from each other that they have to be covered by 3
distinct intervals. Also, note that my solution is not unique – for example, I can shift the
middle interval [4, 6] to the right, say to [5.7, 7.7], without disturbing the other intervals,
and we would still have an optimal solution.

(a) Suppose that elements of X are presented in increasing order. Describe (using pseu-
docode) a greedy algorithm, running in O(n) time, for this problem.
Note: The space below is much larger than the space you need to answer this ques-
tion!

Solution: Here is the pseudocode.

G← ∅; R← −∞
for i← 1 to n do

if xi > R then
G← G ∪ {[xi, xi + 2]}
R← xi + 2

return G

(b) Using the “greedy stays ahead” approach that we used for the Interval Scheduling
greedy algorithm proof, prove that your algorithm indeed produces an optimal solu-
tion. Your proof needs to be clear and precise, in addition to being correct.

Solution: Here is the proof. For any interval I, let s(I) denote its left endpoint and
let f(I) denote its right endpoint. Let O = {o1, o2, . . . , op} be an optimal solution to
the problem. We label the intervals in O such that f(o1) < f(o2) < · · · < f(op). Also,
let G = {g1, g2, . . . , gq} be the solution produced by the greedy algorithm described
above. Label the intervals in G in the order in which they are selected by the algo-
rithm. This implies that f(g1) < f(g2) < · · · < f(gq). By definition of an optimal
solution, we know that p ≤ q. We will now show that q ≤ p and therefore p and q are
identical and therefore G is also an optimal solution.

Big Claim: q ≤ p.
In order to prove the “Big Claim” we first show the following “Little Claim.”
Little Claim: For all i, 1 ≤ i ≤ p, f(gi) ≥ f(oi). (This is the claim that establishes
that “greedy stays ahead.”)
Proof: We prove this claim by induction. For the base case consider intervals o1
and g1. Both of these intervals contain x1 and therefore f(o1) ≤ x1 +2. However, our
greedy algorithm picks g1 such that s(g1) = x1 and therefore f(g1) = x1 + 2. From
this, we conclude that f(g1) ≥ f(o1).

Induction hypothesis: Suppose that f(gi) ≥ f(oi) for all i, 1 ≤ i ≤ r < p.
Now consider the leftmost point x ∈ X such that f(gr) < x. Note that such a point x
exists because gr is not the last interval chosen by the greedy algorithm. Our greedy
algorithm will choose [x, x + 2] as the next interval and therefore gr+1 = [x, x + 2].
According to the induction hypothesis, f(or) ≤ f(gr) and therefore f(or) < x also.
This means that s(or+1) ≤ x and therefore f(or+1) ≤ x + 2 = f(gr+1).
End of Proof of “Little Claim.”

In order to now prove the “Big Claim” we use “proof by contradiction” and suppose
that p < q. Consider interval gp+1 and a point x ∈ X that belongs to gp+1. According
to the claim proved above, f(op) ≤ f(gp) and therefore x is not in any of the intervals
o1, o2, . . . , op, contradicting the fact that O is an optimal solution. Thus, it must be
the case that p ≥ q.
End of Proof of “Big Claim.”

4



Remarks: Students had a lot of trouble expressing the above proof precisely. Somewhat
surprisingly, some students also had trouble with expressing the pseudocode in part (a)
precisely.

4. Here are two scheduling problems that are variants of problems familiar to you. However,
the greedy algorithms that worked the original problems don’t work for these variants.
Your task is to devise counterexamples to show this.

(a) Recall the problem of Scheduling to Minimize Lateness for which we designed a greedy
algorithm. Now consider a variant of this problem in which each job i has an associated
deadline di, an associated execution time ti, and a release time ri. The release time
ri of a job imposes the constraint that job i can only be scheduled at or later than ri
because the job is only available for execution at time ri. The original problem did
not have release times and it was assumed that all jobs are available from the very
beginning, i.e., at time 0.

The greedy algorithm Earliest Deadline First (EDF) that worked for the original
problem of Scheduling to Minimize Lateness, no longer works when we have release
times. Construct a simple input for the problem (by specifying {di, ti, ri} for all i) for
which the EDF algorithm does not produce an optimal solution. Show the solution
produced by EDF and compare it to the optimal solution.

Solution: Consider two jobs J1 = (3, 1, 2) and J2 = (4, 2, 0). The EDF algorithm
outputs the schedule (J1, J2). In this schedule J1 starts at time 2 because that is when
it is released. J1 completes at time 3 and is not late. J2 starts at time 3, completes
at time 5, and is 1 unit late.

Now consider the schedule (J2, J1). In this schedule J2 starts at time 0, completes at
time 2, and is not late. Then, J1 starts at time 2, completes at time 3, and is also
not late.

Thus, there is a schedule that has smaller lateness than he schedule produced by EDF.

(b) A variant of the Interval Scheduling problem is one in which each interval has an asso-
ciated non-negative weight. In this problem (called the Weighted Interval Scheduling
problem), we want to find a set of mutually non-overlapping intervals that have the
maximum total weight. For example, consider intervals I1 = [1, 3], I2 = [2, 4], and
I3 = [3.5, 4.5] and suppose that w(I1) = w(I3) = 1 and w(I2) = 10. Then, the optimal
solution to this problem would be {I2} and not {I1, I3} because the weight of I2 is 10
whereas the weight of {I1, I2} is 1 + 1 = 2.

The greedy algorithm that we used to solve the Interval Scheduling problem repeatedly
picked an interval with earliest finish time and deleted other intervals that overlapped
the selected interval. Show that this algorithm does not produce an optimal solution
to the Weighted Interval Scheduling problem.

Solution: Consider the example presented in the problem description above. For
this example, the greedy algorithm that picks intervals by earliest finish times will
produce the solution {I1, I3}, with weight 2. But, the solution {I2} has weight 10 and
therefore this greedy algorithm does not produce an optimal solution to the Weighted
Interval Scheduling problem.

5. Consider the undirected edge-weighted graph shown below.
(Downloaded from https://en.wikibooks.org/wiki/A-level_Mathematics/MEI/D1/Networks)

(a) Show the execution of Dijkstra’s shortest path algorithm (pseudocode given below)
for solving the Single Source Shortest Path (SSSP) problem on this graph. Use the
vertex S as the source. For each iteration of the while-loop show (i) the vertices in S,
the set of vertices to which we know the correct distances (ii) the d′-values assigned
to the vertices in V \ S during that iteration, and (iii) the vertex v∗ selected in that
iteration.

5



Figure 2: Undirected Edge-weighted graph to use for Dijkstra’s Shortest Path algorithm.

S ← {s}; d[s]← 0
while S 6= V do

for each vertex u ∈ V \ S do
d′[u]←∞

for each vertex u ∈ V \ S do
d′[u]← min(v,u)∈E,v∈S{d[v] + w(v, u)}

Select a vertex v∗ ∈ V \ S with smallest d′-value
d[v∗]← d′[v∗]
S ← S ∪ {v∗}

Solution: The following table of d′-values after each iteration shows the progress of
Dijkstra’s algorithm on the given graph. The asterisk next to a number indicates that
the corresponding vertex had the smallest d′-value in that iteration and was therefore
chosen to join S. The - symbols in each row indicate vertices that have already joined
S.

P Q R S T U V W X Y
2* ∞ ∞ - ∞ 3 ∞ ∞ ∞ ∞
- 7 ∞ - ∞ 3* ∞ ∞ 6 ∞
- 7 ∞ - ∞ - 6 ∞ 4* ∞
- 7 ∞ - ∞ - 6* ∞ - 10
- 7* ∞ - ∞ - - 10 - 10
- - 9* - ∞ - - 10 - 10
- - - - 15 - - 10 - 10*
- - - - 15 - - 10* - -
- - - - 15* - - - - -
- - - - - - - - - -

(b) Dijkstra’s shortest path algorithm only works for graphs with non-negaive edge weights.
To prove this, construct an appropriate simple directed graph G, some of whose edge
weights are negative. Show the execution of Dijkstra’s shortest path algorithm on
this graph and show that when Dijkstra’s algorithm terminates, at least one of the
d-values is wrong, i.e., does not represent the distance from the source vertex.

A
2

3 -2

B

C

6



Solution: Suppose we use Dijkstra’s shortest path algorithm to solve the SSSP prob-
lem from vertex A in the 3-node graph above. The algorithm will report that the
distance from A to B is 2. However, there is a shorter path A-C-B that has length 1.

7


